
Embedded Tutorial 2:
Compilers for Power and Energy Management

Ulrich Kremer
Department of Computer Science

Rutgers University
New Jersey, USA

Optimizing compilers perform program analyses and trans-
formations at different levels of program abstraction, rang-
ing from source code, intermediate code such as three ad-
dress code, to assembly and machine code. Analyses and
transformations can have different scopes. They can be
performed within a single basic block (local), across basic
blocks but within a procedure (global), or across proce-
dure boundaries (interprocedural). Traditionally, optimiz-
ing compilers try to reduce overall program execution time
or resource usage such as memory. The compilation process
itself can be done before program execution (static compila-
tion), or during program execution (dynamic compilation).
This large design space is the main challenge for compiler
writers. Many tradeoffs have to be considered in order to
justify the development and implementation of a particu-
lar optimization pass or strategy. However, every compiler
optimization needs to address the following three issues:

1. opportunity: When can the optimization be applied?

2. safety: Does the optimization preserve program se-
mantics?

3. profitability: When applied, how much performance
improvement can be expected?

Clearly, every program transformation should be safe. Com-
piler writers will be out of their jobs if safety can be ignored.
Profitability has to consider any overheads introduced by an
optimization, in particular runtime overheads. The combi-
nation of opportunity and profitability allows the assessment
of the expected overall effectiveness of an optimization.

In principle, hardware and OS based program improve-
ment strategies face the same challenges as compiler op-
timizations. However, the tradeoff decisions are different
based on the acceptable cost of an optimization and the
availability of information about dynamic program behav-
ior. Hardware and OS techniques are performed at run-
time where more accurate knowledge about control flow and
program values may be available. Opportunity, safety and
profitability checks result in execution time overheads, and
therefore need to be rather inexpensive. Profitability analy-
ses typically use a limited window of past program behavior
to predict future behavior. In contrast, in a static compiler,
most of the opportunity, safety and profitability checks are
done at compiler time, i.e., not at program execution time,

Copyright is held by the author/owner.
ISLPED’02, August 12-14, 2002, Monterey, California, USA.
ACM 1-58113-475-4/02/0008.

allowing more aggressive program transformations in terms
of affected scope and required analyses. Since the entire pro-
gram is available to the compiler, future program behavior
may be predicted more accurately in the cases where static
analysis techniques are effective. Purely static compilers do
not perform well in cases where program behavior depends
on dynamic values that cannot be determined or approxi-
mated at compile time. However, in many cases, the nec-
essary dynamic information can be derived at compile time
or code optimization alternatives are limited, allowing the
appropriate alternative to be selected at runtime based on
compiler generated tests. The ability of the compiler to re-
shape program behavior through aggressive whole program
analyses and transformations that is a key advantage over
hardware and OS techniques, exposing optimization oppor-
tunities that were not available before. In addition, aggres-
sive whole program analyses allow optimizations with high
runtime overheads which typically require a larger scope in
order to assess their profitability.

Recently, power dissipation and energy consumption have
become optimization goals in their own right, no longer
being considered a by-product of traditional performance
optimizations. Effective power and energy management is
important to prolong battery life and to reduce heat dis-
sipation. Developing compile-time techniques for applica-
tion specific power and energy management is an exciting
new challenge. In this tutorial, I will give an overview of
current approaches to compiler-directed power and energy
mangement. I will discuss several promising compiler opti-
mization techniques in detail, together with an assessment
of their potential benefits. These optimizations include re-
mote task mapping, resource hibernation, dynamic voltage
and frequency scaling, and quality of result tradeoffs. Based
on preliminary experiences with these optimizations, I will
present a compiler writer’s wish list for hardware architects
and OS designers in order to support application specific
power and energy management. An overview of future chal-
lenges will conclude the tutorial.

220


	Main
	ISLPED02
	Front Matter
	Table of Contents
	Author Index





