
Retiming-Based Logic Synthesis for Low-Power
Yu-Lung Hsu

Institute of Computer Science
National Chung-Hsing University

Taichung 402, Taiwan, ROC
+886-4-2840497

paul@cs.nchu.edu.tw

Sying-Jyan Wang
Institute of Computer Science

National Chung-Hsing University
Taichung 402, Taiwan, ROC

+886-4-2840497

sjwang@cs.nchu.edu.tw

ABSTRACT
Power management has become a great concern in VLSI design in
recent years. In this paper, we consider the logic level design
technique for low power applications. We present a retiming-
based optimization method, in which part of the circuit is selected
and moved so that it produces logic signals one clock cycle before
they are actually applied. If these values can solely determine the
output logic level, then the other part of the circuit can be turned-
off to save power. We explore acceptable retimed circuit
structures, in which circuit function is not changed. An algorithm
is proposed to select the optimal logic block to be retimed. We
experiment the low-power circuit structure with some MCNC
benchmark circuits, and results indicate an improvement over
previous methods. Our method achieves a significant reduction in
switching activity, and the reduction can be more than 70% in
some case. The required area overhead is very small.

Categor ies and Subject Descr iptors
B.6.3 [Logic Design]: Design Aids – automatic synthesis,
optimization, switching theory.

General Terms
Algorithms, Design.

Keywords
Low-power, retiming, logic design, switching actvity.

1. INTRODUCTION
Low power design has attracted tremendous attention in recent
years. The advance in technology makes it possible to put more
and more devices in the same silicon area while at the same time
pushes the clock rate even higher. Low power design is thus
necessary to reduce the packaging and cooling costs as well as
prolong the life span of integrated circuits (ICs). The second
source of requirement for low power design comes from mobile
applications, in which the lifetime of a battery can be extended if
the power is reduced.

The technology-independent low-power design strategy reduces
power consumption through a refined design process. An obvious
method to reduce the power consumption is to shut down part of a
circuit when it is not in operation condition. Since the dynamic
power dissipation in a VLSI is usually introduced by signal
transitions in the circuit, many studies have also been carried out
to minimize the average power dissipation by reducing switching
activities [1] of a given logic circuit. The minimization can be
achieved at technology mapping phase [2] and logic design phase
[3]-[6]. The major logic design methods for low power include
techniques to eliminate glitches [3],[4], to reduce switching
activity in normal computation [5],[6].

In this paper, we present a retiming-based technique for low
power design. This method tries to move a part of the circuit to an
earlier stage, so that signal transitions in some nets can be halted
while the circuit function is still correct. We experiment the
proposed method, and the results show that our method can
efficiently reduce dynamic power consumption in a circuit.

2. PRELIMINARIES
CMOS is currently the dominant technology in digital VLSI. Two
components contribute to the power dissipation in CMOS circuits.
The static dissipation is due to leakage current, while dynamic
power dissipation is due to switching transient current as well as
charging and discharging of load capacitances.

Since the amount of leakage current is usually small, the major
source of power dissipation in CMOS circuits is the dynamic
power dissipation. Dynamic power dissipation appears only when
a CMOS gate switches from one stable state to another. In the
dynamic power dissipation, the component due to the charging
and discharging of load capacitance is usually the dominant factor.
Thus the average dynamic dissipation of a CMOS gate is:

NfVCP pDDLavg ××××= 2

2
1

(1)

where CL is the load capacitance, VDD is the power supply voltage,
fp is the clock frequency, and N is the average number of gate
output transition, or switching activity, in a clock cycle [3]. Thus,
the power consumption can be reduced if one can reduce the
switching activity of a given logic circuit without changing its
function.

The focus of low-power logic design is to eliminate unnecessary
switching activities in a logic circuit. One source of such activity
comes from glitches, which is due to delay in components. Under
zero-delay, a logic gate should make at most one signal transition
in each clock cycle. However, the delay in signal propagation may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’02, August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008… $5.00.

create multiple output transitions in a cycle, and this is known as
glitches. Glitches can be reduced by retiming or gate freezing
[3],[4]. On the other hand, the major source of switching activity
comes from normal circuit function; so much better results can be
achieved by trying to suppress signal transitions during normal
operation [5]. One approach is to synthesize a precomputation
logic [5], and normal circuit operation is suspended whenever
output function can be solely decided by the precomputation logic.
Another frequently applied technique is the asynchronous design
(e.g. [6]), in which signal makes transition only when necessary.

3. LOW-POWER CIRCUIT RETIMING
3.1 Basic Idea
One obvious way to reduce dynamic power consumption during
normal circuit operation is to eliminate signal transitions that are
not necessary to get the correct output signal. This can be done
through the notation of Observability Don’t Care (ODC) [7] sets.
The basic idea is illustrated in Figure 1.

R1

R2 D

C

…

…
…

…
…

f
y1

y2

ym R2
D

C

………

f

y1

y2

ym

…

G G

x1

xk

xk+1

xn

x1

xk

xk+1

xn

FF

LE

y1

(a) (b)

y1 ≠c

t-1

t-1

t-1

t-1

t

t

t

t-1

t-1

t-1

t-1

t-1

t-1

t

t

t

t
t

 Figure 1. (a) Or iginal Circuit, (b) retimed circuit.

Consider a single output function f(x1,… ,xn) whose Boolean
network is shown in Figure 1(a). Let the node that produces the
output function be G, and assume node G has m inputs y1,… , ym.
Let that the controlling value of node G be c, which means the
output is determined whenever one of the inputs has the value c
on it. For instance, the controlling value of AND and NAND gates
is 0, while for OR and NOR gates the controlling value is 1.
When a node has a controlling value on any one of its inputs, the
logic signals on the other inputs are not observable and thus can
be set to any value. Since our goal is to achieve lower power
consumption, a feasible way is to refrain those unobservable
signals from changing so that switching activity can be reduced.

Since our method involves the sequential activity in a circuit, we
shall use the following notation to describe timing behavior on a
given net.

Definition 1: The logic value on net y at time t is denoted as yt.

In Figure 1, if y1
t=c (c is the controlling value of node G), the

signals on y2
t to ym

t are irrelevant and thus all the switching
activities in logic block D can be stopped to reduce power in cycle
t. An easy way to accomplish this goal is to disable register R2
from loading new values at cycle t. Since there are no signal
transitions in R2, all signals in logic block D will not change. A
retimed circuit that achieves this goal is shown in Figure 1(b). We
move cone C such that it produces signal y1 a cycle earlier, and
the result is stored in a flip-flop (FF), which will be applied to
node G at the next cycle. Assume y1

t-1= c, which is the controlling
value of node G. In this case, ft will be solely decided by y1

t,
which implies that we do not have to load register R2 in cycle t.

Hence, in Figure 1(b), register R2 will be load enabled (LE) only
if y1

t-1≠ c.

Note that, in this method, we need to introduce one extra flip-flop
to store the output of retimed cone C. On the other hand, if the
inputs of C are not used anywhere else, the corresponding
registers can be removed. For example, register R1 in Figure 1(a)
is removed in Figure 1(b) since x1,… ,xk are used only by logic
cone C.

The same net may be able to disable two different logic blocks
since it can be assigned with two different logic values. For
example, consider the circuit shown in Figure 2. If the logic value
on net y is 0, logic block D0 can be turned-off to save power,
while logic block D1 can be halted when 1 is assigned to net y.

D1

D0

C y

Figure 2. CP and DCNS.

In order to facilitate the discussion, we shall use the following
terms in the paper. Let N be the set of nets in a circuit.

Definition 2: A controlling point is a 2-tuple (y, c), where y∈N
and c∈{0,1}. For a given controlling point p=(y, c), the
controlling cone, or C-cone for simplicity, is the logic cone whose
output is net y, and the set of nets in this cone is denoted as
CNS(p).

Definition 3: The set of nets whose switching activity can be
halted by a controlling point p is referred to as the Don’t-Care Net
Set for p, and it is denoted as DCNS(p) for simplicity.

For example, there are two controlling points for net y in Figure 2:
p0=(y,0) and p1= (y,1). The C-cone for either controlling point is
the logic cone C. According to the above definitions, DCNS(p0)
contains the nets in logic block D0, and DCNS(p1) is the set of
nets in D1.

3.2 Synchronization of Retimed Logic Logic
When a cone C is retimed, it may create a synchronization
problem if some internal nets in C have fanout branches that are
applied to nodes external to C. The scenario is shown in Figure
3(a). Assume that we will retime cone C for low power. Let the
output of cone C be yi, and assume a net yj in cone C has fanout
branches. In the retimed circuit (Figure 3(b)), both yi and yj are
computed a cycle earlier than they are actually used. Therefore,
both signals have to be buffered in registers so that timing
requirement will not be violated.

R C

……x1

xk

(a)

t-1

t-1 yi
t

yj
t

C

…x1

xk

t-1

t-1
yi

t-1

yj
t-1

FF

FF

yi
t

yj
t

(b)

Figure 3. Signal synchronization in retimed logic: (a) or iginal
circuit, (b) retime circuit.

3.3 First Page Copyr ight Notice
In Figure 1, all inputs to logic block D are applied by a register
that can be disabled from loading new values. However, it may
not be possible to disable all of them in some case. The
exceptional condition is illustrated in Figure 4. Assume the
controlling value of node G is c, and thus p=(yi,c) is a controlling
point. Suppose net yj in logic block D has fanout branches
connected to at least a node that is not in D. In this case, register
R2 should be loaded with new values in each cycle; otherwise, yj
may have incorrect value on it. In other words, net yj and those
nets in its input cone do not belong to DCNS(p).

C

…

FF

…R1

…

R2

…

…
…

D

yj

yi

G

Figure 4. Selecting load-enabled register s.

4. ALGORITHM
In this section, we present our algorithm to select the best
controlling cones to be retimed. In the discussion, we consider a
Boolean network, in which the set of all nets in is N. Assume
|N|=n, where |N| is the cardinality of N. Let the set of all
controlling points in the circuit be CP, so the size of CP is 2n.

4.1 Estimating Reduced Switching Activities
Our goal is to find a subset P ∈ CP, so that the reduced switching
activity will be maximized if the C-cones correspond to P are
retimed. Therefore, the first thing we need to do is to find a way to
estimate the saved switching activities due to the retiming of a
given set of controlling points.

For a net y, the probability of signal transition on y in any cycle,
which is denoted as PS(y), is:

{ }
{ }
() (){ })0()1()1()0(Pr

1Pr

at timeonona transitiPr)(

11

1

=∧=∨=∧==

=⊕=

=

−−

−

tttt

tt

yyyy

yy

tyyPS

{ } { }1Pr0Pr2 =×=×= yy (2)

If p=(y, c) is selected as a controlling point, the expected amount
of saved switching activity in the combinational circuit, which is
denoted as ESC(p), can be calculated as follows:

∑ ∈
×==

)(
)(}Pr{)(

pDCNSz
zPScypESC (3)

The expected value of saved switching activity due to a set of
controlling points P, ESC(P), is more complex. Let P={p1, p2},
and assume CNS(p1)∩DCNS(p2)≠∅. In this case Eq. (3) is not a
correct estimation for p2, since a part of DCNS(p2) has been
retimed and the switching activity in that part is not eliminated.
The correct ESC(P) can be computed as follows. Let P = { p1,
p2, … , pk}, where pi = (yi, ci) for 1≤ i ≤ k and k ≤ n. Thus, we have:

Uk

i ipCNSPCNS
1

)()(
=

= (4)

Rewrite Eq. (3) as:

{ }∑ −∈
×==

)()(
)(}Pr{)(

PCNSpDCNSziii
i

zPScypESC (5)

In Eq. (5), “−” is the set difference operation. Therefore,

∑ =
=

k

i ipESCPESC
1

)()((6)

Finally, if some registers can be removed due to the retiming
process (e.g., R1 in Figure 1(a) is removed after retiming), more
switching activity can be saved. Let the number of nodes inside a
flip-flop be nf, and the number of flip-flops that can be removed
be r. The probability of signal transition in a flip-flop is 0.5
assuming that the input is random. Therefore, the expected value
of reduced switching activity in the whole circuit is:

f
k

i i nrpESCPES ××+= ∑ =
5.0)()(

1
(7)

We assume nf = 10 in this paper. The following lemma shows how
to select controlling points so that maximal reduction in average
switching activity can be achieved.

Lemma 1: Let P be a set of controlling points. P achieves
maximal reduction in average switching activity if and only if the
condition is satisfied:

)()(,and PESPESPPCPP iii ≤≠⊆∀

4.2 Selecting Controlling Points
According to Lemma 1, we may have to consider all subsets of
CP to decide the best retiming scheme. Obviously the complexity
is too high, as there are up to O(22n) sets to be considered.
However, in reality, the size of the optimal set of controlling
points is relatively small. We apply the following algorithm to
find the circuit to be retimed.

Algor ithm: Finding the optimal C-cones to be retimed.
Input: A netlist N and a given k.
Output: A subset of N to be retimed.

1. MaxSaving←0, BestSolution←∅;
2. Construct the set of all controlling points CP;
3. for (i=1; i<= k; i++) {
4. Find all valid subset P⊆CP, |P |=k;
5. for (each valid P) {
6. Find DCNS(P) and CNS(P);
7. Check removed registers;
8. if (ES(P) > MaxSaving) {
9. MaxSaving← ES(P);
10. BestSolution←P;

 }
 }
}

11. Report CNS(P);
The complexity of this algorithm is O(nk). However, our
experimental results, which will be presented in the next section,
show that in most case the size of the optimal set is usually 1 or 2.
Therefore, a small k should be sufficient for this algorithm.

5. EXPERIMENTAL RESULTS
We experiment the proposed method with 10 MCNC

combinational benchmark circuits. These circuits are also used in

[5] so that a comparison is possible. We did not experiment with
two-level circuits, since the structure of two-level circuits make it
difficult to apply the proposed method. The statistics of the
benchmarks and experimental results are given in Table I. For
each circuit, the number of inputs (I), outputs (O), and literal
counts (Literals) are listed. For the proposed method, the number
of controlling points (CP), the number of extra flip-flops required
(Extra FF), the number of load-enabled flip-flops vs. the number
of inputs (#LEFF/#I), and the percentage reduction in switching
activity (% Reduction (S.A.)) are given in the four corresponding
columns. The results in [5] are also shown for comparison. The
method presented in [5] synthesizes a precomputation logic to
disable selected registers, so it requires extra combinational logic
but no extra flip-flops are required.

The reduction in switching activity is obtained by logic
simulation. For each circuit we generate 1000 random patterns
and feed them into the circuits, and the signal transitions in all
internal nodes are calculated under zero-delay model. The results
are consistent if the number of applied random patterns is greater
than 100. As we can see in Table I, our method gives better results
in 8 out of the 10 experimented circuits, while in the rest two
circuits (cmb and cordic) our method gives inferior results. It can
be seen that in these two circuits the number of load-enabled flip-
flops is relatively small. Actually, the performance of our method
strongly depends on the circuit structure.

6. ACKNOWLEDGMENTS
We presented a retiming-based design methodology targeted for
low-power application. This method is applicable to sequential
circuits, in which part of the combinational logic can be moved
before the registers so that some part can be disabled to save
power. Experimental results show that the proposed method can
efficiently reduce dynamic power consumption.

The efficiency of this method depends on the circuit structure.
Since the structures of the benchmark circuits we used are fixed, it

may restrict the effectiveness of the proposed method. If the
circuits can be resynthesized, we shall be able to extract better
controlling cones to achieve maximal dynamic power reduction.

7. REFERENCES
[1] F. Najm, “Transition density, a stochastic measure of activity

in digital circuits,” in Proc. 28th Design Automation Conf.,
pp. 644-649, June 1991.

[2] C. Tsui, M. Pedram, and A. Despain, “Technology decompo-
sition and mapping targeting low power dissipation,” in Proc.
30th Design Automation Conf., pp. 68-73, 1993.

[3] J. Monteiro, S. Devadas, and A. Ghosh, “Retiming sequential
circuits for low power,” in Proc. Int’l Conf. Computer-Aided
Design, pp. 384-402, Nov. 1993.

[4] L. Benini, G. de Micheli, G.; E. Macii, M. Poncino, R. Scarsi,
“Glitch power minimization by selective gate freezing,”
IEEE Trans. VLSI Systems, vol. 8, no.3, pp. 287-298, June
2000.

[5] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M.
Papaefthymiou, “Precomputation-based sequential logic
optimization for low power,” in IEEE Trans. on VLSI System,
vol. 2, no. 4, pp. 426-436, Dec. 1994.

[6] A. Mota, J. Monteiro, and A. Oliveira, “Power optimization
of combinational modules using self-timed precomputa-
tion,” in Proc. IEEE Int’l Symp. Circuits and Systems, vol. 2 ,
pp. 17 –20, 1998.

[7] M. Damiani, G. De Micheli, “Observability don’t care sets
and boolean relations,” in Proc. IEEE Int’l Conf. Computer-
Aided Design, pp. 502-505, 1990.

Table I: Exper imental results.

Circuit Statistics Proposed Method Precomputation[5]CIRCUIT
NAME I O Literals CP Extra

FF
#LEFF/#I %Reduction

(S.A.)
Extra

Literals
%Reduction

(Power)

cht 47 36 167 1 0 46/47 30.3% 1 16%

cm138 6 8 35 1 1 5/6 72.4% 3 47%

cm150 21 1 61 1 0 20/21 36.7% 1 23%

cmb 1 4 62 1 1 7/16 22.6% 10 43%

cordic 23 2 194 1 1 17/23 29.3% 18 39%

majority 5 1 12 1 0 4/5 41% 1 19%

mux 21 1 54 1 0 20/21 52.2% 0 22%

pcle 19 9 71 2 1 16/19 60.4% 3 30%

pcler8 27 17 95 2 1 16/27 41.2% 3 38%

unreg 36 16 144 1 0 19/36 28.4% 2 18%

	Main
	ISLPED02
	Front Matter
	Table of Contents
	Author Index

