
ABSTRACT
We introduce asymmetric frequency clustering (AFC), a

micro-architectural technique that reduces the dynamic power dis-
sipated by a processor's back-end while maintaining high perfor-
mance. We present a dual-cluster, dual-frequency machine
comprising a performance oriented cluster and a power-aware one.
The power-aware cluster operates at half the frequency of the per-
formance oriented cluster and uses a lower voltage supply. We
show that this organization significantly reduces back-end power
dissipation by executing non-performance-critical instructions in
the power-aware cluster. AFC localizes the two frequency/voltage
domains. Consequently, it mitigates many of the complexities
associated with maintaining multiple supply voltage and frequency
domains on the same chip. Key to the success of this technique are
methods that assign as many instructions as possible to the slower/
lower power cluster without impacting overall performance. We
evaluate our techniques using a subset of SPEC2000 and SPEC95.
AFC provides a 16% back-end power reduction with 1.5% perfor-
mance loss compared to a conventional, dual-clustered processor
where each cluster has schedulers of the same width and length.

Categories and Subject Descriptors
C.1.1 [Single Data Stream Architectures] Pipeline processors.

General Terms
Design

Keywords
Power-Aware Architectures, Processor Back-End, Instruction Crit-
icality, Assymetric Frequency Clustering, High-Performance Pro-
cessors.

1. INTRODUCTION
Frequency and voltage scaling are two commonly used circuit-

level techniques that offer a trade off between latency and switch-
ing (dynamic) power. These techniques have been used extensively

to reduce power in the non-critical circuit paths of modern high-
performance processors. Further power benefits may be possible
when these circuit-level techniques are combined with architec-
tural-level methods. The key idea is to use lower power and conse-
quently performance units for executing non-critical instructions.
These are instructions whose execution time can be prolonged
without impacting performance. There are two main challenges:
(1) Developing power-aware heuristics that can identify non-criti-
cal instructions with sufficient accuracy and little power overhead,
and (2) building pipelines that successfully mix different supply
voltage and frequency domains.

In this work, we focus on the processor’s back-end (i.e.,
instruction issue, complete and commit). There are two reasons:
First, a large fraction of power in high-performance processors is
dissipated by their back-end. Second, most of the front-end power
is dissipated by SRAM-like structures where a reduction in supply
voltage may compromise cell stability and correct operation.

We introduce asymmetric-frequency clustering (AFC) as a
power-aware back-end that leverages frequency and supply volt-
age scaling for reducing power dissipation. We study an AFC pro-
cessor comprising two clusters: one that is a performance oriented
conventional cluster and another low-power oriented cluster. The
fast cluster operates at twice the frequency that the slow cluster
operates at. This facilitates the use of a lower supply voltage at the
slower cluster resulting in further power benefits. We argue that
AFC simplifies the design of dual-frequency, dual-voltage proces-
sors as it localizes the two frequency/voltage domains into two
coarse grain blocks defining a clear architectural and physical
interface between them. Moreover, the AFC maintains the fre-
quency advantage of clustering [8]. Key to the success of AFC is
the ability to predict those non-critical instructions that can be exe-
cuted twice as slow without reducing performance. We present
three heuristics for doing so that are based on local information.
One of the heuristics is a modification of a previously proposed
criticality predictors [7].

Our contributions are: (1) We introduce new, simple to imple-
ment and effective non-criticality detection heuristics, and (2) we
demonstrate that when these heuristics are used with AFC they can
significantly reduce power while maintaining high performance.

The rest of the paper is organized as follows: In section 2, we
present the rationale of our approach and discuss various heuristics
for determining non-critical instructions. In section 3, we com-
mend on related work. In section 4, we present our methodology.
In section 5, we report performance and power results. Finally in
section 6, we summarize our findings and offer concluding
remarks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
ISLPED'02, August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008...$5.00.

Asymmetric-Frequency Clustering: A Power-Aware
Back-End for High-Performance Processors

Amirali Baniasadi
Electrical and Computer Engineering

Northwestern University
amirali@ece.northwestern.edu

Andreas Moshovos
Electrical and Computer Engineering

University of Toronto
moshovos@eecg.toronto.edu

2. ASYMMETRIC-FREQUENCY CLUS-
TERING

The goal of AFC is to use units operating at a lower voltage
supply and frequency intelligently only for those instructions
that are non-critical. Previous work has shown that there are
many instructions that could be delayed without impacting per-
formance [5]. Processors that use dynamic voltage/frequency
scaling exist. However, adjustments to voltage/frequency are
done at a coarse grain (e.g., thousands of cycles) since the cir-
cuits that facilitate this scaling incur considerable delay and
power overheads that have to be amortized over long periods of
time. AFC aims at providing the flexibility to use lower supply
voltage and frequency units on a per instruction basis. In AFC,
the processor’s resources are statically divided into frequency/
voltage domains at a coarse level. Switching power can be
reduced by intelligently distributing instructions to the different
voltage/frequency domains without requiring dynamic voltage/
frequency scaling.

In general, mixing multiple voltages and frequencies on the
same circuit is a challenging task.Different power supply lines
are required, the design of the clock distribution network
becomes more complex and noise considerations increase. Of
particular concern is efficient interfacing between resources
operating under different voltages and frequencies. For exam-
ple, driving a higher supply voltage circuit using the output of a
lower supply voltage circuit requires conversion of the voltage
levels. Such circuits impose area overheads, can be slow and
may dissipate relatively high power since the lower voltage lev-
els may not be sufficient to completely turn-off transistors oper-
ating at a higher supply voltage. Finally, using a lower voltage
supply is highly questionable in some cases. This includes the
various SRAM-based structures (e.g., caches and branch predic-
tors).

In this work, we argue that clustering [8] can be used to min-
imize the complexities associated with designing and interfacing
circuits operating at different frequencies and supply voltages.
To illustrate the potential of this method, we statically divide the
processor’s back-end into two different clusters. Each cluster
operates under a different frequency/supply voltage domain. We
devote one cluster to power efficient resources (low voltage and
frequency) while the other cluster uses performance oriented
resources (high voltage and frequency). We refer to such cluster-
ing as frequency-clustering. With frequency-clustering, we
restrict interfacing to cluster boundaries. In AFC, voltage shift-
ing is limited to a set of clearly identified buses that connect the
two clusters. These buses are used mostly for inter-cluster com-
munication. In addition, by localizing both frequency and volt-
age domain we reduce the associated voltage/frequency
distribution network.

2.1. AFC Architecture
Figure 1 shows our AFC processor. The processor’s back-

end comprises a 4-way performance-oriented cluster (FASTC)
and a 2-way power-aware cluster (SLOWC). FASTC runs at a
frequency that is twice faster than that of SLOWC. FASTC has a
64-entry window and can issue up to four instructions per cycle.
SLOWC has a window size of 32 instructions that can issue up
to two instructions per cycle. All memory references are per-
formed in the fast cluster. This is done, so that we do not worry

about caches operating at different voltages Inter-cluster com-
munication latency is at least two cycles.

FASTC has six writeback ports since it may receive up to
four results from itself and two from SLOWC. Since SLOWC is
twice as slow, inter-cluster communication is limited to even
cycles. FASTC can receive up to four results during odd cycles
and up to six during even cycles. SLOWC receives results only
on even cycles. Since FASTC may be producing results during
odd cycles too, a FIFO buffer is provided between the two clus-
ters. This inter-cluster communication buffer also serves to min-
imize the number of writeback ports in SLOWC as follows: In
the worst case, SLOWC may need to receive up to 10 (8 from
FASTC, 2 from SLOWC) results in a single cycle. That would
require a total of 10 writeback ports at SLOWC. We found that
doing so greatly increases power at SLOWC. In order to reduce
the number of write ports and hence the power dissipation, we
limit the number of results that can be simultaneously received
by SLOWC to six. The inter-cluster communication buffer
serves to smooth out communication. In our studies, we used a
16-entry buffer. If this buffer is full we stall FASTC until the
SLOWC frees up four entries.

2.2. Cluster Assignment Heuristics
The goal of the cluster assignment heuristics is to identify

those non-critical instructions than can execute twice as slow.
We present a number of heuristics that utilize local information
only. Since our goal is to reduce power consumption, in the
evaluation we take into account the power dissipated by the aux-
iliary structures required by the heuristics. With all heuristics,
we initially assign all instructions to FASTC. We assign instruc-
tions to SLOWC when instructed by the heuristic. Our goal is
not to develop the best heuristic possible. Rather, we aim at
demonstrating that even simple heuristics can result in signifi-
cant power improvements. We have experimented with various
heuristics and present the best ones here.

Generation-Time Gap (GTG): This heuristic is a combina-
tion of two separate heuristics. The GTG heuristic deems an
instruction as non-critical if any of the two underlying heuristics
does so. The first, looks at the gap in cycles between the time an
instruction writes its result and the time its children, if any,
issue. The intuition here is that if an instruction writebacks a

Figure 1: An asymmetric-frequency, dual-cluster processor.

C lu ste r
S e lec t
L o g ic

C o m m .
B u ffer

2-w a y : S low

F un ction al
U nits

R eg .
F ile

In st.
Q u e u e

I - ca ch e

D a ta C a ch e

4-w a y :F a st

F u n c tion a l
U n its

R eg . F ile

In s t. Q u e u e

2

4

24

High Frequency/High Supply Voltage L
o

w
F

re
q

u
en

cy
/L

o
w

S
u

p
p

ly
V

o
lta

g
e

result and its children do not issue immediately, then they are prob-
ably waiting for some other instruction to finish. Since it takes 2
cycle to communicate results across clusters and since SLOWC is
twice as slow we use four cycles as our threshold (two cycles for
executing most instructions, plus two for inter-cluster communica-
tion). The second heuristic, uses an approximation of dynamic
instruction distance between an instruction and its children. If an
instruction is dispatched much earlier than its children, this is an
indication that it appears much earlier in the instruction stream.
Empirically, we found this to be a good indicator that the parent
can be delayed. In this study we used two cycles as the threshold.
That is, if no children are dispatched in the next two cycles after an
instruction is dispatched the latter is deemed as non-critical.

In both cases, the determination that an instruction is non-criti-
cal is available after the instruction was dispatched and assigned to
a cluster. Accordingly, we use a table to predict if future instances
of the same instruction are non-critical. In our experiments we
used a 4k table. Every entry contains six bits. These are used as a
six-bit saturating counter. Entries are allocated only for critical
instructions as they commit. If an entry exists, it is also updated at
commit time. The entry is initially set to 32. When we detect criti-
cal instructions we increment the counter by eight, otherwise we
decrement by one. An instruction is deemed non-critical by access-
ing the table at dispatch and if the entry found is below or equal a
threshold (16 in our case).

Young in Queue (YIQ): This method is based on the QOLD
criterion proposed by Tune et al.,[7]. The QOLD method marks
the oldest instruction in the instruction queue as critical during
each cycle. Once the oldest instruction is marked as critical, we
also mark its parents. Upon commit, we update a prediction table
as we did with the GTG method. This method also uses a predic-
tion table similarly to the GTG method. Upon dispatch an instruc-
tion is deemed critical if: (1) the prediction table contains an entry
that exceeds the pre-specified threshold, (2) the prediction table
contains no entry, and (3) if the instruction’s parents are marked as
critical.

Complete Time Estimation (CTE): If we had an oracle and
we knew in advance when an instruction will complete, then a heu-
ristic for identifying non-critical instructions during dispatch
would be as follows: Compare your complete time with the maxi-
mum complete time of all preceding instructions that are currently
in the window. If this instruction will be completing earlier, it will
be forced to wait for that other instruction to commit. Hence, it
may be safe to delay this instruction. Of course, we cannot have
such an oracle. Instead, we estimate the completion time of
instructions as they are dispatched. This is straightforward: We
associate a completion time with every register. As instructions are
dispatched we predict how long they will take to execute once
issued (that is, we “predict” the latency of the functional unit they
will be executing). We also obtain the maximum completion time
for its source operands. Adding the two we obtain an estimate for
when this instruction will complete. We then compare this estimate
with the maximum completion time seen thus far (only one entry is
required). Modern processors already predict instruction latencies
for dynamic scheduling purposes.

3. PRIOR WORK
Seng et al. [2], suggested exploiting slower functional units for

processing non-critical instructions. Our measurements show that

in addition to functional units, other back-end sub-sections con-
sume a considerable part of processor back-end power. Therefore,
we extend prior work to cover the processor back-end (e.g.,
instruction selection and wake-up). G. Moshnyaga suggested a
complexity adaptive issue logic where voltage supply was changed
dynamically [3]. We extend the voltage duality to the entire back-
end and remove supply voltage switching and its associated costs
by using clusters. Pyreddy and Tyson [4] studied how exploiting
dual speed pipelines affects processor performance. They used
heuristics to mark and send instructions through execution paths
with varying latencies. Their heuristics used profiling methods for
marking instructions, while we focus on dynamic mechanisms. In
addition we take into account voltage reduction effects. Casmira
and Grunwald [5] defined and measured slack as the number of
cycles than an instruction can wait before being issued and becom-
ing critical. Semeraro also suggested using multiple frequency and
voltage domains throughout the processor and showed that fine
grain voltage/frequency scaling this can lead to significant power
benefits [9]. In our work, we argue that clustering can alleviate the
complexities and potential power overheads associated with fine-
grain mixing of frequency/voltage domains.

4. METHODOLOGY
We used benchmarks from the SPEC’2K and SPEC95 suite.

The benchmarks were compiled for the MIPS-like architecture
used by the Simplescalar v3.0 simulation tool set. We used GNU’s
gcc compiler (flags: -O2 –funroll-loops –finline-functions). We
simulated 2 Billion of the instructions after skipping the initializa-
tion. The main architectural parameters of our processor model are
shown in table 2. We used WATTCH [1] for power estimation. We
modeled an aggressive 2GHz (the slow cluster operates at 1GHz)
superscalar microarchitecture manufactured under a 0.1micron
technology. To estimate the relevant process parameters, we used
the process scaling methodology developed for CACTI [8] and
that is incorporated in WATTCH.

5. RESULTS
In section 5.1, we study the performance of our power-aware

dual-cluster organization. We will refer to our organization as
AFC. In section 5.2 we study power

Table 1: Base configuration details.

Branch Predictor 32K GShare, 32K bi-modal, 32K selector

Schedulers fast cluster: 64 entries
slow cluster: 32 entries, RUU-like

Fetch Unit Up to 6 instr. per cycle.
Max 2 branches per cycle
64-entry Fetch Buffer

Load/Store Queue 64 entries, 3 loads or stores per cycle
Perfect disambiguation

Decode width any 6 instructions / cycle

Issue, Commit width fast cluster: any 4 insts / cycle
slow cluster: any 2 insts / cycle

Func. Unit Latencies same as MIPS R10000

L1 - Instr. /Data Caches 64K 4-way SA, 32B blocks, 3 cycle hits

Unified L2 256K 4-way SA, 64B blocks, 16-cycle hits

Main Memory Infinite, 100 cycles

5.1. Performance
Overall, our dual cluster architecture has a 96-entry window

and can issue 6 instructions per cycle. Accordingly, we compare
with an identically organized, dual-cluster configuration where
both clusters operate at the fast frequency. We refer to this configu-
ration as DUAL-UF.

In figure 2(a) we report performance compared to the DUAL-
UF architecture. To distribute instructions to clusters, we start with
the dependence method [8]. In AFC, the distribution decisions are
selectively overwritten by the criticality prediction mechanism. On
average, AFC’s performance is comparable to DUAL-UF. Average
performance slowdown is 1.5%. 1.9% and 1.6% for CTE, GTG
and YIQ respectively. To better understand the relative importance
of clustering and the use of a slow cluster, in figure 2(b) we report
the percentage of instructions assigned to the fast-cluster. On aver-
age, GTG assigns the minimum number of instructions to the fast
cluster (81%). YIQ assigns the maximum number of instructions to
the fast cluster (93%). Finally, CTE assigns 86% of the instructions
to the fast cluster.

5.2. Power
Chandraskan et al., have shown that even though the exact

determination of voltage reduction under performance constraints
is complex and technology specific, it is possible to closely predict
it [6]. Their methods predicts that when the frequency is twice as

slow, the supply voltage can be reduced even to less than 50%.
Accordingly, in figure 3 we report power savings when the slow
cluster operates with a voltage supply that is 70% of that used in
the fast cluster. We use a 0.7x factor as opposed to 0.5x to pessi-
mistically account for voltage conversion latency overheads. Fig-
ure 3 reports power savings when compared to a DUAL-UF
machine. Average power reduction is 16%, 15% and 10% for CTE,
GTG and YIQ.

6. CONCLUSION
We introduced and evaluated AFC as an asymmetric dual-

cluster, dual-frequency microarchitecture comprising a perfor-
mance oriented cluster and a power-aware one. AFC aims: (1) at
reducing switching power by executing non-critical instructions
slower, and (2) at maintaining performance by executing perfor-
mance critical instructions as fast as possible. In AFC non-critical
instructions are meant to execute in the power-aware cluster that is
narrow and uses a lower frequency and power supply. Performance
critical instructions are meant to execute in the performance ori-
ented cluster that is wide and uses a higher frequency and voltage
supply. By localizing the two frequency/voltage domains, we miti-
gate many of the complexities associated with maintaining multi-
ple supply voltage and frequency domains on the same chip.
Essential to the success of our technique are methods for distribut-
ing instructions across the two clusters. By exploiting our sug-
gested methods, we save up to 16% of back-end power with only a
1.5% performance loss compared to a conventional, dual-clustered
processor.

REFERENCES

[1] D. Brooks, V. Tiwari M. Martonosi “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations”. In Proc of
the 27th Int’l Symp. on Computer Architecture, 2000

[2] John S. Seng, Eric S. Tune, Dean M. Tullsen, “Reducing Power with
Dynamic Critical Path Information”, In Proc. 34th Annual
International Symposium on Microarchitecture, December, 2001.

[3] Vasily G. Moshnyaga, “Reducing Energy Dissipation of Complexity
Adaptive Issue Queue by Dual Voltage Supply”, 2001 Workshop on
Complexity-Effective Design, June 2001

[4] R. Pyreddy and G. Tyson. Evaluating design tradeoffs in dual speed
pipelines. Workshop on Complexity-Effective Design, June 2001

[5] J. Casmira and D. Grunwald. Dynamic instruction scheduling slack. In
2000 KoolChips workshop, Dec. 2000.

[6] Anantha P. Chandraskan, Samuel Sheng, and Robert W. Brodersen,
“Low-Power CMOS Digital Design”, IEEE Journal of Solid-State
Circuits, Vol. 27, No. 4. April, 1998.

[7] E. Tune, D. Liang, D. Tullsen, and B. Calder. Dynamic prediction of
critical path instructions. In Proceedings of the Seventh International
Symposium on High-Performance Computer Architecture, Feb. 2001

[8] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective
superscalar processors. In Proc. International Symposium on
Computer Architecture-24, June 1997.

[9] G. Semeraro, G. Magklis, R. Balasubramonian, D.H. Albonesi, S.
Dwarkadas, and M. L. Scott, Energy-Efficient Processor Design
Using Multiple Clock Domains with Dynamic Voltage and Frequency
Scaling, In Proceedings of the 8th. Intl. Symposium on High-
Performance Architecture, Feb. 2002

Figure 2: (a) Relative performance compared to DUAL-UF (b)
The fraction of instructions assigned to the fast cluster.

(a)
80%
85%
90%
95%

100%
105%

amm bzp cmp equ gcc mcf mes prs AVG

7 0 %

7 5 %

8 0 %

8 5 %

9 0 %

9 5 %

amm bz p c mp equ gc c mc f me s prs A V G

CTE GTG Y IQ

(a)

(b)

Figure 3: Back-end power reduction relative to a DUAL-UF

0%

5%

10%

15%

20%

25%

30%

amm bzp cmp equ gcc mcf mes prs A V G

CTE GTG Y IQ

	Main
	ISLPED02
	Front Matter
	Table of Contents
	Author Index

