
A Preactivating Mechanism for a VT-CMOS Cache using
Address Prediction

Ryo Fujioka, Kiyokazu Katayama, Ryotaro Kobayashi, Hideki Ando, Toshio Shimada
Department of Information Electronics, Graduate School of Engineering, Nagoya University

Furo, Chikusa, Nagoya, Aichi
464-8603 Japan

{fujioka,katayama,kobayasi,ando,shimada}@shimada.nuee.nagoya-u.ac.jp

ABSTRACT
It has become an important requirement to achieve high
performance and low-power consumption at the same time.
The dynamic leakage cut-off (DLC) scheme, which controls
transistors’ threshold voltage by the line on demand, is a
technique that potentially satisfies that requirement for a
cache. Yet, conventional DLC causes access time to signifi-
cantly lengthen, and consequently processor performance is
unacceptably degraded. This paper proposes a mechanism
that suppresses the performance degradation by preactivat-
ing cache lines using address prediction before access re-
quests. Our evaluation results show significant performance
improvements are achieved with little increase of power con-
sumption.

Keywords
leakage current, L1 data cache, address prediction

1. INTRODUCTION
Power consumption is rapidly becoming a critical concern

in designing processors, in addition to concerns about per-
formance. An emerging problem as technology advances is
the growth of static power consumption and the most im-
portant source of static power is subthreshold current.

To solve this problem, several circuit-level solutions have
been proposed. Variable-threshold CMOS (VT-CMOS) [4]
and multi-threshold CMOS (MT-CMOS) [6] are two simple
but effective circuit techniques. Although these techniques
can dramatically reduce the current leakage, they have a
common flaw in that the transition time required to activate
from standby is very long. Thus, these techniques are only
available to infrequently-used blocks where a long activation
time has little affect on processor performance. However,
this obviously limits any significant power reduction of a
processor. We need to carefully control power of frequently-
used blocks with little adverse effect on performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’02, August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008 ...$5.00.

n-well
 driver

p-well
 driver

ad
dr

es
s

de
co

de
r

control
wordline

reference
 address

Figure 1: Circuit of a line in the original DLC cache.

Among frequently-used blocks, a cache contains the largest
amount of transistors in a processor chip. Thus, it would
be effective if the static power of a cache can be reduced.
For this purpose, a scheme called the dynamic leakage cut-
off (DLC) scheme was proposed [3]. In DLC, an SRAM
cell is composed of VT-CMOS and power is controlled by
a cache line. DLC activates only a selected cache line after
address decoding. Although DLC significantly decreases ac-
tivation time through per-line control, activation still takes
long time. Consequently, the access time of a cache unac-
ceptably lengthens.

In this paper, we propose a mechanism, we call preac-
tivating, which suppresses performance degradation at the
architectural level when DLC is applied to a cache. Specif-
ically, our mechanism predicts the cache line which will be
accessed, and the predicted line is activated before the line
is actually accessed.

This paper is organized as follows. Section 2 describes our
mechanism. Section 3 shows results, and Section 4 presents
related work. Finally, Section 5 presents conclusions.

2. PREACTIVATING IN A DLC CACHE
In this section, we detail the original DLC cache and then

we propose our mechanism.

2.1 DLC Cache
Figure 1 shows the circuit of a line in the original DLC

cache [3]. In DLC, each SRAM cell is composed of VT-
CMOS. Any SRAM cells of any unselected lines are initially
deactivated. In other words, the threshold voltages of tran-
sistors in a cell are high to suppress leakage current. When
a reference address is applied and a line is selected after the
address is decoded, all cells in the selected line are activated
by changing the threshold voltages of transistors to a low

Table 1: Parameters for 0.18µm process.
Transistor Mid-Level Metal Top-Level Metal
pwell-nwellGate pwell-n+

Cap.
Transistor Supply

Width Res. Cap. Width Res. Cap.
Cap. Cap.

(fF/µm2)(fF/µm)
Res. Voltage

(nm) (mΩ/µm) (fF/µm) (nm) (mΩ/µm) (fF/µm)(fF/µm) (fF/µm)
Area Line

(KΩ-µm) (V)

1.56 1.51 1.00 0.10 3.6 1.8 320 107 0.253 530 36 0.270

I-Cache
Decode

Rename

Inst

Window
Addr

Calc
DLC Reorder

BufferD-Cache

Addr

Pred

reference

cancel

reservation

Figure 2: Processor organization with a preactivat-
ing DLC cache.

voltage. This is done by the n-well and p-well drivers. Soon
after being activated, the word line of the selected line rises.
Since the threshold voltages of the accessed cells are low,
the delay of the bit line is as short as in a normal cache. Al-
though the activated line consumes significant static power,
it is negligibly small in a large cache. Note that the ac-
tivation is triggered after the address is decoded and the
activation time is significantly long (it is estimated in Sec-
tion 3.1). As a result, the access time becomes considerably
longer than a normal cache.

2.2 Mechanism to Reduce Performance Degra-
dation

Figure 2 shows our proposed processor organization (note
that the figure does not present a precise pipeline organi-
zation; it depends on implementation). Although the or-
ganization is basically similar to the usual superscalar pro-
cessor, it is differentiated by having an address predictor
and a D-cache with three address inputs (reference, cancel,
and reservation) per memory instruction. The address pre-
dictor predicts the address of a location which a memory
instruction will access before the address is calculated. Our
mechanism uses a stride value predictor to predict addresses
because it gives the best cost/performance as an address
predictor[8, 9].

Figure 3 shows the organization of a line of our DLC
cache. The differences from a conventional DLC cache are
the two extra address decoders per memory instruction, and
an up/down counter we call the reservation counter per
cache line. The counter indicates the number of reserva-
tions for line accesses.

As shown in Figure 2, while instructions are decoded, the
addresses of locations which will be accessed by decoding
instructions are predicted using the address predictor. The
predicted addresses are written into an entry for the cor-
responding instruction in the instruction window. At the
same time, they are sent to the D-cache as reservation ad-
dresses, and the reservation counter in each line is increased
by one. If the counter value changes from zero to one, the
corresponding line is activated to prepare for later actual
references. When the counter value is non-zero, the line is
continuously activated.

At some cycles later, a memory instruction is issued from
the instruction window with the prior-written predicted ad-
dress. An effective address is then calculated. The effective

Table 2: Parameters for a memory cell.
transistor width 6λ
p-well size per cell area of a cell × 4/6
height of a cell 40λ
width of a cell 20λ

Table 3: Processor parameters.
decode/issue width 8
instruction window 128-entry RUU, 64-entry LSQ

I-cache perfect, 1-cycle hit latency
D-cache 32KB, 2-way set-associative, 32B line, 4

ports, 1-cycle hit latency, 6-cycle miss
penalty

address is sent to the D-cache as a reference, and the pre-
dicted address as a cancel addresses. The reference address
is used to access D-cache data as in a usual cache. If the
predicted address is correct, the selected cache line is al-
ready activated. Thus, delay due to DLC is not incurred; if
not correct, a delay may be incurred. Meanwhile, the reser-
vation counter in the selected line accessed by the cancel
address is decreased by one. If the counter value becomes
zero, the corresponding line is deactivated. Note that when
a branch is found to be mispredicted, all reservation counters
are reset.

3. EVALUATION RESULTS
In this section, we first estimate the access time penalty

incurred by DLC. We then evaluate processor performance
and power consumption.

3.1 Estimation of DLC Cache Delay
We estimate how much the activation time impacts on

cache access time. In general, delay estimation is not diffi-
cult if SPICE is used, but unfortunately we do not have
SPICE parameters, which are usually unavailable to the
public. Instead, we have used a simulator based on cacti
[7, 10]. Cacti is a program to calculate cache access time. It
analytically models a cache by decomposing the circuit into
basic gates and many equivalent RC circuits. Gate delay is
estimated based on Horowitz’s model [2]. We modified the
original cacti so that it could adapt to a 0.18µm current pro-
cess. The assumed parameters are shown in Table 1. Table
2 also shows the parameters of the memory cell we assumed.

For a given cache organization parameters (capacity, line
size, and associativity), we first calculated access time and
word line delay using cacti. We then calculated the capaci-
tance ratio of the p-wells to the word line per line. Finally,
assuming gate delay proportionally increases to its load ca-
pacitance, we estimated the activation time as the product
of the word line delay and the capacitance ratio.

Figure 4 shows the evaluation results of the access time of
a DLC and a normal non-DLC cache for various capacities.
Associativity for both caches are two (associativity has only

n-well
 driver

p-well
 driver

wordline

reservation
 counter

reference
 address

reservation
 address

 cancel
address

control

ad
dr

es
s

de
co

de
r

Figure 3: Circuit of a line in the preactivating DLC cache.

0

1

2

3

4

5

32B line
64B line

16K 32K 64K 128K

A
cc

es
s

T
im

e
[n

s]

Capacity [KB]

32B line

64B line

DLC

non-DLC

Figure 4: Accesses time of DLC and non-DLC
caches.

a small impact according to our simulation, except for direct
map). Two lines for each cache present the cases of 32B and
64B lines. As shown in Figure 4, the access time of a DLC
cache is much longer than that of the non-DLC cache. As
a line size becomes larger, the access time is longer. For
example, the 32KB DLC cache with 32B or 64B lines has
a 2.7 or 3.9 times longer access time, respectively, than the
non-DLC cache.

3.2 Processor Performance
First, we explain our evaluation environment, and then

evaluate address prediction accuracy, and the effectiveness
of our preactivating mechanism. Finally, we evaluate power
consumption.

3.2.1 Evaluation Environment
We evaluated processor performance with SimpleScalar

Tool Set [1] version 3.0b. Its instruction set architecture,
SimpleScalar/PISA, is extended from MIPS R10000 [5]. We
used six benchmark programs from SPEC95. Each bench-
mark program was compiled by GNU GCC version 2.7.2.3
with -O6 and -funroll-loops optimization flags.

The parameters of a baseline processor are shown in Table
3. The baseline processor has the normal non-DLC D-cache.
We compared two processor models: a processor with the
conventional DLC cache and that with preactivating DLC
cache. In each model, the hit latency of the DLC cache
is three or four cycles for the 32B or 64B line cases, re-
spectively, as derived from our evaluation in Section 3.1.
However, if the address is predicted correctly, no delay due
to DLC is incurred in the preactivating model(described in
Section 2.2).

0

10

20

30

40

50

60

70

80

90

P
re

di
ct

io
n

A
cc

ur
ac

y
[%

]

32B 64B

Address

Line

compress95 perl vortex apsi mgrid tomcatv

Figure 5: Address and line prediction accuracy.

3.2.2 Address and Line Prediction Accuracy
We used a stride predictor with a 1K-entry value history

table in our evaluation. Figure 5 shows the evaluation re-
sults of address and line prediction accuracy. The left bar
of each program presents prediction accuracy for the 32B
line case, and the right bar for the 64B line case. Prediction
accuracy is the rate of the number of correct predictions to
total memory instructions. Line prediction is correct if a
predicted address is within an accessed line, independently
of the correctness of the address prediction, and thus line
prediction is always better than address prediction. The
lower portion of each bar represents address prediction ac-
curacy, and the upper portion represents the increase in ac-
curacy by line prediction. Since preactivating is successful
if line prediction is correct, line prediction accuracy is more
important.

As shown in Figure 5, the line prediction accuracy is 49.8%
on average for a line size of 32B. However, accuracy is highly
dependent on programs because of their memory access pat-
terns. Good accuracy is achieved in compress95, mgrid, and
tomcatv, while it is poor in perl and vortex. Line predic-
tion accuracy increases little from that of address predic-
tion accuracy in most programs, but significantly increases
in mgrid. Line prediction accuracy is 52.8% on average for
a line size of 64B; little benefit is obtained from a longer line
except for with mgrid.

3.2.3 Performance Evaluation
Figure 6 shows performance degradation from a baseline

due to DLC caches. The lower portion of each bar repre-
sents degradation when preactivating DLC, and the upper
portion represents the increase in degradation of a conven-
tional DLC.

As shown in Figure 6, the conventional DLC cache causes

0

5

10

15

20

25

30
conventional

preactivating

32B 64B

compress95 perl vortex apsi mgrid tomcatv

P
er

fo
rm

an
ce

 D
eg

ra
da

tio
n

[%
]

Figure 6: Performance degradation from the base-
line due to DLC caches.

0

1

2

3

4

5

compress95 perl vortex apsi mgrid tomcatv

conventional

preactivating

32B 64B

S
ta

tic
 P

ow
er

 [%
]

Figure 7: Static power rate to the base line.

a large performance degradation. It is a maximum of 17.5%,
average 9.6%, for the 32B line case, and a maximum of
24.3%, average 14.1%, for the 64B line case. The adverse
effect on performance due to a long latency of DLC is larger
in integer than in floating-point programs. This difference
arises from the amount of parallelism contained in a pro-
gram; in general a floating-point program contains more par-
allelism than an integer program. An instruction scheduler
can hide a long latency by exploiting parallelism, and thus
can reduce adverse effects on performance.

As we expected, the preactivating mechanism can allevi-
ate performance degradation more in a program where line
prediction is better. The largest reduction of performance
degradation is observed in mgrid; the reduction rate is ap-
proximately 90% for both line sizes. This is much larger
than those of compress95 and tomcatv whose prediction ac-
curacies are as high as mgrid’s. The reason is the high fre-
quency of loads in a program; it is 33% in mgrid while 21%
in both compress95 and tomcatv. On average, our preacti-
vating mechanism can reduce performance degradation by
47.9% and 55.3% for 32B and 64B lines, respectively. As a
result, our preactivation DLC improves performance by 3.2-
8.8% in the 32B line case over the conventional DLC, and
by 3.4-15.6% in the 64B line case.

3.3 Reducing Static Power
Figure 7 shows the rate of static power of the D-cache

to the baseline. The original DLC dramatically decreases
power to 0.6-1.3% and 1.2-2.3% for 32B and 64B lines, re-
spectively. Our preactivating DLC cache still keeps quite
small power(1.0-2.0% and 1.8-3.9% for 32B and 64B lines,
respectively).

In this evaluation, we did not include power consumed
in the address prediction. The main component of the ad-

dress predictor is a table composed of SRAM (10KB SRAM
are used for the predictor we used in our evaluation). The
SRAM consumes power, but it is negligibly small as pre-
dicted in Figure 7 if we compose the table with DLC. The
long latency due to DLC is allowed because the pipeline of
the current processor is usually deep (at least 16 cycles are
consumed from instruction fetch to D-cache access in Intel
Pentium 4). Our cacti simulation shows the access to the
address predictor table requires two cycles, which is short
enough for preactivating.

4. CONCLUSIONS
We have proposed a mechanism that suppresses perfor-

mance degradation when applying DLC to a cache. Our
mechanism predicts the address of the location that a mem-
ory instruction will access early in a pipeline, and preac-
tivates a cache line. When the memory instruction actu-
ally accesses the cache line, it is already activated, impos-
ing no penalty if the prediction was correct. This latency
hiding mechanism minimizes performance degradation due
to DLC while keeping the benefit of low power. Our eval-
uation shows preactivating successfully suppresses perfor-
mance degradation to an acceptable level with little increase
of power.

5. REFERENCES
[1] D. Burger et al. The SimpleScalar Tool Set, Version

2.0. Technical Report 1342, Computer Sciences
Department, University of Wisconsin-Madison, June
1997.

[2] M. Horowitz. Timing Models for MOS Circuits.
Technical Report SEL83-003, Integrated Circuits
Laboratory, Stanford University, 1983.

[3] H. Kawaguchi et al. Dynamic Leakage Cut-off Scheme
for Low-Voltage SRAM’s. In Symposium on VLSI
Circuits Digest of Technical Papers, pages 140–141,
June 1998.

[4] T. Kuroda et al. A 0.9-V, 150-MHz, 10-mW, 4mm2,
2-D Discrete Cosine Transform Core Processor with
Variable-Threshold-Voltage (VT) Scheme. IEEE
Journal of Solid-State Circuits, 31(11):1770–1779,
November 1996.

[5] MIPS Technologies, Inc. MIPS R10000 Processor
User’s Manual, Version 2, 1996.

[6] S. Mutoh et al. 1-V Power Supply High-Speed Digital
Circuit Technology with Multi Threshold-Voltage
CMOS. IEEE Journal of Solid-State Circuits,
30(8):847–854, August 1995.

[7] G. Reinman et al. Extensions to CACTI. Unpublished
document.

[8] G. Reinman et al. Predictive Techniques for
Aggressive Load Speculation. In Proc. MICRO-31,
pages 127–137, December 1998.

[9] K. Wang et al. Highly Accurate Data Value Prediction
using Hybrid Predictors. In Proc. MICRO-30, pages
281–290, December 1997.

[10] S. J. E. Wilton et al. An Enhanced Access and Cycle
Time Model for On Chip Caches. Technical Report
93/5, Digital Equipment Corporation, Western
Research Laboratory, July 1994.

	Main
	ISLPED02
	Front Matter
	Table of Contents
	Author Index

