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ABSTRACT
In our quest to bring down the power consumption in low-power
chip-multiprocessors, we have found that TLB and snoop accesses
account for about 40% of the energy wasted by all L1 data-cache
accesses. We have investigated the prospects of using virtual
caches to bring down the number of TLB accesses. A key observa-
tion is that while the energy wasted in the TLBs are cut, the energy
associated with snoop accesses becomes higher. We then contrib-
ute with two techniques to reduce the number of snoop accesses
and their energy cost. Virtual caches together with the proposed
techniques are shown to reduce the energy wasted in the L1 caches
and the TLBs by about 30%.
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1   INTRODUCTION
Performance demands of low-power systems, such as lap-top com-
puters, PDAs, and advanced mobile phones are increasing but must
be accommodated within the constraints of the limited battery
capacity. As a base for meeting this need, we consider chip multi-
processors (CMPs) based on several simple cores, which easily can
be shut down independently due to the modularised design. How-
ever, to take advantage of this potential power-saving capability
and yet achieve the full performance potential, assumes low per-
formance and energy losses in the memory system.

A CMP memory system often uses private L1 caches attached to
each processor which are connected via a bus to a shared L2 cache
using a snoopy cache protocol to maintain consistency [7]. Assum-
ing physically-addressed L1 caches, each memory access triggers
a TLB access and an L1 cache lookup. In addition, misses in the
L1 cache or modifications of shared blocks result in a snoop action
leading to a tag-lookup in all L1 caches even if a cache will not
respond to the request. We measured the energy wasted in the L1
caches as a result of local and snoop actions and the energy wasted
in the TLBs for multiprogrammed and multithreaded workloads on
an 8-way CMP simulation model. We found that TLB energy
losses are typically 20-25% of the energy wasted in the L1 caches
and snoop actions account for 5-10% of the L1 energy losses.

In this paper, we investigate the prospects of reducing TLB energy
losses in a CMP by considering virtually addressed L1 data-caches
(see, e.g.,[3]) and focus for the first time on their energy costs. A
first observation is that while the energy cost associated with the
TLBs can be considerably reduced, it comes at the cost of higher
energies for the snoop accesses. We also contribute with two tech-
niques that reduce the number of snoop accesses and the cost of
each of them. The first technique is a novel mechanism, called
Page Sharing Table, which is an auxiliary structure attached to
each TLB. By keeping track of the sharing set of each page, we
show that it can almost completely eliminate all useless snoop
accesses when there is little or no sharing. This results in a consid-
erable L1 cache energy reduction. In order to support the use of
multiple page sizes, we also propose a technique, called the Page
Size Information Scheme, that uses information of the size of the
page which the block belongs to in order to limit the number of tag
lookups needed on each snoop access. Our techniques reduce the
energy wasted in the L1 caches and in the TLBs by about 30%.

2  BASELINE CMP SYSTEM
We consider a CMP with private separate instruction and data L1-
caches and a shared L2-cache similar to Hydra [7] (see Figure 1).
The cache coherence protocol is a MOESI snoopy protocol, but the
evaluation is applicable to other snoopy protocols, such as MSI
and MESI. To save energy, the L1-caches are searched first and the
L2-cache is only accessed if the snoop action fails in all L1-caches.
If a block is found in another L1-cache, a cache-to-cache transfer
is used since it is more effective to access an L1-cache than the L2-
cache. We assume that each L1-cache has a dual tag store so that
the processor does not have to stall when a snoop request is issued
from another processor. We do not consider the instruction-caches.
However, the proposed system essentially eliminates snooping
overhead related to instruction fetches.

FIGURE 1. Baseline CMP architecture.

While the baseline uses physically-addressed (or physical) caches,
we now consider the implications on power consumption using
virtually-addressed / virtually-tagged (or virtual) caches. The
potential gain of using virtual caches is that no address translation
is needed on cache hits which reduces the energy consumed by the
TLB since the TLB is now only accessed on cache misses. How-
ever, virtual caches introduce other problems. Because of page
limitations, we will here focus on the most essential issues related
to the focus of this study.
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A first issue is the synonym problem, where multiple virtual
addresses map to the same physical address. An effective approach
in a multiprocessor with one level of private caches in a snoop-
based system is to have two sets of tags, one virtual and one physi-
cal [6]. Only the virtual tag is accessed on L1 cache accesses at
cache hits. At a miss in the virtual tag store, the physical tag store
is checked for a synonym mapping. In the case of a hit, i.e. the
block is present at a different virtual address, the block is moved to
a location corresponding to its most recent virtual address. Often,
and dependent on page and cache sizes, only an update of the vir-
tual tag is required rather than an additional block copy. In order to
reduce the performance impact, the synonym check based on the
physical address is carried out in parallel with the bus-request. At
the rare occasions when a synonym block is present in the cache,
the bus transaction is cancelled.

The physical tags are also checked at bus snoops in order to deter-
mine a block’s presence and status in the cache. Section 3 further
discusses organizational tradeoffs of the physical tag-store and
shows why a snoop access can waste more energy than in physical
caches.

A second issue is the alias problem where different processes have
identical virtual addresses mapped to different physical addresses.
We solve this by flushing only the virtual tag store at context
switches, as our experience indicates such flushes to be few and
less sensitive for application-processing systems (as opposed to
real-time sensitive control systems). Accesses to blocks still
present in the cache will be found by the physical tag-store interro-
gation at cache misses presented above, and will lead to slightly
fewer long-latency / high-energy misses than if the complete cache
had been flushed. An alternative approach is to extend the virtual
tag-store with a process identifier (PID), but our experiments indi-
cate this to increase the L1 cache energy by between 3% and 8%,
depending on system parameters. Using a PID and not flushing the
virtual tags also implies invalidating a virtual tag when another
process loads the corresponding physical block.

Overall, while virtual caches can reduce the energy wasted in the
TLB, an important source of energy losses are the snoop accesses.
Therefore, the next section introduces two techniques that aim at
reducing this energy cost.

3 SNOOP-ENERGY REDUC. TECHNIQUES
As mentioned above, the snoop-induced energy is increased in a
system with virtual caches. Earlier work [11,10] has shown that as
many as 30-80% of the snoop accesses are indeed useless and
could be removed.

The PST scheme is based on the intuition that there exist a fair
number of pages that are not shared. A page is said to be loaded in
a processor if at least one block that belongs to the page is loaded
in the private cache. For non-shared pages, blocks are not subject
to coherence actions and snooping overhead could be eliminated.
While the scheme is particularly good for single-threaded applica-
tions (with no sharing), we will see that they work well also for
parallel programs.

A unit called Page Sharing Table (PST) is attached to each proces-
sor. This unit keeps track of which pages are currently used by the
processor. For each such page, the unit keeps a sharing vector that
indicates if the other processors also share the page. This sharing
vector is broadcast on a separate bus, called sharing vector bus,
with as many lines as the number of processors, on a snoop-broad-
cast action. By reading this sharing vector, the other caches know
whether they need to do a tag-lookup to check for the block or not.
Since the PST keeps track of whether there is any block cached
from a particular page, no information about the page means that
the local physical tag-store need not be accessed when there is a
miss in the virtual tag-store. A system with PSTs is shown in
Figure 2.

To keep the sharing vectors updated, a PST in one node must ask
PSTs in other nodes if they share the page, when a new entry is
loaded. If they share the page, they must also update their sharing
vectors, since a new processor now shares the page. To be able to

ask if the other processors share the page, it must be possible to
look for an entry in the PST with the help of the physical address.
The other PSTs indicate that they share the page through switching
their corresponding line on the sharing vector bus.

Since the way to decide whether a page is shared is based on look-
ing for the page entry in the PSTs of the other processors, it is nec-
essary that inclusion is maintained between the PST and the L1
cache. That is, if an entry is not loaded, then it is guaranteed that
no blocks belonging to that page are loaded. If inclusion is not
maintained, a page can be marked as not shared even though
blocks that belong to the page are loaded in another cache. Inclu-
sion is maintained by loading a page entry into the PST the first
time a block on the page is accessed. Conversely, when a PST
entry is evicted, one must make sure that all blocks belonging to
that page are evicted from the local cache.

FIGURE 2. System with PSTs.

To avoid energy-costly invalidations in the local cache, we adopt
the following scheme: Each entry in the PST has a counter that is
incremented when a block that belongs to the page is inserted into
the cache and decremented when the block is evicted. When a page
entry needs to be evicted from the PST, an entry with a counter that
is zero is chosen as a victim. If no entry with a zero counter exists,
the PST scheme is shut down and snoop accesses are handled as in
the baseline system. However, when other nodes update their PSTs
and ask if the PST has a certain entry, it always indicates that it
has, since inclusion is not maintained when it is shut-down and
there is no way to guarantee that no block from the page is loaded
in the cache. When the PST is turned on again, the cache must
however be flushed. We will explain what turns it on later.

When an entry is replaced in the PST, the sharing vector is checked
to see if the other processors share the page. A broadcast on the
bus notifies the processor nodes that share the page that the page is
not used by the current processor anymore. The processors that are
affected by the broadcast are notified using the sharing vector bus.

Under certain conditions the PST will not work well, namely if
there is practically no locality at all in the memory references. If
almost no blocks that are accessed are located on the same pages,
the PST-miss rate will approach the cache miss rate. If this hap-
pens, the traffic to keep the PSTs updated will increase and waste
more energy than the PST saves. This behavior also implies that
there will often not be any PST entry with a counter value of zero
and thus the PST is switched off.

A mechanism that can switch on the PST is also needed, since it is
possible that a process has some sections with little locality which
switches off the PST, followed by a section with much locality
where the PST should be active. The way to detect when the PST
should be turned on is based on comparing the cache hit-rate with
the TLB-hit rate. This ratio describes how many accesses we have
on a page before an entry needs to be replaced. Since the PST
saves energy on cache misses but wastes energy on its own misses
due to update costs, this ratio in some sense describes if there will
be a net gain or loss.

Since the TLB keeps entries for all pages that are accessed by the
processor, it makes sense to integrate the TLB and the PST. A shar-
ing vector is associated with each TLB-entry. We also need to be
able to access entries using the physical address, to be able to
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check whether other nodes share a page. However, it must be pos-
sible to change the size of the PST independently from the TLB.
Therefore, the PST also has a victim part which contains entries
that have been evicted from the TLB. Figure 3 shows one possible
implementation. The page size does not have to be the same in the
PST as in the virtual memory system. If the pages in the PST are
bigger, more than one entry in the TLB may correspond to one
entry in the PST.

FIGURE 3. An implementation of the PST.

The mechanism that identifies when a PST should be switched on
is based on an 8-bit counter for each PST. For each cache-miss the
counter is incremented one tick. For each TLB-miss the counter is
decremented by a preset number of ticks. The counter does not
wrap around if it is already zero or 255. As long as the number of
TLB-misses are close to the number of cache-misses the counter
will stay close to zero, but when the TLB-miss rate decreases, the
counter value increases. When it passes a threshold, the PST is
switched on again. We have empirically found that oscillation is
not a problem if the number of ticks that the counter is decre-
mented by on a TLB-miss is chosen conservatively. (In our experi-
ments, it is preset to 2.)

The problem of physical tag-store lookups of virtual caches is that
virtual addresses might map differently to the cache than its corre-
sponding physical address. This problem occurs when the cache
size divided by its associativity is larger than the page size. For
example, for a 16 kB direct-mapped virtual cache, and if the page
size is 4 kB, a block’s physical address can be mapped to four dif-
ferent cache lines depending on address mapping. As most proces-
sor architectures support different page sizes, the system must be
designed to handle also the smallest page size. This implies that a
16 kB 4-way cache will need a 16-way physical tag-lookup for
systems with a 1 kB minimum page size, such as in ARM.

Prior art proposes two classes of solutions that do not need to
increase the associativity; either cache addressing conflicts are
accepted leading to paired eviction which gives rise to additional
cache misses, or by using page coloring or other virtual-to-physi-
cal mapping restrictions. The latter gives rise to lower cache- and/
or MMU-performance, more complex handling of virtual pages,
and becomes inherently hard for systems with a non-homogenous
memory system.

Our proposed technique is based on the finding that performance-
demanding applications rarely are dominated by access to the
smallest page size. For larger pages, the required associativity of
physical tag-lookup can be lower, given that the page size of the
current access is known. We propose the Page Size Information
Scheme (PSI) which simply transmits the page size together with
the address on the bus. The page size is encoded and observe that it
is only necessary to encode the sizes that are smaller than
cachesize/associativity. The physical tag-store is modified so that it
takes this page size into account when deciding possible places to
check in the cache. For large pages this reduces the snooping cost
to, in essence, that of physical caches.

4  EXPERIMENTAL METHODOLOGY
We use Simics [9] to model the baseline CMP system and the vir-
tual cache extension according to Section 2. In addition, we also
model systems based on the latter but extended with the PST and
PSI schemes. We do not run an operating system so the applica-
tions are run with each thread tied to one processor. Our assump-
tions for the architectural parameters are as follows. We model
CMPs with eight processors attached to 4-way 16 kB L1 caches
with a 32-byte block size and the 8-way L2 cache is 512 kB big.
The Data TLB and the PST contain 32 and 64 entries, resp. Page
sizes range from 1 to 4 kB. We drive our experiments the follow-
ing set of SPLASH2-benchmarks [12]: FFT, Raytrace, Water, Bar-
nes and Radix. We use the default input data sets that are
recommended in the paper. We also use a parallelized version
(mpeg2sliced_improved) [1] of mpeg2decode from the MPEG
Software Simulation Group, which decodes the standard movie
flwr_015.m2v. In addition, we run a multiprogrammed workload
based on applications from MediaBench [8].

During the simulation, statistics counters record the number of
operations that take place in the memory system that affect the
energy consumed in the L1 caches, the TLBs and in the PSTs.
These are then multiplied with the energy cost associated with
each operation. The power-model for a 0.18 micron CMOS pro-
cess from Wattch [2] is used. We do not model static power con-
sumption since we are primarily interested in ultra-low power
devices. According to [4], the leakage current is more than three
magnitudes lower for an ultra-low power process than an ultra-
high speed. This means that the approximation that the static
power consumption is negligible is still valid.

We do not take into account the energy wasted by the bus. The
activity on the wide data/address bus is expected to be decreased
with our PST scheme because of fewer global write / invalidate
requests, but the sharing vector bus adds to the energy losses. With
the PSI Scheme a few bits are needed for the page size information
(one bit in the system studied). To get an idea of how much the bus
would impact the results we calculated how much energy that was
wasted to drive a bus-line (including interference with neighboring
lines) from one side of the chip to the other, with the driver sized
so it would be possible to do this in a half clock-cycle. The energy
for this was about 25% of the energy consumed by one (4-way
associative) tag-lookup. Many times no lines need to be driven
since there is no sharing, while the number of tag-lookups that are
reduced are the same as the number of processors. As said in the
previous section, the associativity of the physical tags often needs
to be increased, resulting in even more saving while it does not
affect the bus.

5  EXPERIMENTAL RESULTS
The energy distribution in the caches and TLBs in a CMP naturally
depends on the size and associativity for both the caches and the
TLBs. The left most bar for each benchmark in Figure 4 shows the
distribution for our baseline system. The gray field in the middle of
the bar is the energy consumed by snoop-induced tag-lookups that
miss in the caches. Between that field and the darkest region is a
small field that represents the energy consumed by snoop-induced
tag-lookups that hit in the cache. According to the figure this field
is zero for all benchmarks indicating that almost all snoops miss in
all caches. The fraction of the energy that is wasted by snooping
depends on the hit rate in the cache, since all misses result in a
snoop transaction. For example, Radix with a hit rate of 93.0%
suffer more from snooping than the multiprogrammed workload
which has a hit rate of 99.3%.

The second bar shows the energy distribution for a system with
virtual caches. The energy wasted by the TLB is drastically
decreased. For this bar it is assumed that the associativity in the
physical tag-store is four times the virtual associativity to be able
to handle page sizes of 1K, to avoid conflicts that would lead to
paired eviction. Hence, the energy wasted by snooping should be
four times the snooping in the baseline system. On each miss the
local physical tag is checked to find synonyms.The energy wasted
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by this is included in the snooping section of the bar, which
explains why the snooping energy is more than quadrupled for
Radix. We can see that as long as the miss-rate is not very high, the
increased snooping cost is lower than the energy saved in the TLB.

The third bar shows a virtual cache system with 1 kB pages using a
PST, where each entry corresponds to a 4 kB page. The PST
removes some of the snoop-induced energy. For the multipro-
grammed workload the PST removes practically all snooping,
since the different processes have no shared data and are located at
different pages. For FFT, which has very little shared data, almost
all of the snoop-energy is removed but the PST itself wastes some
energy. This is due to low locality that leads to a lot of traffic to
keep the PSTs updated. Radix has very little shared data but during
a major section of the program the PST is turned off due to too lit-
tle locality. This is why the scheme does not remove more. The
same holds for Raytrace. MPEG2 removes approximately half of
the snooping-energy even though the PST is turned on all the time.
This has to do with false sharing on the page level.

With the Page Size Information Scheme (PSI) the associativity of
the physical tag-store can often be as small as that of the virtual
tag-store. The only exception is when actual page size < cache
size/associativity. Our experience indicates the usage of 1 kB
pages to be rare for performance-centric applications, but this is
dictated by the system software. In order to illustrate the potential
effects of PSI, we have run simulations where the actual page size
is 4 KB for all pages in our benchmark applications. The fourth bar
shows the impact on energy. In a real system, there will exist some
pages of the minimum size, where the PSI scheme will not reduce
the energy losses of some snoops, but the average snoop energy of
the PSI scheme is expected to be close to the PSI bar of Figure 4.

The fifth bar (PSI/PST) shows a system with PST and PSI com-
bined, for the scenario where all executed pages are at least 4 KB.
Although this combined scheme provides the best overall result,
the difference between PSI and PSI/PST is often small. However,
for real scenarios where page sizes often are smaller than cache
size / associativity (4 KB in our example), the PSI scheme alone
would have less impact while the combined scheme will still per-
form at least as well as the PST alone. Overall, for systems where
pages smaller than cache size / associativity might be common, the
combined scheme is by far the most robust design point. Overall,
the PSI/PST example eliminates most of the TLB and snoop-
induced energy consumption, and leads to an energy reduction of
the L1/TLB/snooping system by around 30% for all applications in
the study.

6  CONCLUDING REMARKS
Other studies have also acknowledged the high energy losses asso-
ciated with snoop accesses in shared-memory multiproces-
sors[10,11]. These techniques have been further studied in a CMP
environment in [5].

We have investigated the option of using virtual caches in chip
multiprocessors with a focus on its impact of energy losses in the
TLB and in the L1 cache access path. We have found that while the
energy losses in the TLB can be considerably reduced, synonym

issues can make energy losses associated with snoop accesses
higher. In order to reduce the energy losses associated with snoop
accesses, we introduce the Page Sharing Table scheme that is able
to remove a majority of the snoop accesses that would miss in the
L1 caches anyway. In order to reduce the energy losses of the
remaining snoop accesses in systems that support multiple page
sizes, we introduced the Page Information Scheme. From our
detailed simulations using multiprogrammed as well as parallel
workloads, we find that the combination of these techniques result
in a reduction of the energy losses in the L1 caches and the TLB by
about 30% on average.
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