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ABSTRACT 
This paper presents a method of intra-task dynamic voltage scaling 
(DVS) for SoC design with hierarchical FSM and synchronous 
dataflow model (in short, HFSM-SDF model).   To have an optimal 
intra-task DVS, exact execution paths need to be determined in 
compile time or runtime. In general programs, since determining 
exact execution paths in compile time or runtime is not possible, 
existing methods assume worst/average-case execution paths and 
take static voltage scaling approaches. In our work, we exploit a 
property of HFSM-SDF model to calculate exact execution paths in 
runtime. With the information of exact execution paths, our DVS 
method can calculate exact remaining workload. The exact workload 
enables to calculate optimal voltage level which gives optimal 
energy consumption while satisfying the given timing constraint. 
Experiments show the effectiveness of the presented method in low-
power design of an MPEG4 decoder system. 

Categories & Subject Descriptors: J.6 [Computer-
Aided Engineering]: Computer Aided Design (CAD) 

General Terms: Design, Performance 

Keywords: Low power, dynamic voltage scaling, variable 
supply voltage, formal model, finite state machine, synchronous 
dataflow 

1. INTRODUCTION 
In recent SoC (System-on-Chip) design, low-power or power-
efficient design and usage of formal models of computation are 
among the most important issues. Low-power consumption is 
needed for long battery lifetime, reduction in system maintenance 
cost (e.g. cooling fan), etc. For such a power-conscious design, 
recently, significant research efforts have been made on dynamic 
voltage scaling (DVS) exploiting the quadratic scale of energy 
consumption to the power supply voltage (E ∝  V2). In this paper, we 
investigate an application of DVS to power-conscious SoC design. 

In terms of design productivity, to master the ever growing 
complexity of SoC design, formal models of computation are 
becoming more and more important since they enable shorter design 
cycle by formal analysis (e.g. analysis of liveness, deadlock, 
maximum memory usage, etc.) as well as systematic reuse. In 
commercial SoC design tools, several formal models of computation 
are supported: CFSM in Cadence VCC [1], hierarchical FSM with 

dataflow in Synopsys CoCentric System Studio [2][3], etc. 

There have been presented many low-power design methods which 
exploit the formality of computation models to reduce the power 
consumption. For instance, many DVS methods have been 
presented for real-time task models [4][5][6][7][8]. These methods 
identify slack times of task execution (in the initiation or termination 
of task execution) and scale supply voltage to reduce energy 
consumption in executing real-time tasks on the processor. FSM 
models have been used to model systems with power states (e.g. idle, 
active, sleep, etc.) [9]. 

In our work, we investigate the application of DVS to SoC design 
with a popular formal model of computation, hierarchical FSM 
(HFSM) and synchronous dataflow (SDF) model, in short HFSM-
SFD model. The HFSM-SDF model is well suited to designing both 
complex control (by HFSM) and dataflow computation (by SDF). 
They also enable useful formal analysis including state reachability 
test, deadlock analysis with bounded memory, etc. Currently, 
commercial tools such as Synopsys CoCentric System Studio [2][3] 
and academic tools such as PtolemyII [10] support the HFSM-SDF 
model. 

Although the HFSM-SDF model is well suited to SoC design, there 
has been little research on low power design methods, especially, 
DVS methods for the HFSM-SDF model. In this paper, we first 
show that the HFSM-SDF has a property well suited to DVS and 
present a method of intra-task DVS exploiting the property. 

2. Hierarchical FSM and Synchronous 
Dataflow Model 
Figure 1 shows an example of HFSM-SDF model. In the figure 
circles and squares represent states of FSM and SDF actors, 
respectively. A state (or SDF actor) can be refined to an FSM or an 
SDF graph. In the figure, at the top of the model, we have an SDF 
graph consisting of two actors A1 and A2. Actor A1 is refined to an 
FSM consisting of two states, S1 and S2. State S1 is refined to an 
SDF graph consisting of two actors A3 and A4. In the HFSM-SDF 
model, FSM and SDF can be nested arbitrarily as in PtolemyII and 
CoCentric System Studio. 

An arc between states represents a state transition. A state transition 
arc is tagged with a guard/action. An arc between SDF actors is 
tagged with the numbers of tokens to be consumed (for input) and 
produced (for output). By default, arcs without numbers have single 
token production/consumption. In the figure, the rightmost SDF 
graph has an arc tagged with 2 and 1. In this case, actor A9 produces 
two tokens for each firing of the actor and actor A10 consumes one 
token when fired. Thus, to balance the number of produced tokens 
and that of consumed tokens, the SDF graph has a schedule of actor 
firing, in short schedule. 
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Figure 1: An example of HFSM-SDF model. 

There can be several candidates for the schedule. In the above case, 
we can have A92A10, 2A94A10, etc. For each SDF graph, the 
designer sets one of candidate schedules as the schedule of the SDF 
graph. 

Details of HFSM-SDF model can be found in [11]. In this paper, to 
give a brief explanation of HFSM-SDF model execution, we 
summarize it with three rules, one property, and some terminology 
as follows. 

Rule 2.1 Corresponding to a state transition of parent FSM, a child 
sub-FSM makes only one state transition. 

This is a basic rule of hierarchical construction of FSMs. 

Rule 2.2 Whenever a (self or outgoing) state transition is made 
from a state, if the state is refined to an SDF graph, the schedule of 
the SDF graph is always executed once. 

This rule is needed to conform to Rule 2.1 when a state is refined to 
an SDF graph. For instance, in Figure 1, when a (self or outgoing) 
state transition is made from state S1, the schedule of SDF graph 
refining the state, i.e. the schedule of A3A4 is always executed once. 
This rule is necessary to conform to Rule 2.1, especially when a 
state is refined to an SDF graph and the SDF graphs has an SDF 
actor which is refined to an FSM. In this case, for a state transition 
of upper level FSM, the low level FSM should also make a state 
transition. To do that, the schedule of the intervening SDF graph 
needs to be executed once. 

Property 2.1 If all the current FSM states are known, the schedule 
of all the SDF actor firings can be identified. 

To exemplify Property 2.1, in Figure 1, we assume that the current 
states of two FSMs, FSM1 and FSM2 are S1 and S4, respectively. 
When the top SDF graph executes its schedule, i.e. A1A2, the firing 
of actor A1 yields a (self or outgoing) state transition from S1. 
According to Rule 2.2, the state transition executes the schedule of 
the SDF graph which refines state S1, i.e. the schedule of A3A4. In 
the same manner, the firing of actor A2 yields the schedule of 
A92A10 since the current state of FSM2 is S4. Thus, the total order of 
actor firing is A3A4A92A10. 

Since all the current states of FSMs can be identified just before the 
schedule of top SDF graph starts to be executed, we can obtain the 
information of SDF actors to be fired. The information is a total 
order of actor firing. 

In terms of execution paths, the total order of actor firing 
corresponds to an execution path in the execution of HFSM-SDF 
model. Thus, in the HFSM-SDF model, before executing an 
execution path, the exact execution path can be identified. 

1   if(A1.state==S1) {
2 A3();
3 A4(); st1();
4   }
5   else {
6 A5();
7 A6(); st2();
8   }
9   if(A2.state==S3) {
10 A7();
11 A8(); st3();
12  }
13  else {
14 A9();
15 A10(); A10(); st4();
16  }

(a)
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1   if(A1.state==S1) {
2 A3();
3 A4(); st1();
4   }
5   else {
6 A5();
7 A6(); st2();
8   }
9   if(A2.state==S3) {
10 A7();
11 A8(); st3();
12  }
13  else {
14 A9();
15 A10(); A10(); st4();
16  }
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Figure 2: A code section of implemented HFSM code. 

Based on this information, we can obtain exact workload to be 
executed, and optimal energy consumption can be achieved in intra-
task DVS. Details will be given in Section 3. 

Rule 2.3 When an SDF actor is refined to a sub-FSM, the sub-FSM 
makes a state transition at the last firing of the SDF actor in the 
schedule of the parent SDF graph. 

This rule is needed to conform to Rule 2.1 when an SDF actor is 
refined to a sub-FSM. Rule 2.3 means that there are two types of 
actor firing for the SDF actor refined to a sub-FSM: one (called 
TypeA firing in [11]) that does not have the sub-FSM make a state 
transition and the other (called TypeB firing) that enables the state 
transition. 

For more details of HFSM-SDF model, more generally, HFSM with 
concurrency models, refer to [11]. 

Figure 2 (a) shows a code section that implements the HFSM-SDF 
model in Figure 1 (Figure 2 (b) shows the corresponding control 
structure, and worst-case execution time of each basic block.). The 
schedule of top SDF graph is assumed to be A1A2. In the figure, line 
1-8 corresponds to the execution of actor A1 and line 9-16 that of 
actor A2. 

If the current state of the FSM refining the actor A1 is S1, then 
according to Rule 2.2 and 2.3, the refining SDF graph of state S1 
executes once a schedule of SDF actors, i.e. function A3() and A4() 
(line 2-3). Function st1() represents the guard evaluation of state 
transition and the change of states (line 3). If the current state of the 
FSM refining actor A1 is S2, then the refining SDF graph of state S2 
executes function A5() and A6() (line 6-7).  

When actor A2 is fired, if the current state of the FSM refining actor 
A2 is S3, then the refining SDF graph of state S3 executes a schedule 
of SDF actors, i.e. function A7() and A8() (line 10-11). If not, it 
executes function A9() and two times of function A10() (line 14-15). 

3. Proposed Method 

3.1 Interleaving SDF Actor Firing and Voltage 
Scaling 
Figure 3 exemplifies the execution of HFSM-SDF model and DVS. 
We assume that a deadline constraint D is given to the execution of 
the HFSM-SDF model. Each schedule of top SDF graph should 
meet the deadline constraint D, e.g. D=1/25 second for a single 
frame operation of an MPEG4 decoder system. 
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Figure 3: Intra-task dynamic voltage scaling. 

We scale the supply voltage on an actor basis. That is, at the 
beginning of each actor execution, the supply voltage is scaled. 

Before each schedule of top SDF graph, the information of actors to 
be fired is obtained. In Figure 3 (a), we assume that the example 
code of Figure 2 is executed and the current execution path includes 
two basic blocks, A3, A4 and A7, A8. The worst-case execution 
path is when basic block A9 and A10 are executed. 

In the example of Figure 3, the total order of actor firing is A3, A4, 
A7 and A8. In the figure, arrows represent execution order. For 
instance, A3 should be executed before A4. 

Actor firing is interleaved with voltage scaling as exemplified in 
Figure 3 (b). At the beginning of schedule of top SDF graph, a 
function called runtime execution path identification (RPI) gives 
information of SDF actors to be fired for the current schedule of top 
SDF graph. 

Using the information, a voltage scaler (VS) calculates the current 
workload by summing all WCETs (worst-case execution times) of 
actors to be fired. Then, it calculates an initial level of supply 
voltage (i.e. speed ratio, more exactly) using the current workload. 

At time t2, the supply voltage is scaled to the initial voltage level (V2 
in the figure) by the voltage scaler. After the voltage scaling, the first 
SDF actor A3 executes until time t3. 

After the termination of actor A3, the voltage scaler calculates a new 
level of supply voltage (i.e. new speed ratio) to exploit a time slack 
obtained after the execution of actor A3 (due to the variable 
execution time). The new voltage level is calculated considering the 
time slack, the current workload, and the runtime overhead of 
voltage scaling. Details will be given in Section 3.3. Then, the 
voltage scaler sets the supply voltage to a new level (V3 in the 
figure). The actor firing and voltage scaling continue in this way. 

The voltage scaling methods based on worst/average case execution 
paths is also exemplified as dashed lines in Figure 3 (b). These 
methods assume a worst-case execution path (when basic block A9, 
A10 are executed) at the beginning of HFSM-SDF model execution. 
Thus, the initial voltage level V1

’ for the execution of Actor A3 is 
higher than that of our method V2. For the level of supply voltage 
for the execution of actor A4, the methods based on worst/average-
case execution paths give higher voltage level (V2

’) than our method 

1 if(A1.state==S1) {
2 Q.append(A3);
3 Q.append(A4); 
4 }
5 else {
6 Q.append(A5);
7 Q.append(A6); 
8 }
9 if(A2.state==S3) {
10 Q.append(A7);
11 Q.append(A8); 
12 }
13 else {
14 Q.append(A9);
15 Q.append(A10); 
16 Q.append(A10);
17}

A3

A4

A7

A8

1

4

1

1

WCET1 if(A1.state==S1) {
2 Q.append(A3);
3 Q.append(A4); 
4 }
5 else {
6 Q.append(A5);
7 Q.append(A6); 
8 }
9 if(A2.state==S3) {
10 Q.append(A7);
11 Q.append(A8); 
12 }
13 else {
14 Q.append(A9);
15 Q.append(A10); 
16 Q.append(A10);
17}

A3

A4

A7

A8

1

4

1

1

WCET

 
Figure 4: An example of RPI function. 

(V3) since it is not determined yet whether basic block A7, A8 or 
basic block A9, A10 will be executed, and the worst-case execution 
path (where basic block A9, A10 is assumed to be executed) is 
assumed yielding a higher voltage level. 

In the next two subsections, we will explain the details of runtime 
execution path identification and dynamic voltage scaling. 

3.2 Runtime Execution Path Identification 
Figure 4 shows a pseudo code of RPI function for the HFSM-SDF 
model of Figure 1. The pseudo code has the same control structure 
as the code of HFSM-SDF example given in Figure 2. From the 
original code of HFSM-SDF model, the construction of RPI 
function is straightforward. It is constructed by extracting the 
hierarchy of HFSM (control structure of the original code), and state 
variables (to read them) as exemplified in Figure 4. 

Before each schedule of top SDF graph, since we can evaluate all 
the current states of FSMs in the HFSM-SDF model, we can build 
the information of actors to be fired as a queue whose element 
contains information of an SDF actor, i.e. actor id and worst-case 
execution time (WCET) of the actor. In the case of Figure 6, 
assuming that the states of FSMs are S1 and S3, a queue of four 
actors is obtained as shown on the right-hand side of the figure.  

Dashed arrows represents a correspondence between a line in the 
RPI function and an element of the queue obtained by executing the 
line. For instance, Q.append(A3) in the code of RPI function 
appends to the queue, Q an element containing the id of actor A3 and 
its WCET (1 in the figure). 

Note that the RPI function is executed once before the iteration of 
each schedule of top SDF graph since it is needed to identify all the 
actors to be fired before the iteration. The queue obtained by the RPI 
function execution is used by the voltage scaler to calculate the 
current workload. 

3.3 Dynamic Voltage Scaling 
By examining the queue obtained by the RPI function, the voltage 
scaler calculates current workload (WC) by simply summing up the 
worst-case execution time of actors to be fired. With the given 
deadline (D) of the iteration of top SDF schedule, the voltage scaler 
determines the speed ratio (R) by the following simple heuristic 
equation (which is shown to be safe with real-time in [5]). 
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(b) Intra-task DVS based on exact execution paths 

Figure 5: Intra-task dynamic voltage scaling. 

where, 
WC: sum of execution time of remaining actors to be executed.    
TRPI: worst-case execution time of RPI function.       
TVS: worst-case execution time of voltage scaler (VS).          
k: 1 if this is the first invocation of voltage scaler, 0 otherwise.        
n: the number of actors remaining to be executed. 

4. Experiments 
In our experiments, we build an HFSM-SDF model of an MPEG4 
natural video decoder [12]. Our implementation of MPEG4 decoder 
consists of 9 hierarchical FSMs, 31 states, 44 state transitions, 89 
SDF actors (10 hierarchical actors and 79 leaf actors). We run 10 
frames of MPEG4 decoding with a reference motion picture. 

As a target processor where the MPEG4 decoder runs, we use an 
ARM8 variable speed processor [13]. We set up an energy simulator 
with a commercial instruction set simulator, ARMulator and an 
energy model of the processor [14]. 

We set the deadline of MPEG4 decoder system to be the worst-case 
execution time of one frame decoding. The MPEG4 decoder system 
performs computation during voltage scaling. The rate of voltage 
scaling is 26.9us/V. We scale the supply voltage between 3.8V and 
1.2V. When there is no computation to run, the processor power is 
down. 

We compare our method with three other methods: power down 
only, WCEP (worst-case execution path)-based method, and ACEP 
(average-case execution path)-based method. Figure 9 (a) shows the 
comparison. Compared with the case of power-down only, our 
method gives 35.5% reduction in energy consumption. Compared 
with WCEP/ACEP-based methods, ours give 20.7% and 12.7% 
more reduction in energy consumption. 

Figure 5 (b) shows the voltage scaling of four methods for an 
operation of intra-frame decoding of MPEG4 decoder system. As 
shown in the figure, our method gives a lower initial voltage than 
three other methods since it can utilize the exact execution path, i.e. 
the exact workload. In terms of operation frequency, our method 
gives 75MHz and 69MHz as the initial operation frequency values 
for inter-frame and intra-frame decoding, respectively, while the 
other three methods should set the maximum frequency value to 
80MHz since the worst-case execution path is assumed at the 
beginning. 

The RPI function and voltage scaler have also overhead in terms of 
runtime, code size and energy consumption. The code size overhead 
is negligible (about 4%). However, the runtime and energy 
consumption overhead is 21.5% and 20.4% respectively. To obtain 
further reduction in energy consumption, the overhead needs to be 
minimized. 

5. Conclusion 
We presented a method of intra-task voltage scaling for SoC design 
with a hierarchical FSM and synchronous dataflow (HFSM-SDF) 
model. The HFSM-SDF model gives a property which enables to 
identify an exact execution path in runtime before the execution of 
schedule of top SDF graph (or state transition of top FSM). 
Exploiting the property, optimal voltage scaling can be obtained. In 
dynamic voltage scaling, the overhead of voltage scaling is 
accounted for. Experimental results show that compared with 
existing two solutions, the presented method yields 20.7% and 
12.7% more reduction in the energy consumption of an MPEG4 
decoder system. 
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