
Analyzing Energy Friendly Steady State Phases of Dynamic
Application Execution in Terms of Sparse Data Structures

E.G. Daylight
�

IMEC vzw
Kapeldreef 75
3001 Leuven

Belgium

voudheus@imec.be

S. Wuytack
C. Ykman-Couvreur

IMEC vzw
Kapeldreef 75
3001 Leuven

Belgium

wuytack@imec.be
couvreur@imec.be

F. Catthoor
�

IMEC vzw
Kapeldreef 75
3001 Leuven

Belgium

catthoor@imec.be

ABSTRACT
In the past decades, data structure analysis was mainly done at a
high level of abstraction in the computer science community. For
instance, choosing a linked list as a data structure as opposed to an
array for a specific situation, was mainly motivated from a perfor-
mance point of view under the implicit assumption that the com-
puter platform (that had to run the software) consisted out of one
monolithical, physical memory. In the context of mobile, embed-
ded devices, energy consumption is as important as performance.
In addition to this, the assumption of one monolithical memory is
outdated for many (if not all) current-day platforms! Clearly, there
is a need to improve the choices that are made during data structure
analysis given specific knowledge of the memory hierarchy of the
platform under investigation.

We show how memory related energy consumption can heavily
be reduced by taking into account the access behaviour of the appli-
cation on the one hand and the available on-chip and off-chip mem-
ory space on the other hand. We do this by exploiting the sparse-
ness that is present in one steady state of the data structure under
investigation. Analytical results show that energy reductions of a
factor of 8.7 are feasible in comparison to common data structure
implementations. We trade these gains off with on-chip memory
space consumption of a custom memory architecture.

�
Also at Computer Science Department, Katholieke Univ. Leuven.�
Also professor at Katholieke Univ. Leuven.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’02 August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008 ...$5.00.

Categories and Subject Descriptors
E.2 [Data Storage Representations]: [composite structures, linked
representations]; C.4 [Computer Systems Organization]: Perfor-
mance of Systems—performance attributes

Keywords
Energy consumption, on-chip memory footprint, partitioned data
structure

1. INTRODUCTION
There is a need to improve the choices that are made at the level

of data structure analysis given specific knowledge of the mem-
ory hierarchy of the platform under investigation. This is because
high-level, design decisions -such as data structure analysis- that
are made early in the design trajectory (of software/hardware sys-
tems) have a large impact on the eventual quality of the implemen-
tation. We will demonstrate this issue by generating low-energy
consuming, partitioned data structures in the context of an embed-
ded, multimedia game application. We would however like to stress
that we are addressing a fundamental issue here, namely that of
data structure analysis. The preliminary methodology we present
is applicable in many (if not all) applications due to the fact that
we address trivial access operations such as lookup, iterate, insert,
and remove behaviour in the context of a small, on-chip scratch-
pad memory and a large, off-chip memory of a custom memory
organization.

In ongoing work we are applying the same philosophy towards
low-cost software that has to be executed on a predefined memory
architecture. In this context, the on-chip memory corresponds to
the cache of the system and the off-chip memory to an SDRAM.
We use our non-trivial data structure implementations to impose on
current-day used (hardware controlled) caching schemes.

In this paper, we only present work related to custom memory or-
ganizations. Also, we do not explain in detail our analytical model
and we do not go into detail about the game application we have
used as our driver. The focus of this paper is to show the practical
value of our approach. We combine simple but powerful knowl-
edge from the application side on the one hand and the platform
side on the other hand and very easily construct energy efficient
implementations at the end of the day.

All results we show are based on the assumption that the data
structure we analyze has a sparseness of �������	��
 . This means that

an average number of
���

��� valid data elements is stored in the
data structure which can contain a total of � ��
 data elements. This
assumption is based on experiments that we have done in IMEC on
a 3D computer game.

This one specific value of C corresponds to one specific steady
state phase of execution when viewed in terms of sparseness. Dur-
ing the whole execution, different steady states are present and cor-
responding transitions from one steady state data structure imple-
mentation to another have to be made at run time. We do not cover
these issues here.

Our results are also based on the following. Each data element
is uniquely specified by seven key bits (�����	���	��
 ��

���

The size
of a data element is assumed to be � �

����� bits (and the size of a
pointer is � �

 bits). Different data elements may be stored in the
data structure during different moments of the one and only steady
state we analyze.

Related work is described in Section 2. Terminology and our
energy model are introduced in Section 3. The methodology and
design tool are explained in Section 4. We present our analytical
results and conclusions in Section 5.

2. RELATED WORK
The work presented in this article is inspired by [15] and [17].

There are however two main differences.
First of all, we analyze the software implementation of an energy

efficient data structure as opposed to explicitly designing and using
specific, configured, physical memories (hardware) of the embed-
ded system. Redesigning the custom memory organization is not
feasible in our context. We assume that the embedded platform is
already designed and fully functional on the Internet. Stated other-
wise, software that migrates to the embedded system will transform
its critical data structures in conformance with the physical mem-
ory architecture of the target platform.

The second difference with the referenced work is the kind of ap-
plication that is being investigated. As opposed to optimizing heavy
data-oriented networking applications (e.g. routers [16]), this arti-
cle shows that relatively small data-storing applications, in the In-
ternet context, can perform better as well by applying similar data
structure optimizations. We intentionally analyze small data struc-
tures to show that our approach is also relevant for those. This is
because well-written, modular software encapsulates small pieces
of functionality and corresonding data structures from other pieces
of code.

Low-power issues are the main focus in the following two re-
search communities: dynamic power management (see [1] for more
references) and dynamic voltage scheduling [7]. However, data
management related issues are not or hardly covered in these com-
munities.

Traditional data structure analysis can be found in [3, 6, 10]. The
work presented here is strongly related to that of virtual memory
management [4, 5, 13]. The difference is that this work explores
the possibilities on how to represent a data structure assuming that
all the physical memory is already allocated. The optimizations
based on choosing a good dynamic (de)allocation strategy are com-
plementary to the optimizations that are described here.

Other related work is [9, 8, 12]. The emphasis of the correspond-
ing authors lies on exploiting the physical characteristics of the ar-
chitecture (e.g. cache line size) based on profiling information to
reduce the execution time of the (memory intensive) application.
We acknowledge these as being very powerful optimizations but
they are complementary to the design choices we present here. In
addition to this, we focus on energy consumption of the application
as opposed to the more common notion of execution speed.

D D D DAR (array)

PA (pointer array)

L (linked layer)

Figure 1: Three primitive data structures that can be combined
to produce more complex data structures. ’D’ denotes a valid
data element. An arrow denotes a valid pointer value.

3. TERMINOLOGY AND ENERGY MODEL
We make a distinction between data structure on the one hand

and partitioned data structure on the other hand. The term data
structure corresponds to that used in the literature while a parti-
tioned data structure is a data structure that is mapped onto the on-
chip/off-chip memory hierarchy in a specific way. For instance, the
LPAcomp1 data structure, shown in Figure 3, is mapped in two dif-
ferent ways in this article. This leads to two different partitioned
data structures: the LPAcompH (Figure 4) and the LPAcompC
(Figure 5).

In our analytical approach, we assume the presence of an em-
bedded system consisting of one on-chip memory and one off-chip
memory. We have compared the energy consumption for one on-
chip access (�

� �
 nJ) and one off-chip access (� � ��� nJ) for two mem-
ories of �

�
�
�� technology. We have used a version of the Cacti

model [14] that produces energy estimates to compute the energy
consumption values. The on-chip SRAM memory has a 32-bit bus
and 16 KB memory size. The off-chip SRAM memory has a 32-bit
bus and a 200 KB memory size. The ratio, in energy consumption,
between an on-chip access and an off-chip access is 8.94.

4. METHODOLOGY AND DESIGN TOOL
We have developed a design tool that accepts the following as

input: data storage information, access behaviour, and memory ar-
chitecture cost functions.

The data storage information includes the average number (C)
of stored data elements in the data structure under investigation,
the maximum number of key bits (K) that are needed to be able to
uniquely characterize every data element, the size of a pointer (P) in
bits, and the size of a data element (R) in bits. Specifying the value
K is equivalent to stating how many data elements can be stored in
the data structure. Indeed, the capacity of the data structure is equal
to �
� . The tool examines only one steady state phase or thus only
one value of C. As stated previously, we analyze the steady state
of
���

��� . The tool is configured so that one memory access is
needed to read or write the contents of a data element (denoted by
’D’ in the figures). For instance, for the array shown in Figure 1,
only one access is needed to read or write a data element (D).

The access behaviour describes how the data structure is most of-
ten accessed. The tool contains a predefined set of behaviours (e.g.
look up, iterate, insert, remove). Look up behaviour corresponds
to the retrieval of a data element, given a specific key value. Itera-
tion behaviour corresponds to the traversal of all the data elements
that are stored in the data structure regardless of the associated key
value of every data element. Insert behaviour corresponds to the
insertion of a data element. Remove behaviour corresponds to the
removal of a data element.
�
The term ’LPAcomp’ is an abbreviation for ’linked pointer array

complex data structure’.

D D

LPA(7)

...

DAR(0) ...

...

DD

L

PA

Figure 2: The LPA(7)AR(0). This is a three-layered data struc-
ture which is not key-splitted.

���������	�
different data elements

(D) can potentially be stored in the data structure.

D D D

LPA(5)

...

PA(2) ...

DAR(0) ...D

...

...

...

Figure 3: The LPA(5)PA(2)AR(0) data structure (alias LPA-
comp). This is a partially key-splitted data structure.

For the memory architecture cost functions, we multiply the num-
ber of on-chip accesses with
��
 �	��� and the number of off-chip
accesses with
�� ���	��� . Adding the two obtained values gives the
energy consumption.

The output of the tool is a specification of the optimal partitioned
data structure (e.g. a specification of the partitioned data structure
in Figure 5).

The methodology is composed of two steps: (1) combining prim-
itive data structures and applying key splitting; and (2) partitioning.

4.1 Combining Primitive Data Structures
Primitive data structures are combined to produce a multilayered

data structure.
Three different primitive data structures are used by the tool (cfr.

Figure 1). They are the array (AR), the pointer array (PA), and the
linked array (L).

An example of combining primitive data structures to form a
multilayered data structure is combining the linked layer (L(7)), the
pointer array (PA(7)), and the AR(0). This results in the LPA(7)AR(0)
which is shown in Figure 2.

The linked layer allows an easy traversal through the data struc-
ture. Looking up an element in the LPA(7) is simply done by in-
dexing into the pointer array layer and retrieving the data element
which is being pointed to.

4.2 Key Splitting
Key splitting is applied on zero, one, or all layers of the multi-

D D D

...

...

D...D

...

... ...

...

on chip

off chip

Figure 4: Horizontal partitioning of the LPAcomp: the LPAcompH.

D

...

...

...DD D

on chip off chip

...

... ...

...

D

Figure 5: A possible complex partitioning of the LPAcomp: the
LPAcompC. This is an abbreviation for [5296][[24928]LPAcomp which
means that a total of 5296 bits of on-chip memory space is consumed
and 24928 bits of off-chip memory space.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−4

Consumed On−chip Memory Space [bits]

E
ne

rg
y

C
on

su
m

pt
io

n
[m

J]

[0][29712]LAR(7)

[1040][28672]LAR(7)

[29712][0]LAR(7)

LPAcompC

Figure 6: Pareto curve in the context of iteration behaviour (C=20,
K=7). The energy consumption for one iteration is shown versus the
amount of consumed on-chip memory space. Each point on the Pareto
curve represents a partitioned data structure. The constraints of the
Pareto curve are (i) the available on-chip memory space, (ii) the amount
of energy that is consumed on the partitioned data structure when look-
ing up, inserting, or removing a data element, (iii) a constant time for
look up, insert, and removal of a data element. Only the first constraint
is shown explicitly (on the x-axis) on the graph.

layered data structure. This results in an increased multi-layering
of the data structure such as the one shown in Figure 3.

Key splitting [17] has three different contributions.
First, key splitting exploits the sparseness that is present in the

data structure [17].
Second, depending on the specific behaviour (e.g. iteration), key

splitting can contribute to decreasing the number of accesses. Con-
sider for instance the AR(7) on the one hand and the LPAcomp (cfr.
Figure 3) on the other hand. The AR(7) needs

�����
accesses in the

case of iteration behaviour even though only 20 data elements are
actually stored. The LPAcomp needs only � � accesses for iteration
behaviour. (We omit the calculations for brevity.)

Third, key splitting can decrease the wasted space of the avail-
able on-chip memory. In other words, key splitting allows the avail-
able on-chip memory space to be used more economically. This
corresponds to the second step of the methodology (see below).
Consider again the LPAcomp and the AR(7). The LPAcomp can
be horizontally partitioned into the LPAcompH (cfr. Figure 4).

This results in
� � on-chip accesses and ��� off-chip accesses dur-

ing iteration. The AR(7) on the other hand is (usually) too large
in relationship to the available on-chip memory space. This results
in placing the AR(7) fully off-chip, implying that � ��
 off-chip ac-
cesses are needed for one iteration. In this example, the AR(7) con-
sumes ��
��

� bits of memory space, which has to either be placed

all on chip or all off chip. The LPAcompH however, consumes only
� ��� � bits of on-chip memory space.

4.3 Partitioning
In the second step, the multilayered data structure is partitioned

into the on-chip memory and the off-chip memory (assuming that
only these two memories are present in the embedded system).

Consider once again the data structure shown in Figure 3. A
possible horizontal partitioning of this data structure is shown in
Figure 4. In this example, the first three layers of the data structure
are placed in the on-chip memory. The fourth layer is placed in the
off-chip memory.

Vertical partitioning of the LPAcomp (or any data structure in
general) is possible too but we omit the discussion here for brevity.

Figure 5 represents a complex partitioning of the LPAcomp. The
average number (20) of data elements are placed on-chip. All ac-
cesses are on-chip accesses. The drawback is the increase in the
on-chip memory space consumption when compared to the LPA-
compH.

5. RESULTS AND CONCLUSIONS
Analytical results are shown in Figure 6. Note that only a se-

lected set of optimal partitioned data structures are shown in the
figure (e.g. we show only one complex partitioned data structure).
The Pareto optimal curve allows a software designer to trade-off
energy consumption with consumed on-chip memory space.

We have shown that by exploiting (a) the sparseness of the data
structure, (b) the access behaviour of the data structure, and (c) the
on-chip memory space configuration, large reductions in energy
consumption (of a factor of

�

) are feasible. Non-trivial, parti-

tioned data structures are recommended as opposed to ordinary data
structure implementations. The optimization techniques presented
in this article are directly applicable to small data structures and
easily extendible to large data structures and corresponding larger
physical memories (in which even larger gains may be expected).

6. REFERENCES
[1] L.Benini, G.DeMicheli, “Dynamic Power Management Design Techniques

and CAD Tools”, 1998, Kluwer Academic Publishers, ISBN 0-7923-8086-X.
[2] F.Catthoor, S.Wuytack, E.De Greef, F.Balasa, L.Nachtergaele,

A.Vandecapelle, “Custom Memory Management Methodology: Exploration of
Memory Organization for Embedded Multimedia System Design”, Kluwer
Academic Publishers, 1998.

[3] T.H.Cormen, C.E.Leiserson, R.L.Rivest, “Algorithms”, 1998, Prentice-Hall of
India, ISBN-81-203-1353-4.

[4] JL.da SilvaJr, C.Ykman-Couvreur, M.Miranda, K.Croes, S.Wuytack, G.de
Jong, F.Catthoor, D.Verkest, P.Six, H.De Man, “Efficient System Exploration
and Synthesis of Applications with Dynamic Data Storage and Intensive Data
Transfer”, Proc. 35th ACM/IEEE Design Automation Conf., San Fransisco
CA, pp.76-81, June 1998.

[5] D.Haggander, P.Liden, L.Lundberg, “A Method for Automatic Optimization of
Dynamic Memory Management in C++”, Proc. ICPP 01. the 30th
International Conference on Parallel Processing, Valencia, Spain, pp.489-498,
Sep. 2001.

[6] C.A.R.Hoare, “Proof of Correctness of Data Representations”, Acta
Informatica 1, 271-281, 1972 Springer Verlag.

[7] N.K.Jha, “Low power system scheduling and synthesis”, IEEE Int. Conf. on
Computer-Aided Design, Nov. 2001.

[8] T.Kistler, M.Franz, “Automated Data-Member Layout of Heap Objects to
Improve Memory-Hierarchy Performance”, ACM Transactions on
Programming Languages and Systems, Vol.22, No.3, pp.490-505, May. 2000.

[9] T.Kistler, M.Franz, “Continuous Program Optimization: Design and
Evaluation”, IEEE Transactions on Computers, Vol.50, No.6, pp.549-565,
Jun. 2001.

[10] D.E.Knuth, “The Art of Computer Programming”, Vol. 3, Addison-Wesley,
1973.

[11] P.Marchal, C.Wong, et al., “Dynamic memory oriented transformations in the
MPEG4 IM1-player on a low power platform”, Proc. Intnl, Wsh. on Power
Aware Computing Systems (PACS), Cambridge MA, pp.31-40, Nov. 2000.

[12] S.A.McKee, W.A.Wulf, J.H.Aylor, R.H.Klenke, M.H.Salinas, S.I.Hong,
D.A.B.Weikle, “Dynamic Access Ordering for Streamed Computations”,
IEEE Transactions on Computers, Vol.49, No.11, pp.1255-1270, Nov. 2000.

[13] P.R.Wilson, M.S.Johnstone, M.Neely, D.Boles, “Dynamic Storage Allocation:
A Survey and Critical Review”, Proc. 1995 Int’l. Workshop on Memory
Management, Kinross, Scotland, UK,September 27-29, 1995, Springer Verlag
LNCS.

[14] S.J.E.Wilton, N.P.Jouppi, “CACTI: An Enhanced Cache Access and Cycle
Time Model”, IEEE Journal of Solid-State Circuits, Vol. 31, No. 5, May, 1996.

[15] S.Wuytack,F.Catthoor,H.DeMan, “Transforming Set Data Types to Power
Optimal Data Structures”, Proc. IEEE Intnl. Workshop on Low Power Design,
Laguna Beach CA, pp.51-56, April 1995.

[16] S.Wuytack, J.L.daSilvaJr, F.Catthoor, G.deJong, C.Ykman-Couvreur,
“Memory Management for Embedded Network Applications”, IEEE
Transactions on Computer-Aided Design , Vol. 18, No.5, May, 1999.

[17] C.Ykman-Couvreur, J.Lambrecht, D.Verkest, F.Catthoor, H.De Man,
“Exploration and Synthesis of Dynamic Data Sets in Telecom Network
Applications”, Proc, 12th ACM/IEEE Intnl. Symp. on System-Level Synthesis
(ISSS), San Jose CA, pp.125-130, Dec. 1999.

	Main
	ISLPED02
	Front Matter
	Table of Contents
	Author Index

