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ABSTRACT 
Significant power reduction can be achieved by exploiting real-
time variation in system characteristics while decoding 
convolutional codes.  The approach proposed herein adaptively 
approximates Viterbi decoding by varying truncation length and 
pruning threshold of the T-algorithm while employing trace-back 
memory management. Adaptation is performed according to 
variations in signal-to-noise ratio, code rate, and maximum 
acceptable bit error rate.  Potential energy reduction of 70 to 
97.5% compared to Viterbi decoding is demonstrated.  
Superiority of adaptive T-algorithm decoding compared to fixed 
T-algorithm decoding is studied.  General conclusions about when 
applications can particularly benefit from this approach are given. 

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Signal 
processing systems. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Low Power, Viterbi Algorithm, Adaptive T-algorithm Decoding, 
Convolutional Codes. 

1. INTRODUCTION 
A Viterbi decoder [1, 2] is an important target for power 
reduction in many low-power communications devices.  It can 
account for more than one-third of power consumption during 
baseband processing in current generation cellular telephones [3].  
As integrated circuits continue to become smaller and faster, the 
appeal of higher complexity Viterbi decoders for higher memory 
order convolutional codes increases.  Higher memory order codes 
can achieve superior coding performance without requiring 
precious additional channel bandwidth.  However, to counteract 
the exponential dependence of Viterbi decoder complexity on 

memory order in low-power designs, good power reduction 
methods that exploit variations in the communications system are 
needed. 

As is the case in many designs today, significant untapped power 
reduction potential lies in dynamically varying a Viterbi decoder 
implementation according to real-time changes in system 
characteristics.  Examples of other applications in which system 
characteristics have been successfully exploited to reduce energy 
consumption include Reed-Solomon channel coding [4] and an 
encryption processor [5].  The goal of the approach proposed in 
this paper is to reduce energy consumption while decoding high 
memory order punctured convolutional codes in a system where 
channel bandwidth availability, channel signal-to-noise ratio 
(SNR), and/or maximum acceptable bit error rate (BER) vary real-
time.   

There are four main contributions of this paper:  1) A new system-
dependent, low-power approach for decoding convolutional codes 
called adaptive T-algorithm decoding is proposed.  2) Variation in 
the potential of this approach as system characteristics (code rate, 
Eb/N0, maximum acceptable BER) vary is studied.  3) The 
superior energy reduction potential of adaptive T-algorithm 
decoding versus Viterbi and fixed T-algorithm decoding [6] is 
demonstrated. For example, potential energy reduction of 70% to 
97.5% compared to hardware Viterbi decoding is demonstrated.   
4) Guidance is provided for application of the new approach. 

2. BACKGROUND 
For the purposes of this work, a Viterbi decoder implementation 
that employs trace-back memory management can be described in 
terms of four basic characteristics—convolutional code memory 
order m supported, trace-back memory length, truncation length, 
and punctured code rates R supported.  A T-algorithm decoder 
can be described with one additional characteristic, pruning 
threshold. 
Viterbi decoding with trace-back memory management is 
performed by 1) using the bits received to generate paths that 
represent likely transitions made by the convolutional encoder 
state machine over time and 2) periodically tracing one of these 
paths back to determine one or more bits that were likely encoded.  
The possible paths that can be generated by a convolutional 
encoder are illustrated with a trellis diagram.  The convolutional 
code memory order determines the height or number of states per 
stage of this trellis, which represents the number of paths stored at 
any time by the Viterbi decoder.  Trace-back memory length 
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represents the width of the trellis or the length of the stored paths 
in terms of bits.   
Truncation length is the number of bits a path is followed back 
before a decision is made about what bit was encoded.  If 
truncation length is shorter, more bits can be decoded per trace-
back operation given the same trace-back memory length but 
likelihood of a decoding mistake also increases.  One of the ways 
the proposed adaptive T-algorithm decoder reduces decoder 
energy consumption is by exploiting this tradeoff. 

The other way the adaptive T-algorithm decoder reduces energy 
consumption is by adapting the pruning threshold of the T-
algorithm decoder.  The T-algorithm decoder is a variation of the 
Viterbi decoder that applies a threshold to the accumulated path 
metrics the Viterbi decoder uses to select only one path per state 
of a trellis stage for storage.  A lower pruning threshold causes 
fewer paths to be found and stored but also increases likelihood of 
a decoding mistake. 

Finally, punctured code rates must be treated separately by the 
adaptive T-algorithm decoder because codes of different rates can 
react differently to the same pruning threshold and truncation 
length.  Multi-rate coding with punctured codes is important 
because higher rates conserve channel bandwidth when channel 
quality is higher.  They are easily decoded with the same trellis 
structure by simply ignoring some of the additional bits that 
would normally arrive for the lower rate codes but have been 
punctured. 

3. ADAPTIVE T-ALGORITHM DECODING 
The proposed approach, referred to as adaptive T-algorithm 
decoding, reduces energy consumption by adapting the pruning 
threshold and truncation length of a T-algorithm decoder 
employing trace-back memory management to real-time system 
changes.  These changes include variation in code rate, Eb/N0, and 
maximum acceptable BER.  This approach greatly impacts 
decoder energy consumption because pruning threshold controls 
the average number of paths stored per trellis stage in a T-
algorithm decoder, while truncation length controls the frequency 
with which trace-back through the trellis is performed.  The 
number of operations performed by the decoder, especially 
memory accesses, is highly dependent on the average number of 
paths stored and the trace-back frequency.   

The energy optimal pruning threshold and truncation length pair 
to employ for any combination of code rate, Eb/N0, and maximum 
acceptable BER can be determined experimentally as the decoder 
is designed.  An appropriate subset is stored in a look-up table for 
adaptation use at runtime.  The Viterbi decoder and fixed T-
algorithm decoder can be thought of as special cases of the 
adaptive T-algorithm decoder that are not as energy efficient 
because they are not as versatile.  Next, it is shown that adaptive 
T-algorithm decoding can be performed with significantly less 
energy consumption than these other decoders in systems where 
code rate, Eb/N0, and maximum acceptable BER vary. 

4. EXPERIMENTAL RESULTS 
In this section, the energy reduction potential of the adaptive T-
algorithm decoder is assessed through experimental results. Two 
examples involving punctured codes are studied.  The first 

example involves a system with fixed maximum acceptable BER 
and variable Eb/N0.  This example applies to an implementation 
that requires consistent minimum error correction performance 
over a variable quality channel.  The second example is for a 
system with fixed Eb/N0 and variable maximum acceptable BER.  
This example is applicable when minimum error correction 
performance needs vary over time because of variation in the type 
of information being received.  The particular convolutional codes 
studied in these examples are quite practical for contemporary 
applications.  The BER ranges considered were chosen to reduce 
simulation time. 

4.1 Energy Estimates 
In order to provide generally applicable results in the examples of 
this section, normalized decoder energy consumption estimates 
are given that do not assume a particular hardware 
implementation technology.  To obtain these high-level estimates, 
a decoder is broken down into simple operations (8-bit adds, 8-bit 
compares, memory reads, memory writes, and associated control) 
for which reasonable relative energy estimates are assumed [7].  
The estimate for the entire decoder is then calculated from this 
breakdown; the relative energy estimate for each operation is 
simply multiplied by the number of times that operation is 
executed on average per decoder trellis stage.   

The reason energy consumption can be significantly reduced for 
the T-algorithm by reducing pruning threshold and truncation 
length is mainly because these parameters greatly affect the 
number of times path memory is accessed.  Actually, the average 
number of times nearly all calculations are performed per trellis 
stage is proportional to the average number of surviving paths per 
stage, which is controlled by pruning threshold.  However, the 
average number of trace-back memory reads performed per stage 
is proportional to the number of trellis stages that are accessed 
during trace-back, trace-back memory length, divided by the 
number of stages that are processed between trace-back 
operations, trace-back memory length – truncation length.   

The overhead of an adaptive versus fixed T-algorithm 
implementation comes from monitoring the code rate, Eb/N0, and 
BER expectation and then choosing the appropriate threshold and 
truncation length to use from a practically sized table.  Because 
none of these overhead operations are expected to be complex or 
performed at a high rate relative to decoder operations in practice, 
their energy consumption is assumed to be negligible. 

4.2 Viterbi vs. Fixed T-algorithm Decoding 
To provide a comparison baseline for assessment of the adaptive 
T-algorithm in the examples that follow, the alternative Viterbi 
and fixed T-algorithm decoders need to be discussed. First, 
consider a Viterbi decoder implementation employing trace-back 
memory management that decodes R = {1/2, 2/3, 3/4}, m = 8 
punctured convolutional codes over an AWGN channel using 3-
bit soft decisions.  This implementation uses a trace-back memory 
length of 94 trellis stages to minimize latency and memory size 
while supporting a truncation length of 93 stages.  Truncation 
length of about 93 is needed to decode the rate-3/4 code with 
negligible quality loss. Assume that with this decoder, acceptable 
application quality is achieved for Eb/N0 as low as  
2 dB while decoding the rate-1/2 code.  The BER achieved in this 
case, approximately 0.0037, is the maximum acceptable BER  
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Figure 1. BER versus Eb/N0 curves for the fixed T-
algorithm (Tf) decoder as code rate varies. 

To save significant energy, the T-algorithm with a fixed pruning 
threshold and fixed truncation length can be substituted for the 
Viterbi algorithm in this decoder while maintaining the same 
trace-back memory structure.  This fixed T-algorithm decoder 
implementation is referred to as the Tf decoder. By employing a 
fixed pruning threshold of 17, the 0.0037 BER is not exceeded for 
Eb/N0 greater than 2.1 dB while decoding the rate-1/2 code.  Thus, 
with this pruning threshold, a slight coding loss of about 0.1 dB is 
incurred when decoding the rate-1/2 code.  The loss for rate-2/3 
and rate-3/4 codes is negligible.  Figure 1 shows decoder 
performance for all three codes.  Only points having BER below 
the maximum acceptable 0.0037 are shown, since this constraint 
is assumed to govern operation of the multi-rate system. 

For this small coding loss, it is estimated that the Tf decoder can 
consume 33% to 83% less energy than the multi-rate Viterbi 
decoder when Eb/N0 is between 2.1 dB and 4.0 dB, as shown by 
the normalized energy estimates in Figure 2.  Additional energy 
reduction is possible for higher Eb/N0.  However, energy 
consumption slowly converges to the same point for all code rates 
as the average number of paths kept by the T-algorithm per 
decoding stage converges to one.  Thus, the upper limit on energy 
reduction for the Tf decoder relative to the Viterbi decoder is 
estimated to be about 87.5%. 

4.3 Fixed BER, Variable Eb/N0 Example 
The energy consumption of the Tf decoder can be reduced by 
adapting pruning threshold and truncation length according to 
variations in Eb/N0, as well as code rate, without allowing BER to 
exceed 0.0037. This implementation is referred to as the Ta 
decoder.  Trace-back memory size remains the same for the Ta 
decoder as the Viterbi and the Tf decoders.  On the other hand, it 
does not necessarily employ a pruning threshold of 17 or a 
truncation length of 93 stages. 

Figure 3 shows normalized energy estimates for the Ta decoder as 
punctured code rate and Eb/N0 vary.  The points in this plot 
correspond to optimal pruning threshold and truncation length 
settings.  These pairs were determined experimentally by finding 
the pairs that result in the lowest energy estimate for each Eb/N0 
value shown without causing the BER of 0.0037 to be exceeded.  
It is important to note that these pairs are energy estimate 
dependent.  Thus, different pairs could result for different energy 
estimates.  In practice, optimal values are predetermined and a 

reasonably sized subset is stored in a look-up table.  Adaptive 
decoding is performed by applying the lowest energy look-up 
table pair pointed to by estimates of the instantaneous value of R, 
Eb/N0, and maximum acceptable BER at the decoder. 

As code rate and Eb/N0 vary over the ranges shown in Figure 3, 
energy reduction estimated at 70% to 97.5% can be achieved with 
the Ta decoder compared to the Viterbi decoder.  Recall, the Tf 
decoder achieves energy reduction of 33% to 83% energy 
reduction for the same code rates and Eb/N0 values. 

Similar to the Tf decoder, energy consumption of this 
implementation converges to a common point for all code rates as 
Eb/N0 increases.  For the Ta decoder, this limit is about 98.5% less 
than the energy estimate for the Viterbi decoder.  The reason this 
limit is smaller than that of the Tf decoder is that truncation length 
is not fixed for the Ta decoder.  The Ta decoder limit is reached 
when both truncation length and the average number of paths kept 
by the T-algorithm per decoding stage are one.   

Another interesting point to consider is that the system in which 
the Ta decoder is employed might conserve bandwidth whenever 
possible by always choosing the highest code rate that will not 
cause the maximum acceptable BER to be exceeded for a given 
Eb/N0.  Though this policy does not significantly affect the energy 
consumption of the Viterbi decoder, it can cause the Ta decoder, 
as well as the Tf decoder, to expend more energy.  In these 
decoders, energy consumption of a lower rate code is generally 
lower than a higher rate code because fewer paths on average are 

Figure 3. Normalized energy estimates for the Viterbi and 
adaptive T-algorithm (Ta) decoders as code rate and Eb/N0 

vary.  Maximum acceptable BER is fixed at 0.0037. 
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Figure 2. Normalized energy estimates for the Viterbi and fixed 
T-algorithm (Tf) decoders as code rate and Eb/N0 vary. 
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kept by the T-algorithm for the same Eb/N0.  Therefore, in some 
cases, significant energy might be conserved if a lower code rate 
(higher bandwidth) than necessary is used when surplus 
bandwidth is available.  For example, if Eb/N0 = 3.27 dB, rather 
than conserve bandwidth by employing a rate-3/4 code, about 
35% less energy is required by the Ta decoder if the rate-2/3 code 
is used and about 85% less is consumed for the rate-1/2 code. 

4.4 Fixed Eb/N0, Variable BER Example 
The energy consumption of the Tf decoder can also be reduced by 
adapting pruning threshold and truncation length according to 
variations in maximum acceptable BER.  Figure 4 shows 
normalized energy estimates for this Ta decoder.  (Eb/N0 can vary 
as it did in the previous example but is assumed fixed at 3.75 dB 
here for simplicity.)  Each experimentally determined parameter 
pair shown minimizes energy consumption for Eb/N0 = 3.75 dB 
while achieving a certain BER.  The point in this figure that lies 
closest to the maximum acceptable BER at a given time without 
exceeding it corresponds to the minimum-energy pair.  
Interestingly, for all the points in this plot, a truncation length of 
74 can be used with negligible effect on energy consumption or 
maximum acceptable BER that can be supported. 

For maximum acceptable BER ranging from about 10-5 to 0.03 
and depending on code rate variation, energy reduction estimated 
at 89% to 97% can be achieved with the Ta decoder versus the 
Viterbi decoder.  The Tf decoder always achieves the same BER 
and energy consumption for a given code rate and Eb/N0, 
regardless of variation in maximum acceptable BER.  For Eb/N0 = 
3.75 dB, estimates of these values can be found from Figures 1 
and 2.  Normalized energy consumption for the Tf decoder is 
estimated to be about 0.54 at a BER of 2.6x10-5 for the rate-1/2 
code, 0.97 at a BER of 1.4x10-4 for the rate-2/3 code, and 1.83 at 
a BER of 7.3x10-4 for the rate-3/4 code.  As shown in Figure 4, 
the same BERs can be achieved with the Ta decoder with energy 
savings compared to the Tf decoder of about 63% for the rate-1/2 
code, 65% for the rate-2/3 code, and 81% for the rate-3/4 code. 
As maximum acceptable BER increases, these energy savings 
increase because the Tf decoder cannot exploit this change.  For a 
maximum acceptable BER of 0.03, the Ta decoder outperforms 
the Tf decoder by about 84% for the rate-1/2 code, 89% for the 
rate-2/3 code, and 93% for the rate-3/4 code. 

Like the previous example, in some cases, significant energy 
might be conserved if a lower code rate (higher bandwidth) than 
necessary is used when surplus bandwidth is available.  For 
example, if maximum acceptable BER ≈ 0.001, rather than 
conserve bandwidth by employing a rate-3/4 code, about 40% as 
much energy is required by the Ta decoder if the rate-2/3 code is 
used and about 66% less is consumed for the rate-1/2 code. 

5. CONCLUSIONS 
The adaptive T-algorithm decoder described in this paper 
adaptively approximates the Viterbi algorithm according to 
variations in convolutional code rate R, Eb/N0, and maximum 
acceptable BER.  Significant energy reduction is achieved by 
adapting truncation length and pruning threshold of the T-
algorithm while employing trace-back memory management. 
While meeting maximum acceptable BER constraints, the 
adaptive T-algorithm decoder can provide considerable energy 
reduction compared to Viterbi and fixed T-algorithm decoders. 
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Figure 4. Normalized energy estimates for the adaptive T-
algorithm (Ta) decoder as code rate and maximum acceptable 
BER vary.  Eb/N0 is fixed at 3.75 dB.  The normalized energy 

estimate for the Viterbi decoder ≈ 3.12. 
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