
ABSTRACT
In this work, we propose efficient macromodeling techniques for
RTL power estimation, based only on word and bit level switching
information of the module inputs. We present practicable combina-
tions of these two properties for the construction of power macro-
models. It is demonstrated, that our developed models reduce the
estimation error compared to the Hamming-distance model at least
by 64%. The total average errors (compared to PowerMill)
achieved over a wide range of test modules and input stimuli are
less than 4.6%. This is comparable to complex models, which how-
ever, have to make use of several more signal properties.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development - modeling
methodologies.

General Terms
Design, Experimentation, Verification.

Keywords
Power estimation, power modeling, RTL macromodels, low power.

1. INTRODUCTION
In recent years, power consumption has become a key parameter in
the design of integrated circuits (ICs). This is mainly due to the ever
increasing integration density, which enables the functionality and
the performance of ICs to improve dramatically. Higher complexity
and higher performance inevitably lead to an increase of power con-
sumption, if standard design methodologies are applied. Instead, in
order to enhance the run-time of battery-operated portable applica-
tions, ICs have to be optimized with respect to power consumption.
This also helps to ensure reliable operation and to reduce the cost
for packaging and cooling.

In order to manage the rising complexity of today’s chips, the de-
sign process has to be started on a very high level of abstraction. At
those early design phases power optimization opportunities are sig-

nificantly larger than in later steps. Such optimization tasks have to
be validated with respect to the yield for power reduction. For this
purpose, power estimation tools are needed, but unfortunately stan-
dard tools only exist for gate level and lower levels. Estimating
power at gate or transistor level is very time consuming. Therefore,
a lot of techniques for high level power estimation have been pro-
posed in the past years, most of them for the register transfer level
(see [8][9][11] for a survey).

Beside characterization-free information-theoretic approaches
(based only on the input-output functionality of a module) e.g. [10],
the main strategy on RT level, targets on building power models for
the used modules. This means, for every submodule type of an RTL
design, the template power model parameters have to be investigat-
ed by performing a number of simulation experiments at lower lev-
els of abstraction. Once the model is characterized, power
estimation can be carried out by weighting the model parameters
with the actual signal properties generated from running a behavior-
al simulation. A wide range of different approaches for power mod-
eling can be found in literature [8][9][11].

The model’s power properties are either stored into a multi-dimen-
sional look-up table (table based) e.g. [7] or they can be expressed
through an equation (equation-based) by using regression methods
e.g. [3]. Further, the techniques are distinguished according to their
application. In some case cumulative (average) power estimation is
insufficient and power has to be modeled and estimated on a cycle-
by-cycle basis [6][12]. The major difference between the approach-
es, however, can be seen in the kind and number of signal properties
used for characterization and estimation. Nearly all models are ac-
tivity-sensitive, which means power is expressed as a function of
input (and output) switching activity. In order to improve accuracy,
some models consider input signal probability [4], while other
methods additionally use spatial correlation of the input signal [7].
Clearly, the price paid for this improvement is a higher effort for
characterization and estimation.

Our approaches take into account only the input switching property,
however in a specific way. We do not only consider the number of
switching inputs (Hamming-distance of two consecutive input vec-
tors), but we also regard the individual inputs, which take part in the
switching. Experimental results demonstrate, that using these novel
models, the estimation accuracy will be in the same range as models
which, also consider other signal properties.

The remainder of the paper is structured as follows. In Section2,
our modeling approaches are described in detail. The model char-
acterization and validation process are presented in Section3 and 4,
respectively. Results are given and discussed in Section5. Finally,
concluding remarksareprovided.
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2. THE PROPOSED NOVEL MODELING
APPROACH
First, we state out some assumptions about the conditions on RT
level. In general, combinational modules are surrounded by regis-
ters. Thus, the input signals are treated as ideal, which means there
is only one transition per bit and clock cycle, of one of the valid
types {L-L, L-H, H-L, H-H}. All input transitions of a module oc-
cur at the same time and have the same rise and fall times.

2.1  Statement of the Problem
The power consumption of a module can be exactly modeled by as-
signing an energy value to every possible input transition and stor-
ing them in a look-up table (LUT). If  and  represent the
input signal vectors in cycle  and , respectively, the energy
and power  in cycle  can be expressed by

 and , (1)

respectively, where  denotes the energy LUT and the clock
period. The relationship between the cycle power and the aver-
age power  for a sequence of  cycles is given by

. (2)

The number of LUT entries  for a -bit input vector is .
A 16-bit input module e.g. would have  entries. Due to the
effort of generating and storing the energy data, this can only be
done for very small modules. Therefore, the general approach must
be to reduced the size of the LUT by developing models based on
more abstract signal properties.

2.2  Basic Power Dependencies
When we consider RTL modules, the inputs can be divided into
control and data inputs. Concerning power dissipation, the two
types of inputs behave very differently. In general, forcontrol in-
puts thesignal stateis the decisive value for power consumption,
while fordata inputs it is theirswitching activity. Due to the usually
small number of control inputs for typical RTL data path modules,
we decided to use separate model parameter sets for each valid state
of the control signals. Therefore, in the remainder of this paper we
confine our investigations only on data inputs.

In order to further reduce the LUT entries, abstractions are con-
ceived in the following way: Instead of considering the real signal
changes, we distinguish only betweenwhether or not an input bit
transition takes place. For a-bit data word, this leads to a switch-
ing word in cycle

, (3)

where each  represents the switching of bit in cycle . Pos-
sible values for  are ‘1‘ or ‘0‘, switching or not. Using only this
information, the number of LUT entries are reduced from to

, which is still too high.

Note, all these abstractions do not only reduce the modeling com-
plexity, but they also decrease the accuracy. Therefore, there will be
a trade-off between effort and accuracy!

Further abstractions of the switching vector leads to the following
two alternative approaches:

2.2.1   Relating the power to the word level switching
A technique to reduce the complexity, used e.g. in [4] (beside other
properties), relates the energy to the number of simultaneously
switching input bits (Hamming-distance of two consecutive input
vectors). The entries of the energy LUT  are reduced to the max-
imum number of switching bits . The energy of cycle is eas-
ily expressed by

, with . (4)

where  is the total number of word level switching bits in
cycle . In principle, the word level switching can be taken as a use-
ful measure for average switching energy. The individual values,
however, can be quite different from that, which can be seen by the
comparison of the average, the standard deviation and the total
range of switching energy in Figure1. This is due to the abstraction,

where only the mean of the energy per number of switching bits is
stored in the energy LUT, while the behavior of the individual bits
involved in switching remains unconsidered. The dependence of
the energy on the individual input bits is exemplified in Figure2 for
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Figure 1. Average (bold), deviation (error bars) and total
range (dotted) of the switching energy dependent on
the word level switching for an 8x11 bit vector adder
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Figure 2. Energy contributions of the individual input bits
for an 8x11 bit vector adder



the same module. Both diagrams have been created by performing
PowerMill simulations, at least 200 cycles per word level switching
number.

2.2.2   Relating the power to the bit level switching
The other alternative is to relate the energy to the switching of the
single input bits (e.g.bitwise data model in [9]). The total energy of
cycle  is given by

, (5)

where,  and  denote the bit-level energy LUT and the bit-
level switching of bit  in cycle , respectively. The entries of the

-table are determined from a number of lower level power ex-
periments, on which the least mean squares fitting method is ap-
plied (the values of Figure2 have been created in this way).
According to our investigations, the estimation accuracy tends to be
very sensitive to the switching properties used during that charac-
terization process. In particular, the estimation error will be accept-
able, if the actual average word level switching is similar to that,
applied during characterization. In Figure3, the characterization is
optimized for medium numbers of word level switching. The esti-
mations for those switching properties are quite good, however for
lower and higher values, there will be an under estimation and over
estimation, respectively. This is due to the assumption in (5), that
treats the single energy contributions as independent of the total
number of switching pins, which is not accurate.

2.3  Our Modeling Approaches
As a consequence, we propose the combination of both alternatives
to overcome the particular deficiencies. Thus, we constructed sev-
eral models that utilizebit as well asword level switching proper-
ties. Due to the limited space, we cannot discuss all investigated
combinations, but focus on the very promising techniques.

2.3.1   Subword model
The aim of this approach is to improve accuracy of the energy mod-
el relating to word level switching by subdividing all input bits into
subwords or groups. For every subword the number of switching
bits is evaluated separately. Therefore, each possible configuration
of subword switching numbers requires an energy entry in a multi-
dimensional LUT. The estimation is only based on a table look-up

according to the determined subword switching configuration for
each cycle, e.g. the energy for cycle is

, (6)

where ,  and  are the subword energy LUT, the num-
ber of switching bits of subword in cycle , and the number of
subwords, respectively.

Using the switching activity of two input buses instead of using the
whole input switching has also been proposed in [5], where they ad-
ditionally used the input signal probability. According to their pub-
lished and our results, this model approach works well for small,
regular modules (in [5] arithmetic modules with two input buses
have been used). However, for modules with more than 50 input
bits and more than two input buses, the estimation error increases.
Further, we investigated the dependency of the accuracy on the sub-
dividing strategies for the input pins. Among the subdivision crite-
rions:

A) by the input-output delay (from the static timing analysis),
B) by the bit position on the input buses (LSB .. MSB),
C) by the logic input buses,

we found the last one as the best by experiments.

2.3.2   Enhanced model relating to single bit switching
Similar to Section2.2.2, this model relates the energy to the bit lev-
el switching. However, to improve the model‘s accuracy, an adjust-
ing factor is used, which depends on the word level switching
property. The energy consumption of cycle is expressed by

, (7)

where,  and  are the LUTs for the adjusting factors and the
bit level energy, while  and  denote the word and bit level
switching properties for cycle, respectively. Each energy LUT
entry is determined during the characterization process by the aver-
age of a number of single bit switching experiments for the corre-
sponding bit, where the states of the remaining bits differ. Single bit
switching has been chosen, because this allows the strongest dis-
tinction between the different bit switching energy contributions
(cf. Figure4 vs. Figure2). The LUT for the adjusting factors for
each word level switching number is simply determined by replac-
ing  in (7) by the true energy  and solve the equation for
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Figure 3. Estimation error only due to the difference in the
average word level switching between the characterization

and the estimation for an 8x11 bit vector adder
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the corresponding  entry. The mean for a number of experi-
ments is taken as the coefficient (see Figure5). However, it has

been found out, that the bit-level energy contributions have to be
adjusted differently, depending on their energy quantity. Consider-
ing these observations, the following equation based on higher or-
der expression of the energy coefficients improves the model.

. (8)

The adjusting factors in LUT  for the  orders can be found
by applying the standard least mean squares method. The accuracy
improvements due to the use of higher order energy coefficients are
shown in Table1. A large number of test modules and test sequenc-
es have been used to calculate these average errors. For the test set-
up, see Section4. A value of  has been found to be
satisfactory and leads to improvements of at least 10%.

2.3.3   Enhanced model relating to bit pair switching
A slight drawback of the previous model can be seen in the fact, that
no interdependencies between switching bits are considered. This
can be obtained by relating the energy to input bit pairs as opposed
to single bits. We modify the term in (8) to the following formula-
tion

, (9)

where  becomes ‘1‘ only if bit  and bit  switch at the same
time.  represents the energy coefficient for the same
switching pair. These energy coefficients and the adjusting factors
in LUT  are determined similarly to the process described in
Section2.3.2. The improvements resultant of using higher order
equations are about 10% (cf. Table2).

2.3.4   Enhanced regression model
To determine the energy coefficients the model is based on, we use
the well known linear regression method [2], however in an en-
hanced manner for the additional consideration of the word level
switching properties.

For each number of simultaneously switching bits we perform a
separate least mean squares fitting. The energy equation for cycle
is given by

, (10)

with  as the 2-dimensional LUT for the energy co-
efficient depending on the word level switching number  and
the switching bit .

Since for every value of word level switching bits a number of low
level power experiments has to be performed, the characterization
effort increases. This can be reduced by the following process:

First, the energy coefficients  are determined with stan-
dard regression methods (LMS fitting). This is done with experi-
ments, where pseudo random patterns are applied, that cover
equally the whole range of switching properties, bit level as well as
word level. In a second step, for each word level switching number

 the adjusting factor  is calculated as described in
Section2.3.2. The energy equation

(11)

has the same structure as (8). Note, the energy coefficients in
are different to the approach in Section2.3.2, because they are de-
termined differently. Also, the adjusting factors differ.

3. MODEL CHARACTERIZATION
As mentioned above, the model coefficients are determined once
within the characterization process, in which the modules are stim-
ulated by well defined characterization patterns. Lower level power
estimators (gate or transistor level) are used to ascertain the energy
for each initiated input transition. For that, we use Synopsys
PowerMill, because of its capability for cycle based current estima-
tion.

The characterization pattern generation represents a critical task.
For this reason, we constructed a special sequence synthesizer writ-
ten in C. Its main properties are listed below:

• the number of experiments per coefficient to be characterized
can be chosen according to its relevance.

• in order to cut down simulation time, all transitions are
arranged in one continuous stream.

• for the models based on LMS methods, the solvability of the
system of equation is proved in advance.

Table 1: Improvements through the introduction of the higher
order equation

equation orders 1st 2nd 3rd 4th

average errors 5.26 4.73 4.50 4.80
impr ovements to 1st order 10% 14% 9%
maximum errors 8.91 7.12 8.25 8.46
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Figure 5. Adjusting factors for an 8x11 bit vector adder
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Table 2: Improvements through the introduction of the higher
order equation

equation orders 1st 2nd 3rd 4th

average errors 4.41 3.89 4.03 3.96
impr ovements to 1st order 12% 8% 10%
maximum errors 8.81 5.30 6.87 6.89
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• for every number of (sub)word level switching bits, the single
inputs are covered equally.

• the order of the pattern is chosen pseudo randomly, in order to
prevent similar signal probabilities for the same number of
(sub)word level switching bits.

The effort for the characterization is shown in Table3. It has been
found that about 10 experiments are sufficient for most coefficients.
For the models applying adjusting factors, which are calculated us-
ing the energy LUT (e.g. single bit switching energy), some more
experiments per entry for these underlying energy LUTs were per-
formed (10..100).

4. MODEL VALIDATION
To assess the estimation accuracy of the proposed models, compar-
isons to PowerMill simulations have been performed for a large
number of module types and input sequences. Thus, 21 testmodules
have been taken partly from real designs and partly from the Syno-
psys DesignWare (DW). The properties of the modules are summa-
rized below:

• gate equivalents: 41 .. 3136
• number of data pins: 16 .. 88
• number of data buses: 2 .. 9
• number of control inputs: 0 .. 2

In order to test the models in an extreme way, we synthesized a
number of different input test streams for every module, each con-
taining 1000 input patterns. These input sequences completely dif-
fer from those used for the characterization. We also made use of
the logic inputs buses to which different switching activities were
applied. The average switching activities were either the same for
all bits of a bus, or they were linearly distributed, ranging from
50(95)% at the LSB to 25(5)% at the MSB (to have realistic test
conditions). We also chose very extreme cases where only one, only
two or all but one buses were switching. Four main types of test
streams have been used. The individual streams of each type were
distinguished by their switching properties, which are given below:

• switching activities of logic input buses are distributed for
LSB..MSB: 50%..25% or 95%..5% (2 streams)

• only one or all but one logic input buses are switching; others
remain nearly stable; bus activities:
25%, 50% or 75% equal for all bits of a bus or distributed for
LSB..MSB: 50%..25% (8..56streams)

• only two logic input buses are switching; bus activities distrib-
uted for LSB..MSB: 50%..25% (1..36streams)

• average switching activities are equal for all bits
10%, 20%, .. , 80% or 90% (9 streams)

(LSB/MSB denotes least/most significant bit of a logic bus)

The number of streams of each type differ according to the number
of the modules‘ input buses and the possible configurations result-
ant from that.

For every stream-module-model combination, we calculated a sep-
arate average relative error  compared to PowerMill using the
following formula:

, (12)

where  is the average power for the stream calculated based on
the our model equations in Section2.3.

In order to prevent the compensation of positive and negative er-
rors, the absolute values of the relative error  of each stream is
taken to calculate the mean error of all streams for every module-
model combination,

. (13)

The power estimation effort are shown in Table4, where the neces-
sary integer and floating point operations are presented. It can be
seen, that the enhanced model relating on bit pairs switching has the
highest computational effort, while the other are approximately
equal.

5. RESULTS AND DISCUSSION
The functionality, the number of input pins and input buses as well
as the size (in gate equivalents) of the test modules are given in
Table5 on the left. In the right columns, results are presented for
the two basic models from Section2.2.1-2 (for reference) and for
our proposed hybrid models from Section2.3.1-4. The mean esti-
mation errors for each module-model combination correspond to
the models in the following manner:

r1 based only on word level switching (for reference)
r2 based only on bit level switching (for reference)
1a subword model (2 subwords)
1b subword model (3 subwords)
2 relating to single input bit switching (3rd order equation)
3 relating to input pair switching (2nd order equation)
4 enhanced regression model

From the table, it can be seen, that using any of our novel
models2..4, the average estimation error has been reduced at least

Table 3: Effort for the characterization

section model type number of coefficients

2.3.1 subword model

2.3.2 relating to single bit sw.

2.3.3 relating to bit pair sw.

2.3.4 enhanced regression

using equation (10)

using equation (11)
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Table 4: Effort for the power estimation
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by 64% compared to the well known Hamming distance model
(word level switching from Section2.2.1) in columnr1. This reduc-
tion has been achieved only by considering the combination of
both, bit and word level input switching properties. Further more, it
can be observed, that the improvements are small for regular mod-
ules (DW with two input buses), however, for complex modules
(lower part of the table) the refinements are immense. Also the
maximum errors of all modules for our models2..4 are very low.
Compared to the second referencer2 the improvements are quite
higher, but this is, as mentioned in Section2.2.2, because the accu-
racy of this model based only on bit level switching is very sensitive
to the characterization patterns (a median number of average word
level switching bits has been taken).

The subword models 1a,b (cf. Section2.3.1) only cause slight en-
hancements and have high characterization effort. The results can
be improved by dividing the inputs into more than three subwords.
However, according to the exponential growth of the LUT entries
with the number of subwords (see Table3), the grid of these LUT
has to be widened.

If we take into account the effort for characterization and estimati-
on, both models (enhanced model relating to single input bit switch-
ing and enhanced regression model) achieve the best trade off, for
all test modules. The estimation error compared tor1 can be re-
duced by up to 70% using the model 4 (relating to input pair switch-
ing) at the cost of enhanced estimation effort.

In all, these three novel approaches based on input switching infor-
mation only, cause estimation errors less than 4.6% on average over
a wide range of test modules and input stimuli. These results are
comparable to recently published enhanced models [1][3][5][7],
which achieve average estimation errors of about 3..15%, but they
have to make use of several more signal properties (e.g. output
switching, input probabilities, etc.). A combination of our efficient
modeling techniques with those additional properties can increase
the estimation accuracy, but each property leads to an additional di-
mension in the LUTs, which would result in a multiple effort, par-
ticularly for the characterization.

6. CONCLUSIONS
It has been shown, that using both, word and bit level switching in-
formation of module inputs for macromodeling without other signal
properties, the estimation error compared to the Hamming distance
model can be reduced by up to 70%. Total errors less than 4.6% on
average for a large number of test modules and input stimuli have
been achieved. This is comparable to complex models based on
several more signal properties.

7. REFERENCES
[1] M. Anton, I. Colonescu, E. Macii, M. Poncino, "Fast Charac-

terization of RTL Power Macromodels," in IEEE Proc. of
ICECS, pp. 1591-1594, 2001.

[2] L. Benini, A. Bogliolo, M. Favalli, G. De Micheli, "Regression
models for behavioral power estimation," in Proc. of PAT-
MOS, pp. 179-187, 1996.

[3] A. Bogliolo, L. Benini, G. de Micheli, "Regression-Based
RTL Power Modeling," ACM Trans. on Design Automation
of Electronic Systems, vol. 5, no. 3, pp. 337-372, July 2000.

[4] G. Jochens, L. Kruse, W. Nebel, "A New Parameterizable
Power Macro-Model for Datapath Components," in Proc. of
European Design & Test Conference, Date, pp. 29-36, 1999.

[5] G. Jochens, L. Kruse, E. Schmidt, A. Stammermann, W.
Nebel, "Power Macro-Modelling for Firm-Macro," in Proc. of
PATMOS Workshop, Germany, pp. 24-35, Sep. 2000.

[6] S. Gupta, F.N. Najm, "Energy-per-cycle estimation at RTL,"
in Proc. ISLPED, Monterey, CA, pp.121-126, 1999.

[7] S. Gupta, F.N. Najm, "Power Modeling for High-Level Power
Estimation," in IEEE Trans. on VLSI, vol. 8, no. 1, pp. 18-29,
February 2000.

[8] P. Landman, "High-Level Power Estimation," in IEEE Proc.
of ISLPED, Monterey, CA, pp. 29-35, June 1996.

[9] E. Macii, M. Pedram, F. Somenzi, "High-Level Power Model-
ing, Estimation, and Optimization," in IEEE Transactions on
CAD, vol. 17, no. 11, pp. 1061-1079, Aug. 1998.

[10] D. Marculescu, R. Marculescu, M. Pedram, "Information the-
oretic measures for power analysis," in Trans. on CAD, vol.
15, no. 6, pp. 599-610, 1996.

[11] A. Raghunathan, N.K. Jha, S. Dey, High-Level Power Analy-
sis and Optimization, Kluwer Academic Publishers, Boston/
Dordrecht/London, 1998.

[12] Q. Wu, Q. Qiu, M. Pedram, C.S. Ding, "Cycle-Accurate
Macro-Models for RT-Level Power Analysis," in Trans. on
VLSI 1998, vol.6, no.4, pp. 520-528, 1998.

Table 5: Design properties of test modules and estimation
results for differ ent models

description of the test
modules

estimation errors

in % f or models

type
input#
(bus#)

size
r1 r2 1a 1b 2 3 4

DesignWare
ripple-carry

adder

16 (2) 41 5.0 15.6 4.4 3.4 5.0 4.3 5.1
24 (2) 62 5.8 16.3 3.6 3.6 4.7 4.2 4.5
32 (2) 83 3.5 15.6 2.0 4.3 3.6 3.2 3.6

DesignWare
carry-look-ahead

adder

16 (2) 54 5.7 12.6 3.8 4.5 5.3 3.9 3.9
24 (2) 83 5.2 12.7 3.6 3.6 4.6 3.8 3.8
32 (2) 119 4.0 15.0 1.8 3.6 3.6 3.1 3.4

DesignWare
carry-save
multiplier

16 (2) 436 5.6 16.1 3.8 4.5 4.8 4.5 4.4
24 (2) 1035 4.1 15.9 3.6 3.9 3.8 3.9 3.1
32 (2) 1681 5.3 15.3 6.3 7.2 3.1 3.3 2.7

DesignWare
wallace-tree
multiplier

16 (2) 512 9.1 18.0 3.3 3.6 4.2 3.0 4.0
24 (2) 1056 8.5 22 2.2 3.9 6.1 3.4 6.1
32 (2) 1709 9.8 24 2.4 4.7 8.3 5.2 7.9

DW duplex-comp. 64 (4) 173 7.3 8.2 4.8 4.5 2.5 2.1 2.9
9,32 bit accu. 41 (2) 173 35 9.2 16.3 21 2.1 4.7 2.7

median of 3 words 48 (3) 413 14.010.612.713.4 3.7 3.4 5.4
median (fast impl.)48 (3) 972 12.210.010.711.4 3.0 3.5 4.6
2x2 mux, cmp, inc58 (4) 202 74 9.2 76 2.9 5.8 4.2 5.3
2x2 sub_add, cmp43 (4) 391 18.6 25 20 9.9 6.6 5.2 6.8
2x2 sub_abs, add48 (4) 479 3.3 22 4.0 3.6 3.0 2.7 2.9
8 word vectoradd.88 (8) 502 15.0 28 9.7 7.4 6.0 5.3 5.4
min/med/max of 981 (9) 312619.3 25 21 20 5.0 4.9 8.5

21 modules average 12.9 16.4 10.3 6.7 4.5 3.9 4.6

21 modules maximum 74 28 76 21 8.3 5.3 8.5

εmean abs,
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