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ABSTRACT 
We present a high performance and low power FIR filter 
design, which is based on computation sharing multiplier 
(CSHM). CSHM specifically targets computation re-use in 
vector-scalar products and is effectively used in our FIR filter 
design. Efficient circuit level techniques: a new carry select 
adder and conditional capture flip-flop (CCFF), are also used 
to further improve power and performance. The proposed FIR 
filter architecture was implemented in 0.25 �m technology. 
Experimental results on a 10 tap low pass CSHM FIR filter 
show speed and power improvement of 19% and 17%, 
respectively, with respect to an FIR filter based on Wallace 
tree multiplier. 

Keywords  
Computation sharing, FIR filter design, high performance and 
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1. INTRODUCTION 
Recent advances in mobile computing and multimedia 
applications demand high-performance and low-power VLSI 
Digital Signal Processing (DSP) systems.  One of the most 
widely used operations in DSP is finite impulse response 
(FIR) filtering.  As shown in the equation below, FIR filtering 
operation involves an inner product of coefficient vector C 
with input signals x. 

 

 

Several techniques have been proposed in literature to achieve 
high performance and low power implementation of FIR 
filters with fixed coefficients.  Canonical-sign-digit [4] and 
distributed arithmetic [5] are widely used in the FIR filter 
design with fixed coefficients.  Using those techniques, the 
FIR filtering operation can be simplified to add and shift 
operations.  However, for FIR filter design with 
programmable coefficients, dedicated multipliers are usually 
used and filter design techniques mentioned may not be 
applicable.  
In this research we propose high-performance and low-power 
implementation for FIR filter with programmable coefficients.   

The FIR filter architecture is based on the Computation 
sharing multiplier (CSHM) [1, 2], which targets the reduction 
of redundant computations in FIR filtering operation.   

We also present the circuit level techniques for carry select 
adder and flip flop, which are effectively used in the FIR filter 
implementation.  In the CSHM structure, adders are critical 
for high performance.  In order to achieve high performance 
with low power consumption, a new Carry Select Adder is 
presented.  Flip-flops are also crucial elements from both a 
delay and power standpoint.  Conditional capture flip-flop 
(CCFF) [11] is explained and used in our filter design.  CCFF 
is a dynamic style flip-flop that has a negative set-up time and 
small clock-to-output delay.  Moreover, depending on data 
switching activity, CCFF can statistically reduce the power 
consumption. 

The rest of this paper is organized in five sections.  Section 2 
describes the architecture of FIR filter based on the CSHM.  
Section 3 presents the circuit level techniques.  The new carry 
select adder and conditional capture flip-flop (CCFF) are 
presented in this section.  We present FIR filter 
implementation in section 4 and section 5 shows the 
numerical results.  Finally, conclusions are drawn in section 6. 

2. FIR FILTER ARCHITECTURE   
2.1. CSHM Algorithm and architecture 
The transposed direct form (TDF) FIR filter is shown in 
figure 1.  We notice that the TDF implements a product of the 
coefficient vector C = [c0, c1, ……,cM-1] with the scalar x(n) at 
time n.  The input x(n) is multiplied by all the coefficients c0, 
c1, c2,……, cM-1 simultaneously.  In the sequel, such products 
will be referred to as a vector scaling operation [2].  
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Figure1: Transposed direct form (TDF) FIR filter. 
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 Figure 2: Computation sharing multiplier (CSHM) architecture 

 
In the vector scaling operations, we can carefully select a set 
of small bit sequences so that the same multiplication result 
can be obtained by only add and shift operations.  For 
instance, a simple vector scaling operation [c0, c1] � x, c0 = 
00110111, c1 = 10001011, can be decomposed as c0� x = 24

� 
(0011)� x + (0111)� x, c1� x = 27

� (0001)� x + (1011)� x.  If 
x, (0011)� x, (0111)� x and (1011)� x are available, the entire 
multiplication process is reduced to a few add and shift 
operations.  We refer to these chosen basic bit sequences as 
alphabets.  Also, an alphabet set is a set of alphabets that 
spans all the coefficients in vector C.  In the above example, 
the alphabet set is {0001, 0011, 0111, 1011}.  

Figure 2 shows CSHM architecture based on the algorithm 
explained above.  CSHM is composed of a precomputer, 
Select units and final adders (S & A).  The precomputer 
performs the multiplication of alphabets with input x.  The 
Select unit and final adder (S & A) perform appropriate 
select/shift and add operations required to obtain the 
multiplication output.  In order to cover every possible 
coefficient and perform general multiplication operation, we 
used 8 alphabets {1,3,5,7,9,11,13,15}.  Figure 3 shows an 
example 17�17 CSHM, which is used in our FIR filter 
implementation. 
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Figure 3:  17�17 CSHM structure. 
 

2.2 FIR filter based on CSHM Architecture 
In the transposed direct form (TDF) FIR filter shown in   
figure 1, CSHM algorithm is effectively used to reduce 
computations. As shown in figure 4, The FIR filter using 
CSHM consists of one precomputer and M Select units and 
Final adders (S & A)’s, where M represents the number of 
taps in FIR filter.  We can easily notice from the figure that 
the precomputer outputs are shared by all the S & A’s.  In 
other words, the computations �k� x, k = 0, 1, 2….8, are 
performed only once for all k's and these values are shared by 
all the Select units for generating ck� x, i=0, 1, 2, 3,….  The 
CSHM scheme efficiently removes the redundant computation 
in FIR filtering operation, which leads to low power and high 
performance design.  

3. CIRCUIT LEVEL TECHNIQUES 
3.1 High performance low power Carry 

Select Adder 
As shown in figure 3, the final adder, which merges four 
vectors from Select units, is the critical component in terms of 
performance.  A new Carry Select Adder, which can be 
efficiently used in the final adder implementation, is proposed 
in this subsection.  The Carry Select Adder used in our design 
has good noise-immunity and achieves high performance with 
low power consumption.  The architecture is similar to a 
Carry Select Adder using DTSL (Dual Transition Skewed 
Logic), where dual paths are used carry propagation – one 
path is used for fast propagation of rising 
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Figure 4:  The architecture of  FIR filter based on CSHM. 

 



      
 

Figure 5: Block diagram of the Carry Select Adder used in the FIR filter.  
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transition, while the other path is used for fast propagation of 
falling transition [6]. 

The Carry Select Adder used for our FIR filter 
implementation has the same architecture as the conventional 
DTSL Carry Select Adder [6], however, a simplification has 
been applied that the skewed carry propagation logic circuits 
have been replaced with static CMOS inverters.  This 
simplification reduces the complexity of carry propagation 
paths, and therefore, makes the control logic circuitry simpler 
and improves performance as compared to the conventional 
DTSL Carry Select Adder. Moreover, the power consumption 
of this new Carry Select Adder are comparable to those of its 
static CMOS counterpart because of the simple carry 
propagation paths of proposed Carry Select Adder. 

Figure 5 shows the implementation of the Carry Select Adder 
used in our FIR filter.  It consists of two data paths for carry 
propagation, logic for generating SUM, and control logic.  
Control logic consists of transmission gates (X, Y) between 
each inverter for carry propagation on the data path, switching 
transistors (MN, MP), and some static CMOS gates to control 
the transmission gates and switching transistors.  The logic in 
the circle is for generating SUM.  As shown in Figure 5, the 
carry propagation logic of each block of Carry Select Adder 
has two data paths: one has ‘0’ as its CARRY input and the 
other has ‘1’ as its CARRY input. 

If inputs Ai’s are different from Bi's (Ai�Bi, for all i = 0 to n), 
transmission gates X, Y will turn on and the switching 
transistors (MNi, MPi) will be disabled.  Carry-out of the first 
stage will propagate to the last stage. Therefore, the carry 
propagation delay is the largest under such condition.  Under 
such inputs the Carry-outs will be inversions of Carry-ins for 
every stage because each Carry-in goes through one inverter 
and one transmission gate. 

However, if any Ai is equal to Bi at Stage i (i = 0 to n), the 
Carry-outs on both paths from that stage to the last stage (i ~ 
n) will be the same, and determined only by inputs Ai and Bi 
regardless of Carry-outs of the previous stage. This means that 
the carry propagation starts simultaneously at the first stage 
and the ith stage. Hence, in this case, the propagation delay of 
Carry Select Adder is the same as one of the carry propagation 
delays from the first stage to (i-1)th stage and from ith stage to 
the last stage. Then, we have to switch Carry-in of the next 
stage ([i+1]th) to low or high depending on the value of Ai 
and Bi.  For example, let us assume A1=B1=0 at Stage 1, then 
the outputs of AND and OR gates in the control logic of this 
stage will be 0, and PMOS switching transistors (MP1) will 

turn on. Therefore, the Carry-out (C1_T, C1_B) at that stage 
will be low regardless of Carry-in (C0_T, C0_B) of Stage 1. 
Hence, we do not need to wait for the Carry-in to propagate to 
the output node of Stage 1, i.e. when inputs A1, B1 of Stage 1 
are set, we can switch Carry-in of the next stage (Stage 2) 
immediately to low after turning off the transmission gates on 
the data path. 

Similarly, if A1=B1=1 at Stage 1, then we change Carry-in of 
the next stage (Stage 2) to high. For such cases, the total 
propagation delay will be shorter than the total delay of the 
previous case (Ai � Bi, for all i = 0 to n) because the time 
taken to switch Carry-in of the next stage (Stage 2) is shorter 
than the time in which Carry-in of the first stage (Stage 0) 
propagates to the Carry-in node of the Stage 2 having A2, B2 
as inputs. In Stage 2, NAND and NOR gates are used instead 
of AND and OR. The operation is similar to that of the 
previous stage. 

3.2 Flip Flop Design 
Traditionally, Transmission-Gate Flip-Flop (TGFF) has been 
used in standard cell design [7].  TGFF has a fully static 
master-slave structure by cascading two identical pass-gate 
latches and provide a short clock-to-output latency.  However, 
it has a poor data-to-output latency because of positive set-up 
time.  It also requires two phases of clock that can cause a 
problem with data feed-through when there is a skew between 
them and it has a relatively large clock load.  

Considering the fact that in critical paths the flip-flop delay is 
the sum of set-up time and clock-to-output delay, dynamic 
latches have less total delay than master-slave latch pairs, 
which are fully static.  Examples are hybrid latch flip-flop 
(HLFF) [8], semi-dynamic flip-flop (SDFF) [9], and sense 
amplifier based flip-flop (SAFF) [10].  They can also provide 
advantages such as absorbing the clock skew, reducing the 
clock load, and embedding logic functions into themselves.  
However, they are inefficient as far as power consumption is 
concerned.  This is because of the fact that in moderate and 
low data switching rate these flip-flops can have unnecessary 
internal transitions that can lead to substantial increase in total 
power consumption. Conditional capture flip-flop (CCFF) 
[11], figure 6, removes this problem by addition of the 
internal clock gating. In this way, CCFF achieves statistical 
power reduction by eliminating redundant transitions of 
internal nodes while maintaining soft clock edge and negative 
setup time properties. 
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Figure 6. Conditional Capture Flip-Flop 

 
CCFF is used in our FIR filter implementation. The overall 
performance and power consumptions of designed TGFF, 
HLFF, and CCFF for different input patterns were simulated 
in TSMC 0.25um CMOS technology.  The power 
consumption of CCFF has a large dependency on input 
pattern.  CCFF can save 65% power with zero inputs 
switching activity as compared to the HLFF. When input 
changes at every other cycle, the power saving is nearly 14%.  
When the input changes at every cycle or the input switching 
activity is the maximum, which is very rare, the overall power 
consumption is comparable to the conventional designs. 

4. FIR FILTER IMPLEMENTATION 
4.1. CSHM Implementation 
A 17�17 CSHM is implemented using 0.25 �m TSMC library.  
As shown in figure 2, the CSHM is composed of precomputer, 
S & A.  In our CSHM implementation, the input X is two’s 
complement and coefficient C has a sign and magnitude 
format. 

Precomputer: The multiplications, 1x, 3x, 5x, 7x, 9x, 11x, 
13x, 15x, performed by the precomputer are simply 
implemented using the new Carry Select Adder, which is 
mentioned in section 3.1.  Figure 7 shows the basic structures 
of 5x and 11x and figure 8 shows the whole precomputer 
structure.   
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Figure 8: The precomputer structure 

 
Select Unit:  As shown in figure 2, Select unit is composed of 
SHIFTER, MUX, ISHIFTER and AND gates.  Since 
SHIFTER is directly connected to the coefficients, it does not 
lie on the critical path.  Static CMOS design with minimum 
size is used for SHIFTER implementation.  ISHIFTER lies on 
the critical path and the maximal shift width is 3 bits. A barrel 
shifter [3] is used since signal has to pass through at most one 
transmission gate in the barrel shifter.  MUX using pass 
transistor logic was implemented to achieve a compact and 
high-speed design. 

 
Final Adder: The final adder is the largest component in the 
S & A, which sums the outputs of four Select units.  Carry 
save array [3] and the new Carry Select Adder proposed in 
section 3.1 are used for high performance as shown in figure 9.  
The XOR gate array in the middle is used for the two’s 
complement data format. 
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Figure 9: Final adder architecture 

 
4.2.FIR filter Implementation 
The 10 tap FIR filter using CSHM is implemented for 
fabrication.  The structure of FIR filter is shown in figure 4.  
As mentioned before, the precomputer outputs are performed 
only once and shared by 10 S & A, which leads to low power 
design. 

The clock network in FIR filter has been implemented using 
an H-tree structure.  Figure 10 shows the timing of the critical 
path and the clock network.  Path 2 is the critical path of the 



design and its delay is almost twice the delay of path 1 and 
path 3. Therefore, pipeline stages are unbalanced in terms of 
delay.  Insertion of more pipeline stages was not possible 
because of the overhead of latching  a large number of 
internal signals in the select/shift and add unit.  Time 
borrowing and slack passing are powerful methods for 
improving performance in unbalanced pipeline stages [12].  
Since the delay of path 3 is much less than the critical path 
delay, path 2, by applying a negative clock skew some time 
can be borrowed from path 3 to path 2 as shown in the timing 
waveforms of figure 10.  The minimum clock cycle can be 
expressed as 

skewcriticalQtoclkcycle tttt ���
��

. 

Therefore, by using a negative clock skew, the clock cycle 
time can be reduced. Since flip-flops used in our design are 
CCFF’s having a negative setup time, setup time does not 
contribute to the cycle time. 

 

Figure 10: Clock network and timing of critical path 

Figure 11 shows the layout of the FIR filter design.  
Floorplaning was done to minimize the total interconnect 
lengths especially for global signals.  The layout was sent for 
fabrication to MOSIS.  

We also implemented the 10 tap FIR filters using Wallace tree 
multiplier (WTM) and Carry save array multiplier (CSAM) 
for comparison.  A 5:3 compressor was used in the WTM. 

5. NUMERICAL RESULTS   
Table 1 shows the clock cycle and power  of the FIR filters 
using different multipliers.   As shown in the table, FIR filter 
using CSHM has 19% and 43% performance improvement 
over FIR filter using WTM and CSAM, respectively.  In terms 
of power consumption, CSHM scheme has 17% and 20% 
improvement with respect to FIR filter based on WTM and 
CSAM.  The power results shown in table 1 are measured 
with the uniform clock cycle of 10ns.   

Clearly, FIR filter using CSHM has one more pipeline stage 
than FIR filter based on WTM and CSAM.  The performance 
of FIR filter using WTM and CSAM can be improved by 
adding additional pipeline stage.  However, due to the tree 
structure of WTM and carry save array of CSAM, the number 
of flip-flops required to add additional pipeline stage is quite 
large.  Moreover, as the number of filter taps increases, the 
increase in the number of flip-flops for additional pipeline 
stage will become significantly large.  In the CSHM 
architecture, since precomputer outputs are shared by all the 
S&A’s, we can add additional pipeline stages without 
incurring large latch overhead.  The CSHM architecture has 
performance and power advantage through the additional 
pipelining and the sharing of the precomputer outputs by all 
the S&A’s, respectively. 
 
 

                 Table 1: Numerical results  
          
  

    FIR using 
       SHM 

  FIR using    
     WTM 

   FIR using   
     CSAM 

Clock cycle 
[ns] 5.7  7.0  10  

Power [mW] 286.6  344.3  357.1  

    Area [�m2] 5.0 � 106  4.4 � 106  4.1 � 106  
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6.   CONCLUSION 
An FIR filter based on CSHM is implemented using 0.25 �m 
technology.  The CSHM algorithm specifically targets 
reduction of redundant computation in FIR filtering operation.  
Using the CSHM scheme, the multiplications in vector scaling 
operation is significantly simplified to add and shift 
operations of alphabets multiplied by input x.  These common 
computations are shared by the sequence of operations in 
vector scaling operations.  

Adders and flip-flops are critical components in CSHM and 
FIR filter implementation.  Circuit level techniques for adder 
and flip-flop are proposed and used in the full custom FIR 
filter implementation.  

CSHM scheme and circuit level techniques helped us achieve 
low power and high performance FIR filtering operation.  The 
proposed CSHM architecture is also applicable to adaptive 
filter and matrix multiplication implementation.  The idea 
presented in this paper will help the design of DSP algorithms 
and their implementation for high performance and low power 
applications.  
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Figure11: Layout of FIR filter using CSHM 
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