
 High performance and Low power FIR Filter Design
Based on Sharing Multiplication

Jongsun Park, Woopyo Jeong, Hunsoo Choo,
Hamid Mahmoodi-Meimand, Yongtao Wang, Kaushik Roy

School of Electrical and Computer Engineering, Purdue University,
West Lafayette, IN 47906, USA

+1-765-494-3372

{jongsun, jeongw, chooh, mahoodi, yw, kaushik} @ecn.purdue.edu

ABSTRACT
We present a high performance and low power FIR filter
design, which is based on computation sharing multiplier
(CSHM). CSHM specifically targets computation re-use in
vector-scalar products and is effectively used in our FIR filter
design. Efficient circuit level techniques: a new carry select
adder and conditional capture flip-flop (CCFF), are also used
to further improve power and performance. The proposed FIR
filter architecture was implemented in 0.25 �m technology.
Experimental results on a 10 tap low pass CSHM FIR filter
show speed and power improvement of 19% and 17%,
respectively, with respect to an FIR filter based on Wallace
tree multiplier.

Keywords
Computation sharing, FIR filter design, high performance and
low power carry select adder, conditional capture flip-flop

1. INTRODUCTION
Recent advances in mobile computing and multimedia
applications demand high-performance and low-power VLSI
Digital Signal Processing (DSP) systems. One of the most
widely used operations in DSP is finite impulse response
(FIR) filtering. As shown in the equation below, FIR filtering
operation involves an inner product of coefficient vector C
with input signals x.

Several techniques have been proposed in literature to achieve
high performance and low power implementation of FIR
filters with fixed coefficients. Canonical-sign-digit [4] and
distributed arithmetic [5] are widely used in the FIR filter
design with fixed coefficients. Using those techniques, the
FIR filtering operation can be simplified to add and shift
operations. However, for FIR filter design with
programmable coefficients, dedicated multipliers are usually
used and filter design techniques mentioned may not be
applicable.
In this research we propose high-performance and low-power
implementation for FIR filter with programmable coefficients.

The FIR filter architecture is based on the Computation
sharing multiplier (CSHM) [1, 2], which targets the reduction
of redundant computations in FIR filtering operation.

We also present the circuit level techniques for carry select
adder and flip flop, which are effectively used in the FIR filter
implementation. In the CSHM structure, adders are critical
for high performance. In order to achieve high performance
with low power consumption, a new Carry Select Adder is
presented. Flip-flops are also crucial elements from both a
delay and power standpoint. Conditional capture flip-flop
(CCFF) [11] is explained and used in our filter design. CCFF
is a dynamic style flip-flop that has a negative set-up time and
small clock-to-output delay. Moreover, depending on data
switching activity, CCFF can statistically reduce the power
consumption.

The rest of this paper is organized in five sections. Section 2
describes the architecture of FIR filter based on the CSHM.
Section 3 presents the circuit level techniques. The new carry
select adder and conditional capture flip-flop (CCFF) are
presented in this section. We present FIR filter
implementation in section 4 and section 5 shows the
numerical results. Finally, conclusions are drawn in section 6.

2. FIR FILTER ARCHITECTURE
2.1. CSHM Algorithm and architecture
The transposed direct form (TDF) FIR filter is shown in
figure 1. We notice that the TDF implements a product of the
coefficient vector C = [c0, c1, ……,cM-1] with the scalar x(n) at
time n. The input x(n) is multiplied by all the coefficients c0,
c1, c2,……, cM-1 simultaneously. In the sequel, such products
will be referred to as a vector scaling operation [2].

)()(
1

0

knxcny
M

k
k ��� �

�

�

M−3

−1
Z

−1
Z

−1
Z

−1
Z

−1
Z

C 0 C 1 2C C C M−2 C M−1

X(n)

Y(n)

Figure1: Transposed direct form (TDF) FIR filter.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED ’02, August 12-14, 2002, Monterey, California, USA.
Copyright 2000 ACM 1-58113-475-4/02/0008…$5.00.

(1 X)

AND

(3 X)

(5 X)

(7 X)

(9 X)

(11 X)

(15 X)

AND

X C

(13 X)

Example

Upper: 0100x = 1x>>2

11100100 x

Lower: 1110x = 111x >>1

1011 X

1 X

ISHIFTER
MUX

ISHIFTER
MUX

1111 X

101 X

111 X

1001 X

11 X

Input X

shift by 4

product

(8:1)

shift

Bank Of
PRECOMPUTERS

(8:1)

SELECT UNIT

SELECT UNIT

0100
C <0:3>

SHIFTER

000

10 shift

4

4

C <4:7>
1110

SHIFTER

1110 −> 111

0100 −> 01

1000x

11100100 x

1110x

011

01

1x

111x
C = 11100100

select

select

1101 X

gate

gate Final Adder

 Figure 2: Computation sharing multiplier (CSHM) architecture

In the vector scaling operations, we can carefully select a set
of small bit sequences so that the same multiplication result
can be obtained by only add and shift operations. For
instance, a simple vector scaling operation [c0, c1] � x, c0 =
00110111, c1 = 10001011, can be decomposed as c0� x = 24

�
(0011)� x + (0111)� x, c1� x = 27

� (0001)� x + (1011)� x. If
x, (0011)� x, (0111)� x and (1011)� x are available, the entire
multiplication process is reduced to a few add and shift
operations. We refer to these chosen basic bit sequences as
alphabets. Also, an alphabet set is a set of alphabets that
spans all the coefficients in vector C. In the above example,
the alphabet set is {0001, 0011, 0111, 1011}.

Figure 2 shows CSHM architecture based on the algorithm
explained above. CSHM is composed of a precomputer,
Select units and final adders (S & A). The precomputer
performs the multiplication of alphabets with input x. The
Select unit and final adder (S & A) perform appropriate
select/shift and add operations required to obtain the
multiplication output. In order to cover every possible
coefficient and perform general multiplication operation, we
used 8 alphabets {1,3,5,7,9,11,13,15}. Figure 3 shows an
example 17�17 CSHM, which is used in our FIR filter
implementation.

 <0−3>C

 Select

 Unit

 <4−7>C

 Select

 Unit

C <8−11>

 <12−15>C

 4

X

Bank of

Precomputer

 Select

 Unit

 4

 4

 4

 Select

 Unit

X

Shift Units & Adders

 C

 Adder

 Final

17

C <16>
Sign bit

Figure 3: 17�17 CSHM structure.

2.2 FIR filter based on CSHM Architecture
In the transposed direct form (TDF) FIR filter shown in
figure 1, CSHM algorithm is effectively used to reduce
computations. As shown in figure 4, The FIR filter using
CSHM consists of one precomputer and M Select units and
Final adders (S & A)’s, where M represents the number of
taps in FIR filter. We can easily notice from the figure that
the precomputer outputs are shared by all the S & A’s. In
other words, the computations �k� x, k = 0, 1, 2….8, are
performed only once for all k's and these values are shared by
all the Select units for generating ck� x, i=0, 1, 2, 3,…. The
CSHM scheme efficiently removes the redundant computation
in FIR filtering operation, which leads to low power and high
performance design.

3. CIRCUIT LEVEL TECHNIQUES
3.1 High performance low power Carry

Select Adder
As shown in figure 3, the final adder, which merges four
vectors from Select units, is the critical component in terms of
performance. A new Carry Select Adder, which can be
efficiently used in the final adder implementation, is proposed
in this subsection. The Carry Select Adder used in our design
has good noise-immunity and achieves high performance with
low power consumption. The architecture is similar to a
Carry Select Adder using DTSL (Dual Transition Skewed
Logic), where dual paths are used carry propagation – one
path is used for fast propagation of rising

S & A

Z
−1

S & A
C1

−1
Z

Z
−1

S & A
CM−2

Z
−1

S & A
CM−1

Z
−1

Bank

Precomputer
Z

−1
X(n)

0C

Z
−1

Select Units &
Adder

Figure 4: The architecture of FIR filter based on CSHM.

Figure 5: Block diagram of the Carry Select Adder used in the FIR filter.

S1_B

S1_TA1
B1

B1
A1

B1
A1

Sn _B

Sn_T
An
Bn

Bn
An

Bn
An

S2_B
A2
B2

B2
A2

B2
A2

S2_T

….X

Y

MP1
MN1

S0_B
S0_TA0

B0

B0
A0

B0
A0

MN1

A1
B1

B1

A1

Sn _B

An
Bn

Bn
An

Bn

S2_B
A2
B2

B2
A2

….

……

X

Y

MP1

A0
B0

B0
A0

B0
A0

MP2
MN2

MN2
MP2

C0_T

C0_B

C1_T

C1_B

S1_B

A1
B1

B1

A1

_B

An
Bn

Bn
An

Bn
An

S2_B
A2
B2

B2
A2

B2
A2

S2_T

….X

Y

MP1
MN1

A0
B0

B0
A0

B0
A0

A1
B1

B1

An
Bn

Bn
An

Bn

S2_B
A2
B2

B2
A2

….

X

Y

A0
B0

B0
A0

B0
A0

MP2
MN2

MN2
MP2

C2_T

C2_B

S1_B

S1_TA1
B1

B1
A1

B1
A1

Sn _B

Sn_T
An
Bn

Bn
An

Bn
An

S2_B
A2
B2

B2
A2

B2
A2

S2_T

….X

Y

MP1
MN1

S0_B
S0_TA0

B0

B0
A0

B0
A0

MN1

A1
B1

B1

A1

Sn _B

An
Bn

Bn
An

Bn

S2_B
A2
B2

B2
A2

….

……

X

Y

MP1

A0
B0

B0
A0

B0
A0

MP2
MN2

MN2
MP2

C0_T

C0_B

C1_T

C1_B

S1_B

A1
B1

B1

A1

_B

An
Bn

Bn
An

Bn
An

S2_B
A2
B2

B2
A2

B2
A2

S2_T

….X

Y

MP1
MN1

A0
B0

B0
A0

B0
A0

A1
B1

B1

An
Bn

Bn
An

Bn

S2_B
A2
B2

B2
A2

….

X

Y

A0
B0

B0
A0

B0
A0

MP2
MN2

MN2
MP2

C2_T

C2_B

transition, while the other path is used for fast propagation of
falling transition [6].

The Carry Select Adder used for our FIR filter
implementation has the same architecture as the conventional
DTSL Carry Select Adder [6], however, a simplification has
been applied that the skewed carry propagation logic circuits
have been replaced with static CMOS inverters. This
simplification reduces the complexity of carry propagation
paths, and therefore, makes the control logic circuitry simpler
and improves performance as compared to the conventional
DTSL Carry Select Adder. Moreover, the power consumption
of this new Carry Select Adder are comparable to those of its
static CMOS counterpart because of the simple carry
propagation paths of proposed Carry Select Adder.

Figure 5 shows the implementation of the Carry Select Adder
used in our FIR filter. It consists of two data paths for carry
propagation, logic for generating SUM, and control logic.
Control logic consists of transmission gates (X, Y) between
each inverter for carry propagation on the data path, switching
transistors (MN, MP), and some static CMOS gates to control
the transmission gates and switching transistors. The logic in
the circle is for generating SUM. As shown in Figure 5, the
carry propagation logic of each block of Carry Select Adder
has two data paths: one has ‘0’ as its CARRY input and the
other has ‘1’ as its CARRY input.

If inputs Ai’s are different from Bi's (Ai�Bi, for all i = 0 to n),
transmission gates X, Y will turn on and the switching
transistors (MNi, MPi) will be disabled. Carry-out of the first
stage will propagate to the last stage. Therefore, the carry
propagation delay is the largest under such condition. Under
such inputs the Carry-outs will be inversions of Carry-ins for
every stage because each Carry-in goes through one inverter
and one transmission gate.

However, if any Ai is equal to Bi at Stage i (i = 0 to n), the
Carry-outs on both paths from that stage to the last stage (i ~
n) will be the same, and determined only by inputs Ai and Bi
regardless of Carry-outs of the previous stage. This means that
the carry propagation starts simultaneously at the first stage
and the ith stage. Hence, in this case, the propagation delay of
Carry Select Adder is the same as one of the carry propagation
delays from the first stage to (i-1)th stage and from ith stage to
the last stage. Then, we have to switch Carry-in of the next
stage ([i+1]th) to low or high depending on the value of Ai
and Bi. For example, let us assume A1=B1=0 at Stage 1, then
the outputs of AND and OR gates in the control logic of this
stage will be 0, and PMOS switching transistors (MP1) will

turn on. Therefore, the Carry-out (C1_T, C1_B) at that stage
will be low regardless of Carry-in (C0_T, C0_B) of Stage 1.
Hence, we do not need to wait for the Carry-in to propagate to
the output node of Stage 1, i.e. when inputs A1, B1 of Stage 1
are set, we can switch Carry-in of the next stage (Stage 2)
immediately to low after turning off the transmission gates on
the data path.

Similarly, if A1=B1=1 at Stage 1, then we change Carry-in of
the next stage (Stage 2) to high. For such cases, the total
propagation delay will be shorter than the total delay of the
previous case (Ai � Bi, for all i = 0 to n) because the time
taken to switch Carry-in of the next stage (Stage 2) is shorter
than the time in which Carry-in of the first stage (Stage 0)
propagates to the Carry-in node of the Stage 2 having A2, B2
as inputs. In Stage 2, NAND and NOR gates are used instead
of AND and OR. The operation is similar to that of the
previous stage.

3.2 Flip Flop Design
Traditionally, Transmission-Gate Flip-Flop (TGFF) has been
used in standard cell design [7]. TGFF has a fully static
master-slave structure by cascading two identical pass-gate
latches and provide a short clock-to-output latency. However,
it has a poor data-to-output latency because of positive set-up
time. It also requires two phases of clock that can cause a
problem with data feed-through when there is a skew between
them and it has a relatively large clock load.

Considering the fact that in critical paths the flip-flop delay is
the sum of set-up time and clock-to-output delay, dynamic
latches have less total delay than master-slave latch pairs,
which are fully static. Examples are hybrid latch flip-flop
(HLFF) [8], semi-dynamic flip-flop (SDFF) [9], and sense
amplifier based flip-flop (SAFF) [10]. They can also provide
advantages such as absorbing the clock skew, reducing the
clock load, and embedding logic functions into themselves.
However, they are inefficient as far as power consumption is
concerned. This is because of the fact that in moderate and
low data switching rate these flip-flops can have unnecessary
internal transitions that can lead to substantial increase in total
power consumption. Conditional capture flip-flop (CCFF)
[11], figure 6, removes this problem by addition of the
internal clock gating. In this way, CCFF achieves statistical
power reduction by eliminating redundant transitions of
internal nodes while maintaining soft clock edge and negative
setup time properties.

CLK

Vdd

D

D

CLK

Q

QQB

CKDB

CKDB

CKD

Figure 6. Conditional Capture Flip-Flop

CCFF is used in our FIR filter implementation. The overall
performance and power consumptions of designed TGFF,
HLFF, and CCFF for different input patterns were simulated
in TSMC 0.25um CMOS technology. The power
consumption of CCFF has a large dependency on input
pattern. CCFF can save 65% power with zero inputs
switching activity as compared to the HLFF. When input
changes at every other cycle, the power saving is nearly 14%.
When the input changes at every cycle or the input switching
activity is the maximum, which is very rare, the overall power
consumption is comparable to the conventional designs.

4. FIR FILTER IMPLEMENTATION
4.1. CSHM Implementation
A 17�17 CSHM is implemented using 0.25 �m TSMC library.
As shown in figure 2, the CSHM is composed of precomputer,
S & A. In our CSHM implementation, the input X is two’s
complement and coefficient C has a sign and magnitude
format.

Precomputer: The multiplications, 1x, 3x, 5x, 7x, 9x, 11x,
13x, 15x, performed by the precomputer are simply
implemented using the new Carry Select Adder, which is
mentioned in section 3.1. Figure 7 shows the basic structures
of 5x and 11x and figure 8 shows the whole precomputer
structure.

Adder
Half

Adder
Full

Adder
Full

Adder
Full

Adder
Full

Adder
Half

Adder
Half

Adder
Half

Adder
Full

(b) 11X (1011X) = 8X (1000X) + 2X (10X) + X

X(n−2)

11X

X(n−1) X(4) X(3) XX(2) X(1) X(0)

X(0)

X(3) X(0)X(1)X(n−2)X(n−1)

X(n−3)

X(n−3)

X

X(1)

X(n−1) X(n−2) X(n−4)

X(2)

X(1)
2X
8X

5X

(a) 5X (0101X) = 100X(<<2) + 1X

X(0)X(2)X(3)X(4)X(n−1)

Carry Select Adder

Carry Select Adder

Figure 7 : Precomputer (5x, 11x) architecture.

13X

15X

11X

9X

7X

5X

3X

X X

3X

5X

7X

9X

11X

13X

15X

(10X(<<1)+X)

(100X(<<2)+X)

(1000X(<<3)−X)

(1000X(<<3)+X)

(10000X(<<4)−X)

(1000X(<<3)+10X(<<1)+X)

(1000X(<<3)+100X(<<2)+X)

Figure 8: The precomputer structure

Select Unit: As shown in figure 2, Select unit is composed of
SHIFTER, MUX, ISHIFTER and AND gates. Since
SHIFTER is directly connected to the coefficients, it does not
lie on the critical path. Static CMOS design with minimum
size is used for SHIFTER implementation. ISHIFTER lies on
the critical path and the maximal shift width is 3 bits. A barrel
shifter [3] is used since signal has to pass through at most one
transmission gate in the barrel shifter. MUX using pass
transistor logic was implemented to achieve a compact and
high-speed design.

Final Adder: The final adder is the largest component in the
S & A, which sums the outputs of four Select units. Carry
save array [3] and the new Carry Select Adder proposed in
section 3.1 are used for high performance as shown in figure 9.
The XOR gate array in the middle is used for the two’s
complement data format.

SUM <3> ~ <0>

A

29

Carry save Adder

XOR Gates Array

 Carry select Adder 4

SUM <32> ~ <4>

B
C
D

29

Figure 9: Final adder architecture

4.2.FIR filter Implementation
The 10 tap FIR filter using CSHM is implemented for
fabrication. The structure of FIR filter is shown in figure 4.
As mentioned before, the precomputer outputs are performed
only once and shared by 10 S & A, which leads to low power
design.

The clock network in FIR filter has been implemented using
an H-tree structure. Figure 10 shows the timing of the critical
path and the clock network. Path 2 is the critical path of the

design and its delay is almost twice the delay of path 1 and
path 3. Therefore, pipeline stages are unbalanced in terms of
delay. Insertion of more pipeline stages was not possible
because of the overhead of latching a large number of
internal signals in the select/shift and add unit. Time
borrowing and slack passing are powerful methods for
improving performance in unbalanced pipeline stages [12].
Since the delay of path 3 is much less than the critical path
delay, path 2, by applying a negative clock skew some time
can be borrowed from path 3 to path 2 as shown in the timing
waveforms of figure 10. The minimum clock cycle can be
expressed as

skewcriticalQtoclkcycle tttt ���
��

.

Therefore, by using a negative clock skew, the clock cycle
time can be reduced. Since flip-flops used in our design are
CCFF’s having a negative setup time, setup time does not
contribute to the cycle time.

Figure 10: Clock network and timing of critical path

Figure 11 shows the layout of the FIR filter design.
Floorplaning was done to minimize the total interconnect
lengths especially for global signals. The layout was sent for
fabrication to MOSIS.

We also implemented the 10 tap FIR filters using Wallace tree
multiplier (WTM) and Carry save array multiplier (CSAM)
for comparison. A 5:3 compressor was used in the WTM.

5. NUMERICAL RESULTS
Table 1 shows the clock cycle and power of the FIR filters
using different multipliers. As shown in the table, FIR filter
using CSHM has 19% and 43% performance improvement
over FIR filter using WTM and CSAM, respectively. In terms
of power consumption, CSHM scheme has 17% and 20%
improvement with respect to FIR filter based on WTM and
CSAM. The power results shown in table 1 are measured
with the uniform clock cycle of 10ns.

Clearly, FIR filter using CSHM has one more pipeline stage
than FIR filter based on WTM and CSAM. The performance
of FIR filter using WTM and CSAM can be improved by
adding additional pipeline stage. However, due to the tree
structure of WTM and carry save array of CSAM, the number
of flip-flops required to add additional pipeline stage is quite
large. Moreover, as the number of filter taps increases, the
increase in the number of flip-flops for additional pipeline
stage will become significantly large. In the CSHM
architecture, since precomputer outputs are shared by all the
S&A’s, we can add additional pipeline stages without
incurring large latch overhead. The CSHM architecture has
performance and power advantage through the additional
pipelining and the sharing of the precomputer outputs by all
the S&A’s, respectively.

 Table 1: Numerical results

 FIR using
 SHM

 FIR using
 WTM

 FIR using
 CSAM

Clock cycle
[ns] 5.7 7.0 10

Power [mW] 286.6 344.3 357.1

 Area [�m2] 5.0 � 106 4.4 � 106 4.1 � 106

D4

Path1

Delay elements
for negative skew

CLOCK
RCVCLK

RCVCLK

RCVCLK

DRVCLK

D4
D3

D2

D1

RCVCLK

Path2

Path3

Critical
path

RCVCLK

RCVCLK

DRVCLK

D Q

CLK

Precomputer

Select/Shift
and

Adder Unit

Q D

 CLK

 D
CLK
 Q

Q D

 CLK

time
borrowed

tcycle

tcritical

tskew

tclk-to-Q

D3

D2

D1

DRVCLK

RCVCLK

6. CONCLUSION
An FIR filter based on CSHM is implemented using 0.25 �m
technology. The CSHM algorithm specifically targets
reduction of redundant computation in FIR filtering operation.
Using the CSHM scheme, the multiplications in vector scaling
operation is significantly simplified to add and shift
operations of alphabets multiplied by input x. These common
computations are shared by the sequence of operations in
vector scaling operations.

Adders and flip-flops are critical components in CSHM and
FIR filter implementation. Circuit level techniques for adder
and flip-flop are proposed and used in the full custom FIR
filter implementation.

CSHM scheme and circuit level techniques helped us achieve
low power and high performance FIR filtering operation. The
proposed CSHM architecture is also applicable to adaptive
filter and matrix multiplication implementation. The idea
presented in this paper will help the design of DSP algorithms
and their implementation for high performance and low power
applications.

7. REFERENCES
[1] K. Muhammad, “Algorithmic and Architectural

Techniques for Low Power Digital Signal Processing,”
Ph.D. thesis, Purdue University, 1999.

[2] J. Park, H. Choo, K. Muhammad, K. Roy, “ Non
adaptive and Adaptive filter implementation based on
sharing multiplication,” ICASSP, June 2000.

[3] Jan M. Rabaey, “Digital Integrated Circuits : A Design
Perspective,” Prentice Hall, New Jersey, 1996.

[4] H. Samueli, “An improved Search Algorithm for the
Design of Multiplierless FIR filter with Powers-of-Two
Coefficients,” IEEE Trans. On circuits and systems, Vol.
36, No. 7, pp. 1044-1047, Jul. 1989.

[5] S. White, “Applications of Distributed Arithmetic to
Digital Signal Processing: A Tutorial Review,” IEEE
ASSP Magazine, July 1989, pp. 4 –19.

[6] W. Jeong, K, Roy, and C. Koh. “High-Performance Low-
Power Carry Select Adder using Dual Transition Skwed
Logic,” ESSCIRC, 2001

[7] G. Gerosa et al., “A 2.2 W 80 MHz superscalar RISC
microprocessor,” IEEE J. Solid-State Circuits, vol. 29,
pp. 1440-1452, Dec. 1994

[8] H. Partovi et al., “Flow-through latch and edge-triggered
flip-flop hybrid elements,” in Int. Solid-State Circuits
Conference, Dig. of Tech. Papers, Feb. 1996, pp. 138-
139

[9] F. Klass, “Semi-dynamic and dynamic flip-flops with
embedded logic,” in Symp. on VLSI Circuits, Dig. of
Tech. Papers, June 1998, pp. 108-109.

[10] B. Nikolic et al., “Sense amplifier-based flip-flop,” in
Int. Solid-State Circuits Conf., Dig. of Tech. Papers, Feb.
1999, pp. 282-283

[11] B. S. Kong et al., “Conditional Capture Flip-Flop for
Statistical Power Reduction,” in ISSCC Dig. Tech.
Papers, pp. 290-291, Feb. 2000

[12] H. Partovi, “Clocked storage elements,” in
Chandrakasan, A., Bowhill, W.J., and Fox, F. (eds.).
Design of High-Performance Microprocessor Circuits.
IEEE Press, Piscataway NJ, 2000, 207-23.

Pre - computer

A Select/Shift & Adder Unit

Select/Shift & Adder Units + FF’s

Adders and FF

precomputer

 Select/Shift & Adder Unit

Select/Shift & Adder Units + FF’s

Adders and FF

Figure11: Layout of FIR filter using CSHM

	Main
	ISLPED02
	Front Matter
	Table of Contents
	Author Index

