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ABSTRACT 
This paper presents a decision feedback equalizer (DFE) for a 
high-speed packet modem utilizing the normalized least mean 
squared (NLMS) tap update algorithm. The equalizer supports up 
to 43.2 Mbps uncoded data over a wireless channel with a 10% 
training preamble (48 Mbps with no training). In this work the 
rapid convergence of the NLMS algorithm is combined a 
technique for early termination of the tap training process to yield 
a low power DFE implementation. The low power techniques 
result in a 43% power reduction over a baseline design. 
Furthermore, low power synthesis techniques result in an 
additional 30% power savings on top of the algorithmic power 
savings.  

Categories and Subject Descriptors 
B.2.4 [Arithmetic and Logic Structures]: High-speed arithmetic 
– algorithms, cost/performance. 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Low power, NLMS, equalization, early termination. 

1. INTRODUCTION 
One of the challenges of transmitting information at high bits 
rates over a wireless channel is that frequency selective fading 
causes significant inter-symbol interference (ISI). In the time 
domain ISI is modeled by convolving the transmitted symbols 
with the channel impulse response. An equalizer is a filter that 
can be used at the received to compensate for the distortion 
introduced by the channel [1]. The goal of an equalizer is to 
reverse the effects of the channel, and approximate the originally 
transmitted symbols. The optimal equalizer structure is a 
maximum likelihood sequence estimator (MLSE). The 
complexity of a MLSE grows exponentially with the length of the 
channel impulse response.  

A decision feedback equalizer (DFE) sub-optimally approximates 

the MLSE but with a complexity that only grows linearly with the 
length of the channel and is generally more practical from an 
implementation perspective [2]-[6]. 

The DFE described in this paper forms part of a modem for a 
fixed wireless system. In this system, time division multiple 
access (TDMA) is used to allow multiple users to share the radio 
resource. Data and voice traffic is segmented into packets, 
modulated, and a small sequence of symbols is added as a 
preamble. Among other functions the preamble symbols allow the 
equalizer at the receiver to be trained to the instantaneous channel 
before the data symbols are equalized. 

This paper presents a DFE that uses the normalized least mean 
square (NLMS) iterative algorithm to train the equalizer 
coefficients. The NLMS algorithm adds a normalization term to 
the regular LMS tap update equation, providing a variable step 
size that is inversely proportional to the energy in the filter. The 
NLMS algorithm corrects the problem of amplification of the 
gradient noise associated with the regular LMS algorithm, and 
can lead to more rapid convergence [7]. The DFE operates on T/2 
fractionally spaced samples and supports symbol rates up to 
8Msymbol/s. The packet format for the synthesized design is 
programmable with a maximum size of 312 symbols, including 
up to 32 training symbols. The five modulation formats supported 
are QPSK, 8PSK, 16QAM, 32QAM, and 64QAM. 

The remainder of the paper is organized as follows. Section 2 
describes the architecture for the equalizer including the low 
power arithemetic and terminations circuits. Section 3 presents 
performance simulations for the equalizer in its operating 
environment. Section 4 demonstrates implementation results from 
the synthesized DFE. Finally, section 5 present conclusions.  

2. EQUALIZER STRUCTURE 
Before describing the architecture of the DFE, it is instructive to 
discuss how the workload of the equalizer is divided between 
training and processing the data symbol payload. With an iterative 
equalizer, the filter must iterate many times over the training 
preamble in order to obtain satisfactory performance. The 
iterations need to continue until the filter coefficients have 
converged to values close to the optimal solution. To sustain a 
high throughput the equalizer must iterate over the training 
symbols at a much high rate than the rate at which the symbols 
are received. This concept is shown pictorially in Figure 1. 

The maximum number of training iterations, L, that the 
architecture can support is related to the training preamble size, 
T, and the number of symbols the equalizer can process per 
received symbol. Equation (1) shows the maximum number of 
training iterations for the DFE architecture as a function of the 
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processing speed increase, K, the total length of a packet, L, and 
the length of the training sequence, T. A training iteration is 
defined as one pass through the training preamble updating the 
tap weights for each symbol. 

Figure 1. Payload versus training processing 
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For example, with a processing speed increase of 8, a total packet 
length of 133 symbols, including training sequence of 13 
symbols, the equalizer can provide over 72 training iterations. 
From system simulations it was found that an 8x processing speed 
increase allowed a sufficient number of  iterations for satisfactory 
equalizer performance for the required range of channel 
conditions. 

2.1 Decision Feedback Equalizer 
Figure 2 shows the architecture of the DFE. For this application, 
the DFE structure uses up to 8 taps in the feed forward (FF) filter 
to compensate for the delay spread of the channel, a constellation 
slicer which generates the hard decisions for each symbol, and up 
to 6 taps in the feedback (FB)  filter. When processing the 
payload the slicer outputs the closest constellation point to the 
symbol output of the filters, but during training, the slicer outputs 
the expected training symbol regardless of the slicer input. The 
slicer outputs a complex error signal that is used by the NLMS 
algorithm for the tap coefficient update. The DFE continues to 
train the filter taps during the payload using the decision-directed 
output of the slicer. In addition a termination algorithm monitors 
the mean square error (MSE) to measure the convergence of the 
training process. 

Figure 2. Equalizer architecture 

The structure of the iterative LMS equalizer is well known in the 
literature, and there are many standard techniques that have been 
employed [8]. This paper will specifically focus on the NLMS tap 
update equations and the early termination of the training process. 

2.2 Normalized LMS Equations 
The NLMS tap update algorithm provides excellent convergence 
properties, and can facilitate low power operation of the DFE by 
speeding up the convergence process. Rather than using a fixed 
step size as with the LMS algorithm, the NLMS tap equation, 
shown in equation (2), normalizes the tap update equations based 
on the magnitude of the energy in the filter (w represents the filter 
coefficients, x is the data in the filter, e is the error signal from the 
slicer, and u is the step size). The implementation challenge 
associated with an NLMS equalizer is that it requires both 
complex multiplications by the error signal and divisions by the 
filter energy, and therefore has been avoided in all but a few 
implementations [9][10]. 
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However, because the filter is adaptive, the implementation of the 
tap update does not have to exactly realize equation (2) for 
satisfactory performance. Indeed, there have been many 
simplifications of the LMS algorithm including sign updating, 
which uses the sign of the error signal for the tap update, and 
power of two tap updates where the error is approximated by a 
number e=2n [10]-[11]. Tap updates by powers of two has been 
applied to the NLMS algorithm by dividing by the power of two 
number that approximates the energy in the filter [10]. The power 
of two division for NLMS captures the energy of filter and 
provides good convergence properties without the need for costly 
division circuits. This paper extends the prior work that 
concerned real samples, to include a formulation of the NLMS 
update equation when the filter uses complex samples and 
coefficients (that are required for a DFE using multi-dimensional 
constellations). In order to use the power of two updates for 
complex NLMS, the complex error term is converted into real and 
imaginary power of two terms. This maintains the NLMS style tap 
update while significantly reducing the hardware complexity of 
the complex multiplier and the division. Equation (3) shows the 
approximation of equation (2) with the power of two floor(log2) 
function applied to the complex error. The exponents of the error 
term, a and b, are calculated by subtracting the numerator and 
denominator exponents. 
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Figure 3 shows a schematic representation of equation (3). The 
floor(log2) function is implemented as a leading zeros count, 
yielding the bit location of the most significant nonzero bit. 
Because of the symmetry problem associated with 2’s 
complement numbers, the log2 function is applied to the absolute 
value of the error term. 
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Figure 3. Computing the NLMS log2 numbers 

Equation (4) shows the approximated tap updated equation, when 
the simplifications of equation (3) are applied. The 
implementation complexity advantage is that the complex 
multiplication and the division of the original NLMS equation 
have been replaced with a series of shifts and adds on the original 
delayed samples. 
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Figure 4 details the NLMS tap update equation that replaces the 
complex multiplier using the log2 function. The result is that 
while the original NLMS update required both a complex 
multiplication and a division, the approximated NLMS tap update 
uses only shifts and adds. 

Figure 4. Tap update schematic 

2.3 Early Termination 
Another important low power implementation technique is the 
use of early termination by predicting when the equalizer has 
converged to a good solution, and stopping the training of the 
equalizer at that point. In rare cases, the NLMS tap algorithm will 
require the maximum number of training iterations to guarantee 

good convergence. However the average number of training 
iterations is typically much smaller. The key to early termination 
of the training process is to have an accurate measure of when the 
filter has converged to a good solution.  

One of the most basic convergence measurements is to set an 
absolute threshold on the MSE out of the DFE. Thus the NLMS 
algorithm continues to train on the taps until the MSE drops 
below the pre-determined threshold. The problem is that this 
threshold requires knowledge of the channel conditions. If the 
threshold is set too high, the equalizer will stop training earlier 
than required, degrading the system performance. On the other 
hand, if the threshold is too low, the equalizer performs needless 
training iterations. A better criterion is to monitor the relative 
change in the error term and find when the MSE starts to reach its 
asymptotic value. Figure 5 shows the schematic of a circuit used 
in this DFE design that measures the percentage change in the 
average MSE of the equalizer and flags a terminate command if 
the average change drops below a threshold. Using only two 
combinations of binary shifts on the current MSE, the termination 
circuit can provide 9.375%, 6.25% or 3.125% percentage change 
termination criteria. The circuit provides an effective early 
termination test that does not require knowledge of the channel 
and operating SNR. 

Figure 5. Early termination circuit  

3. ALGORITHMIC PERFORMANCE 
The architectural optimizations for the adaptive NLMS DFE 
presented in section 2 significantly reduce the power dissipation 
and complexity, but it is important to measure their impact on the 
system performance. The DFE was simulated for an 8 dB Rician 
fading channel with an exponential delay power profile with a 
half symbol standard deviation.  A packet length of 133 and a 
length 13 Barker preamble were used. 

3.1 NLMS Tap Update 
Figure 6 shows the bit error rate (BER) and packet error rate 
(PER) performance of the equalizer for an uncoded system with 
an 8PSK constellation using the NLMS tap update equations 
using both a floating point NLMS equalizer (denoted float) and a 
fixed point equalizer using equations (3) and (4) (denoted fixed). 
Furthermore the figure shows performance both with early 
termination enabled (6% MSE criteria, denoted ‘w/ term’) and 
when the equalizer trains for exactly 63 iterations for each packet 
(denoted ‘w/o term’). The key importance of this figure is that the 
approximations used for the NLMS update have negligible impact 
on system performance compared to the full floating point NLMS 
equalizer. Secondly, the early termination has a negligible impact 
on the system performance when compared with the equalizer 
always running 63 iterations, indicating that it accurately predicts 
the convergence of the tap update process. 
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Figure 7 shows the BER curves for the equalizer with and without 
early termination enabled for the 8 dB Rician channel for various 
signal constellations. For both QPSK and 8PSK, the system 
performs slightly better with early termination enabled. The 
curves start to diverge near the error floor, which is a function of 
the signal constellation (around 10-3 for 32QAM and 64QAM). 
This error floor drops considerably once coding is introduced into 
the system. 

Figure 6. Floating vs. fixed point 8PSK performance 

Figure 7. Fixed point system BER w/ termination 

Figure 8. Average iterations w/ termination 

3.2 Early Termination 
The average number of training iterations was measured at 
various geometries for each constellation as seen in Figure 8. The 
range of average iterations across all measured SNRs and 
constellations was between 5 to 12 iterations, translating into 
reductions of between 92% and 81% respectively over the 
maximum value of 63, substantially reducing the energy required 
to train the equalizer taps. 

Figure 8 shows an interesting trend for the early termination 
algorithm, the average number of iterations needed increased 
slightly with increasing SNR. One hypothesis to explain this 
effect is that the higher SNR reduces the MSE out of the filter, 
therefore making the relative termination criteria from section 2.3 
harder to meet. Intuitively, one might expect higher SNR to 
require fewer training iterations. This does not detract from the 
early termination performance because, most importantly, it still 
runs enough training iterations at the low SNR as seen in Figure 
6, and the overall range of average iterations is not large across 
the range of input SNRs. 

4. IMPLEMENTATION RESULTS 
The DFE design was synthesized with 8 FF taps, 6 FB taps in 
TSMC 0.18 um, 1.8V, 6LM CMOS technology with an input 
sample precision of 10-bits. The coefficients are stored with 16-
bit precision, while only the 10 MSBs are used in the filtering 
process. The entire design was coded in VHDL and synthesized 
using the Cadence physical synthesis tool, PKS. The equalizer 
was designed to run 8 times faster than the symbol rate with each 
complex multiplier in the FF filter shared between two taps. At 
128 MHz, the equalizer dissipates an estimated 95 mW while 
performing over 7 billion effective multiplications per second (4 
multipliers for each complex multiplication) at :  

· 512 million, 10x10 complex multiplications/s (FF taps) 

· 384 million 4x10 complex multiplications/s (FB taps) 

· 896 million NLMS complex tap update/s 

Figure 9 shows a layout of the placed design, with an active area 
of 2mm x 2mm, 180k effective gates, and 30 Kbits of memory. 

4.1 Power Dissipation 
To measure the impact of early termination on power dissipation, 
the power was estimated using the synthesis tool. The 
backannotated netlist was simulated with a set of operational 
vectors generated from a testbench modeling the system 
environment. The equalizer was run in a mixture of modes, such 
as enabling 4 or 8 FF taps, and 3 or 6 FB taps respectively 
(denoted as {4,3} or {8,6}), and with and without early 
termination enabled. The signal activities from the design were 
fed back into the synthesis tool to perform low power RTL 
synthesis (LPS) to include clock gating, sleep mode, and gate 
level power optimizations [12]. Table 2 shows the power 
estimation results for the DFE when configured with QPSK 
modulation both for the original placed design and the design 
synthesized with LPS. The equalizer was run with four scenarios, 
{4,3} and {8,6} with early termination both disabled and enabled. 

Table 1 shows the substantial power savings for early termination. 
In the original design, the early termination reduces the power 
dissipation by an average of 43% over the DFE running the full 
number of iterations across both {4,3} and {8,6} modes. 
Furthermore, in the early termination mode, the LPS resulted in a 



further power savings of 51%. The overall power savings in the 
architecture from full iterations to the final LPS synthesized 
design is almost 73%.   

Table 1. Power estimation results QPSK (1.8V) 

Implementation Power  ( mW) 
Original 

Power (mW) 
after LPS 

Equalizer w/o termation {4,3}  (63 
iterations) 

337 mW 192 mW 

Equalizer w/o termination {8,6}   
(63 iterations) 

341 mW 202 mW 

Equalizer w/ terminations {4,3}      
(6 iterations) 

189 mW 92 mW 

Equalizer w/ termination  {8,6}      
(6 iterations) 

196 mW 95 mW 

Figure 9. Chip Layout 

Figure 10 shows a breakdown of the power dissipation in the 
design when early termination is enabled. The FF and FB filters 
dissipated 34% and 9% respectively of the total power 
consumption in the filter. The key item to note is that the 
termination block only contributes 3% of the total power, yet 
allows the equalizer to reduce its power dissipation by over 43%. 

5. CONCLUSIONS 
This paper has presented two main algorithmic techniques for 
power reduction in the implementation of an 8Msymbol/s NLMS 
DFE (supporting up to 43.2 Mbps uncoded data with 64QAM and 
a 10% training preamble). The first technique presented was an 
efficient implementation the NLMS algorithm with power of two 
tap updates. It was shown that the NLMS approximations still 
allow fast convergence in the filter. The second technique was a 
method for detecting when the equalizer had converged during 
the training period and then freezing the tap updates. The early 
termination and the LPS resulted in almost 73% power savings 
over the baseline DFE structure. 

 

 

 

 

 

Figure 10. Power dissipation  breakdown 
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