
Runtime Mechanisms for Leakage Current
Reduction in CMOS VLSI Circuits1, 2

Afshin Abdollahi
University of Southern California

(310) 592-3886
afshin@usc.edu

Farzan Fallah
Fujitsu Laboratories of America

(408) 530-4544
farzan@fla.fujitsu.com

Massoud Pedram
University of Southern California

(213) 740-4458
pedram@ceng.usc.edu

Abstract. This paper describes two runtime mechanisms for
reducing the leakage current of a CMOS circuit. In both cases, it is
assumed that the system or environment produces a "sleep" signal
that can be used to indicate that the circuit is in a standby mode. In
the first method, the "sleep" signal is used to shift in a new set of
external inputs and pre-selected internal signals into the circuit
with the goal of setting the logic values of all of the internal signals
so as to minimize the total leakage current in the circuit. This
minimization is possible because the leakage current of a CMOS
gate is a strong function of the input combination applied to its
inputs. In the second method, NMOS and PMOS transistors are
added to some of the gates in the circuit to increase the
controllability of the internal signals of the circuit and decrease the
leakage current of the gates using the "stack effect". This is,
however, done carefully so that the minimum leakage is achieved
subject to a delay constraint for all input-output paths in the
circuit. In both cases, Boolean satisfiability is used to formulate the
problems, which are subsequently solved by employing a highly
efficient SAT solver. Experimental results on the circuits in the
MCNC91 benchmark suite demonstrate that it is possible to reduce
the leakage current by up to 70% in VLSI circuits at the expense of
a very small overhead.

Categories and Subject Descriptors:
B.7.1. [Integrated Circuits]: Types and Design Styles, VLSI

General Terms: Algorithms and Design
1 Introduction
The rapid increase in the number of transistors on chips has enabled
a dramatic increase in the performance of computing systems.
However, the performance improvement has been accompanied by
an increase in power dissipation; thus, requiring more expensive
packaging and cooling technology. Historically, the primary
contributor to power dissipation in CMOS circuits has been the
charging and discharging of load capacitances, often referred to as
the dynamic power dissipation. This component of power
dissipation is quadratically proportional to the supply voltage level.
Therefore, in the past, chip designers have relied on scaling down
the supply voltage to reduce the dynamic power dissipation.
Maintaining the transistor switching speeds requires a proportionate
downscaling of the transistor threshold voltages in lock step with
the supply voltage reduction. However, threshold voltage scaling
results in a significant amount of leakage power dissipation due to
an exponential increase in the sub-threshold leakage current
conduction. Borkar in [2] predicts a 7.5 fold increase in the leakage
current and a five-fold increase in total energy dissipation for every
new microprocessor chip generation. Unlike the dynamic power,
which depends on the average number of switching transistors per

1This research was sponsored in part by DARPA PAC/C program under
contract no. DAAB07-00-C-L516.
2Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’02, August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008…$5.00.

clock cycle, the leakage power depends on the number of on-chip
transistors, regardless of their average switching activity. The input
pattern dependence of the leakage current makes the problem of
determining the leakage power dissipated by a circuit a difficult
one. This statement is true even when runtime statistics about the
active versus idle times for a circuit are known. This is because by
applying the minimum-leakage producing input combination to the
circuit when it is in the idle mode, we can significantly reduce the
leakage power dissipation of the circuit. Consequently,
identification of a Minimum Leakage Vector (MLV) is an
important problem in low power design of VLSI circuits.
In this paper several runtime mechanisms for leakage current
reduction of CMOS VLSI are introduced. Our methods find the
MLV of a circuit and the optimum way of modifying the circuit to
reduce its leakage current using a Boolean satisfiability
formulation. In the next section a review of a number of the leakage
reduction techniques is presented. In Section 3, we describe a
method for finding the MLV and its corresponding leakage current.
Our method is based on constructing a Boolean network for
computing the leakage current of a VLSI circuit and solving a
series of Boolean satisfiability problems corresponding to that
network. We use an incremental satisfiability solver technique to
speedup the operation [14]. We minimize the leakage current by
using an MLV to drive the circuit while in the standby mode. In
Section 4, two improved mechanisms for leakage current reduction
are introduced. The basic idea is to increase the controllability of
the internal signals of a circuit. Using multiplexers or modifying
the internal gates of the circuit achieves this. Experimental results
and conclusion are presented in Sections 5 and 6.

2 Previous work
In this section, we briefly review a number of commonly used
leakage reduction techniques.
2.1 Leakage Reduction by Input Vector Control
Many researchers have used models and algorithms to estimate the
nominal leakage current of a circuit [3][4]. The minimum and
maximum leakage currents of a circuit have been estimated using a
greedy heuristic in [5]. Because of the transistor stacking effect, the
leakage of a circuit depends on its input combination [5]. As the
operational state of the transistors that constitute a CMOS gate are
determined by their input signal values, the goal can be expressed
as finding the input pattern that maximizes the number of disabled
(“off”) transistors in all stacks across the circuit [6]. The authors in
[7] provided an estimation of the maximum leakage current by
greedily assigning input combinations of logic blocks that result in
high leakage currents. All the above methods can be used to
determine the minimum-leakage vector and to further exploit the
stacking effect by inserting transistors in the leaky sections of a
circuit [8]. Another possibility is to perform an exhaustive circuit-
level simulation for all input patterns to find the pattern with the
minimum leakage current. However, this approach is not practical
for large circuits. In [9], the authors used probabilistic methods to
reduce the number of simulations necessary to find a solution with
a desired accuracy. Having found the minimum leakage pattern,
one can use this vector to drive the circuit while in standby mode.
This requires the addition of a number of multiplexers at the
primary inputs of the circuit. The multiplexers are controlled using
a sleep signal. Because the power reduction using this technique
can be achieved only for long sleep periods, a threshold is used to
activate the sleep signal only if the sleep period is long enough.

2.2 Leakage Reduction by Increasing the Threshold Voltages

One way of decreasing the leakage current is increasing the
threshold voltages of transistors. There are several ways to do this,
but in all of them some process technology modification is
necessary. However, this may not be always possible. Another
approach is to use high-threshold voltage devices on non-critical
paths so as to reduce the leakage power while using low-threshold
devices on critical paths so that the circuit performance is
maintained. This technique requires an algorithm that searches for
the gates where the high-threshold voltage devices can be used
[11]. This technique has been called the Dual Vth CMOS. In
Dynamic Threshold MOS (DTMOS), the body and the gate of each
transistor are tied together such that when the device is off, the
leakage is low. If the device is on, then the current will be high
[13]. Among the techniques that dynamically modify the threshold
voltage during runtime, the classic example is Standby Power
Reduction (SPR) or Variable Threshold CMOS (VTCMOS). In this
method Vth is raised during the standby mode by making the
substrate voltage either higher than Vdd (for P transistors) or lower
than ground (for N transistors). However, this technique requires an
additional power supply, which may not be attractive in some
commercial designs. A technique presented in [12] successfully
solves this problem and applies the technique to a commercial
digital signal processor. The architectural support needed to use
VTCMOS can be done in hardware or software. There is a large
performance penalty due to the time required removing the
substrate voltage to return to the normal operation mode. Noise
immunity problems have been reported when the substrate voltage
is changed, but since in this case the technique is applied when the
system is idle, there is no negative effect on the normal operation of
the circuit.

2.3 Leakage Reduction by Gating the Supply Voltage

The last approach considered is power supply gating. There are
many ways in which this technique can be implemented, but the
basic idea is to shut down the power supply so the idle units do not
consume any power. This can be done using some high threshold
transistors called sleep transistors [1]. If the threshold voltages of
sleep transistors are changed at runtime, the triple-well technology
is required. Another possibility is to use Multiple-Threshold
Voltage CMOS (MTCMOS) [10]. In MTCMOS, a high threshold
device is inserted in series with low threshold transistors creating a
sleep transistor. This creates virtual supply and ground rails whose
voltage levels are very close to the real supply and ground lines
because of the very small on-resistance of the inserted high-Vth
transistors. In practice, only one virtual rail (usually the virtual
ground) is used. Normally, one sleep transistor per gate is used, but
larger granularities are possible, which require fewer transistors.
The problems with this technique are reduced performance and
noise immunity.

3 Leakage Minimization by Input Vector Control
By applying a minimum leakage vector (MLV) to a circuit, it is
possible to decrease the leakage current of the circuit when it is in
the standby mode. We assume that the environment in which the
circuit is placed e.g., with the aid of a power management unit,
generates a SLEEP signal for the circuit. This signal is then used to
initiate the application of the MLV to the circuit inputs. To use this
method for leakage reduction, it is necessary to find an input vector
that causes the minimum leakage current in a VLSI circuit. A
trivial lower (upper) bound on the leakage current is the sum of the
minimum (maximum) leakage currents of all logic gates in the
circuit. However, this may not correspond to any feasible solution
because the input combination that produces the minimum
(maximum) leakage in some gate, gatei, may conflict with the one
that produces the minimum leakage for another gate, gatej. In the
remainder of this section, we describe an algorithm for finding an
MLV for a given combinational logic circuit. More precisely, given
a combinational logic circuit description, we first construct a
Boolean network, which computes the total leakage of that circuit.
We call the resulting circuit a Leakage Computing Network (LCN).

Next from the LCN description, we write a set of Boolean clauses
that capture the leakage current of the original circuit. We employ a
SAT solver to find an input vector that results in a leakage less than
a given number C. Next, we perform a linear search on the value of
C to find the MLV. Finally, we modify the original circuit by
adding a number of multiplexers to shift in the MLV when the
circuit enters the idle mode. Notice that the LCN is only used as a
computational tool and the only actual hardware are the original
circuit and the final circuit (which is augmented by the multiplexers
and MLV vector). Leakage current of a logic gate depends on its
input values. Let leakage(Xj) be the leakage current of the jth gate of
a circuit under the immediate input vector combination Xj. Notice
that leakage(Xj) can be written as a sum of up to 2n terms, where n
is the number of inputs of the gate. For example, the following
equation gives the leakage current for all input values of a two-
input NAND gate:

1101100101010001)(LXXLXXLXXLXXXLeakage jjjjjjjjj +++=
where Lpq is the leakage current of the gate when Xj1=p and Xj0=q.
Without loss of generality, we multiply all gate leakage values with
a large constant number to make them integer values. The leakage
current minimization problem can then be stated as follows:

Given circuit-induced logic dependencies among Xj’s, find a primary
input vector that minimizes Σj leakage(Xj) for all gates in the circuit.

The above cost function can be directly implemented in the LCN
by using adders and multiplexers. However, to decrease the number
of adders, we use the following approach. First we compute the
sum of all cost function terms that correspond to some leakage
value Lkl. Next we compute sum of the results. As an example,
consider a circuit with two NAND gates, denoted by gatei and gatej.
In a straightforward LCN realization, the following sum is
computed:

)()

()()(

11011001010100011101

100101010001

LXXLXXLXXLXXLXX

LXXLXXLXXXLeakageXLeakage

jjjjjjjjii

iiiiiiji

+++++
++=+

where Xi is a Boolean variable and Lij is a fixed-length vector of
Boolean variables corresponding to the binary representation of the
actual leakage value. The LCN size can be reduced if we rearrange
the terms as follows:

110101100101010101

000101

)()()(

)()()(

LXXXXLXXXXLXXXX

LXXXXXLeakageXLeakage

jjiijjiijjii

jjiiji

+++++

++=+

The reason is that in the latter case, for each leakage value, instead
of computing the sum of n terms each with m bits, we compute the
sum of n single-bit numbers and then multiply the result with an m-
bit number. The first approach needs m(n-1) single-bit adders,
while the second one requires n-1+m log n single-bit adders. Thus,
the second approach is more efficient. To compute the total leakage
in our approach, we use a decoder for each gate. As an example
consider a 2-input gate with 4 different leakage values
corresponding to 4 different combinations of its inputs. Figure 1
shows a 2-to-4 decoder associated with this gate in the LCN. In this
figure, Dk

ij values represent the input combination ij of gatek.

Figure 1. A 2-to-4 decoder indicating input combinations of a 2-input logic
gate.

IN1

IN2

OUT

Dk

Dk
01

Dk
10

Dk
11

2-input
gatek

2-to-4
decoder

b) The modified circuit

LT1

LTn

Ltotal

a) A line in a circuit

Figure 2 shows the LCN structure for computing the total leakage
current of all gates in the original circuit that perform the same
Boolean operation (e.g., two-input NAND). The one’s counters in
this figure count the number of Dk

ij variables that are assigned a
value of ONE. For example, if there are 50 two-input NAND gates
and 20 of them receive input combination 00, while 15, 10 and 5
gates receive 01, 11, and 10 input combinations, respectively, then
the total leakage of all two-input NAND gates in the circuit will be
20L00+15L01+10L11+5L10 .

Figure 2. Contribution of all gates of type k to the total leakage.

Notice that when the leakage current of a gate type for a specific
input combination is equal to that of another gate for some other
input combination, it is possible to share the logic structures
between them to improve the size efficiency of the LCN. The total
leakage current of the circuit is computed by summing up all LTk
values corresponding to all gate types in the original circuit.
Suppose we are interested in finding a vector whose leakage
current is less than a given number C. To do this, we compare the
total circuit leakage with C. Figure 3 shows the circuit realization
for comparing the total circuit leakage with C.

Figure 3. Comparing circuit leakage with C.

We model the circuit in Figure 3 using Boolean clauses as
described in [15].

For example if n=2, LT1=[a1 a0] and LT2=[b1 b0], then the
summation of these two vectors is Ltotal=[s2 s1 s0]. The Boolean
description of the relation between a0, b0, and s0 is s0=XOR(a0,b0)
and this Boolean relation can be described by four clauses:

0001 sbaClause ++= ,
0002 sbaClause ++= ,

0003 sbaClause ++= , and
0004 sbaClause ++=

Algorithm LIN_SEARCH_FOR_MLV:
1.Find the trivial bounds on leakage current, LB
and UB described in the beginning of section 3

2.C = UB, mlv = {}
3.Write Boolean clauses to model the circuit
leakage and the condition that total_leakage <= C

4.Solve the resulting SAT problem
5.If there is no solution, stop; C + 1 is the
minimum leakage and mlv is the solution

6.mlv = the vector found by the SAT solver
7.C = C -1
8.If C < LB, stop; C + 1 is the minimum leakage
and mlv is the solution

9.Go to step 3

The above algorithm performs a linear search on the values
between LB and UB to find the minimum leakage current. The
search starts from UB and proceeds toward LB. During the search
all problems are feasible except the last one. Note that the
constraints corresponding to total_leakage <= C - 1 are tighter than
the ones corresponding to total_leakage <= C. Thus, every
solution of iteration i+1 is a solution of iteration i. In every
iteration, the SAT solver produces many conflict clauses during the
search for the answer.3 We use this fact to speedup the search by
using the conflict clauses that are generated during the ith iteration
and adding new clauses to them to model the (i+1)th iteration. This
is instrumental in substantially decreasing the computation time.

It is possible to start the search from LB towards UB. In this case all
problems except the last one are infeasible. Because this
formulation does not permit the reuse of the conflict clauses, it is
slower than the one described previously. A binary search, rather
than a linear search may also be used. Again we note that a binary
search does not permit the reuse of the conflict clauses.
Furthermore, the decrease in the number of iterations (sub-
problems) tends to be very small compared to the linear search.
Therefore, using a linear search algorithm provides the best
runtime. After finding the MLV, we use it to drive the circuit every
time the SLEEP signal is activated. This can be accomplished by
using some multiplexers controlled by the SLEEP signal to drive
the inputs of the circuit. Simplifying the multiplexers based on the
fact that one input of each multiplexer is a constant 0 or 1 reduces
the hardware cost. Figure 4 shows the input driver for two bits {a1,
a0} assuming the min leakage vector is {1, 0}.

Figure 4. Input driver for min leakage vector {1,0}

4 Leakage Reduction by Adding Control Points
In the previous section, we reduced the leakage current by using an
input vector control mechanism. However, in circuits with large
logic depth, an externally applied input vector may effectively
control only the gates that are close to primary inputs. If we find a
way to directly control at least some of the internal nodes of a
circuit, we can further reduce the leakage of the circuit. In this
section we introduce two methods to add control points to a circuit
to decrease its leakage.

4.1 Using Multiplexers
An easy way to control the value of an internal signal (line) of a
circuit is to cut the internal line and insert a 2-to-1 multiplexer that
is controlled by the SLEEP signal. The two inputs of the
multiplexer are the incoming signal and a ZERO or ONE value
decided by the leakage current minimization algorithm. The output
is the outgoing signal. Since one input of the multiplexer is a fixed
value, instead of the multiplexer, an AND gate or an OR gate may
be used. Figure 5 shows a part of a circuit before and after
replacing its internal line by an AND gate.

Figure 5. Replacing a line by an AND gate.

3 Conflict arises when during the search one or more clauses become
unsatisfiable in the current search sub space. The SAT algorithm backtracks
from this point and also learns form the conflict by adding one or more
conflict clauses to its database. Adding such conflict clauses prevents the
algorithm from encountering the same conflict. In other words, clauses
prune the search space efficiently [16].

SUM

CMP

a

a

ONE’S
COUNTER

D0
00

D(n-1)
00

L00

ONE’S
COUNTER

D0
11

D(n-1)
11

MULL11

MUL

LTk
SUM

In Figure 5 (b), in the sleep mode, the output of the AND gate is
ZERO; if, based on the result of leakage current minimization
algorithm, we need to have a ONE on that line in the idled circuit,
the AND gate has to be replaced by an OR gate. The additional AND
or OR gate and the gates in its fanout consume dynamic power
when a new value is shifted into the circuit at the beginning and the
end of the circuit idle time. This dynamic power consumption is
considered to be negligible if the idle time is long enough. We
assume that the power management unit for the whole design
knows about this overhead and will only activate the SLEEP signal
if the idle time is expected to be very long. In this paper, we do not
concern ourselves with how such a global power management
policy for a complete design can be developed and put in place.

When a new control gate is added to the circuit, there will also be
additional leakage current associated with that gate. The algorithm
that determines the number, type, and insertion location of the
control gates inside a combinational logic block must account for
the leakage currents of these gates. In the remainder of this
subsection we present a method to optimally select a subset of the
internal lines in a circuit to be replaced with AND or OR gates. The
method is based on modifying the LCN by adding additional input
variables corresponding to the internal lines of the circuit. In other
words, for each internal line in the circuit, two new variables X and
Y are introduced. The value of X determines whether or not the
connection will be replaced by a multiplexer. If X=1, then a
multiplexer whose inputs are the original line and a variable Y, is
inserted on that line. The LCN is modified to account for the
leakage of the added gate.

Figure 6. Adding the leakage current of the multiplexer to the total leakage.

Now the problem of minimizing the leakage current can be
descried as minimizing the value of L’total which is a function of
input vector and also variables X’s and Y’s. By running
LIN_SEARCH_FOR_MLV on the modified LCN with extra variables
(X’s and Y’s), we can obtain the following:
1. MLV
2. Internal lines on which multiplexers are inserted.
3. Y value for each multiplexer and customization of the

multiplexer to an AND or OR gate based on the Y value.
Our minimization algorithm finds the optimum subset of internal
lines on which multiplexers are inserted. The minimization
algorithm considers the advantage of controlling the internal lines
in the circuit and weighs it against the disadvantage of additional
leakage current due to the required multiplexers. Since the
minimization algorithm searches for the minimum leakage solution,
if adding any multiplexer helps decrease the leakage, it will be
added to the circuit.

4.2 Modifying Gates
The leakage cost of multiplexers serves as a disincentive to employ
a large number of these multiplexers in the circuit. In this
subsection we propose an alternative method to control the outputs
of internal gates in a circuit. Since the new method does not add
any gate to the circuit, there is no extra leakage associated with
adding a control point to the circuit. Even better, because of the

transistor stack effect, every time we add a control point to the
circuit, its total leakage decreases.

We use two variables X and Y for each gate in the circuit. The value
of X determines whether or not a gate in the circuit undergoes some
change. The value of Y determines the way that the gate is changed.
Consider a fully-complementary CMOS gate, out = g(in). Based on
the values of X and Y, which are in turn computed by our leakage
minimization algorithm, this gate is changed as follows:
If (X==1) out = g(in)
else

if (Y == 1) out = OR(NOT(SLEEP), g(in))
else out = AND(SLEEP,g(in))

Modifying this gate as described above enables controlling the
output of the gate independent of its inputs in the standby mode. In
other words, if we must have a ONE at the output of the gate when
in the standby mode, we replace the gate with AND(SLEEP, g(in)).
Similarly, if we ought to have a ZERO, we replace it with
OR(NOT(SLEEP), g(in)).

Figure 7. A fully-complementary CMOS gate and its two modified circuits.

Figure 7 shows a CMOS gate with its PMOS and NMOS sections
and two ways to modify the gate. Note that in both cases a
transistor is added in series with one of the N or P sections. This
results in a decrease in the leakage of the gate due to the transistor
stack effect. The percentage of the reduction depends on the
original number of transistors in the gate [8]. Moreover, as
mentioned before, this method enables us to control the values of
the internal lines in the circuit; thus, reducing the leakage current of
the gates in the fanout of the lines. Modifying a gate in this way
results in a delay and an area penalty. For example, in case B the
high-to-low transition becomes slower, whereas in case C the low-
to-high propagation delay is increased. We take the pin-dependent
propagation delay of a gate to be the average of input-output gate
delays for the rising and falling transitions. Obviously, the delay
and area penalties depend on the sizes of the added transistors in
each case. We size these transistors so that the increase in the delay
and the area of each gate is no more than some percentage (Sec. 5.)

In the sequel, we present a method to extend the LCN so that the
leakage minimization is performed subject to a delay constraint on
all of the primary input to primary output paths in the circuit. The
left circuit structure in Figure 8 selects the correct value of the
leakage for each gate in the circuit whereas the right structure does
the same for delay calculation.

Figure 8. Leakage and Delay current values of a modified gate.

SUM
L MUX 1

L MUX k

L total

XY

Leakage(MUX)

00

Leakage(MUX)
01

10

0
0 L MUX

L’ total

SUM

SLEEP

C) out = OR (SLEEP, g(in))

in out

P

N N

out
in

N

in out

B) out = AND (SLEEP , g(in))

SLEEP

A) out = g(in)

P
P

00
Delay

LeakageB

LeakageC

00

01

10

11

XY

Leakage

LeakageA

DelayB

DelayC

10

11

XY

DelayA

01

0

5

10

15

10% 15% 20% 25% 30% 35% 40% 45% 50% 55%

Percentage of Energy Saving

N
um

be
r

of
In

st
an

ce
s

Note that in this figure leakageA and delayA denote the leakage
current and propagation delay of the gate without modification (i.e.,
out=g(in)). leakageB and delayB denote the leakage and
propagation delay of the gate modified to out=AND(SLEEP, g(in)).
leakageC and delayC indicate the same for the case where
out=OR(NOT(SLEEP), g(in)). As in static timing analysis, the gate
delay values are used to calculate the maximum delay of the circuit
for all input-output paths using the circuit shown in Figure 9. The
arrival time of each gate is the maximum of the sum of the arrival
time of each of its inputs and the pin-dependent delay from that
input to the output of the gate.

Figure 9. Calculating the output arrival time of a gate.

The maximum delay of the circuit is the maximum of arrival times
of its primary outputs. Figure 10 shows the circuit for comparing
the maximum delay of the circuit with a given threshold.

Figure 10. Comparing the maximum delay of the circuit with a delay threshold.

The leakage minimization problem can be stated as that of
minimizing the value of Ltotal which is a function of input vector
and also variables X’s and Y’s. The leakage minimization has to be
performed under the delay constraint illustrated in Figure 10.
Therefore, the minimization algorithm should take into account the
values of the output of both circuits in Figures 3 and 10 as depicted
in Figure 11.

Figure 11. Considering the delay constraint in leakage minimization.

By running LIN_SEARCH_FOR_MLV on the modified LCN with the
aforementioned Delay Computing Network (DLN) and variables
(X’s and Y’s), we can obtain the following:
1. MLV
2. Gates that are structurally modified.
3. Y value for each modified gate, which identifies the method

for modifying the gate.
Our minimization algorithm finds the optimum subset of gates,
which are modified. The minimization algorithm considers the
advantages of modifying the gates in the circuit (which are
controlling internal signal as well as reducing the gate leakage due
to the stack effect) and weighs them against the disadvantage of
additional delay overhead due to the added transistors.

5 Experimental Results
We applied the proposed mechanisms to reduce the leakage
currents of the circuits in MCNC91 benchmark. Each of the circuits
was optimized by the SIS script.rugged and mapped to a
technology library using the SIS mapper. We used an industrial
library built in 0.18um CMOS technology with a low threshold
voltage of 0.2V and a supply voltage level of 1.5V. We used
HSPICE simulation to report the leakage current of the gates in the
ASIC library for all possible combinations of their inputs. We,
therefore, started with a full circuit-level characterization of
leakage current of all gates. For each benchmark, we obtained the
minimum and the maximum leakage currents and their
corresponding input vectors using the method described in Section
3. Figure 12 shows the distribution of the ratio of maximum to
minimum for all circuits.

Figure 12. Distribution of maximum over minimum leakage current

Figure 12 depicts our experimental results where we show the
max/min leakage distribution for the MCNC91 benchmark suite.
The figure, for example, states that 9 of the benchmarks had a
max/min leakage ratio between 1.25 (inclusive) and 1.75
(exclusive) whereas 11 had a ratio between 1.75 and 2.25. As it can
be seen, the max/min leakage ratio is as high as 6 for some circuits.
Therefore, driving the circuit that is placed in the idle mode with a
random input vector may result in a significant waste of energy
compared to driving the circuit with the MLV. Figure 13 shows the
distribution of energy saving achieved by using the input vector
control mechanism of Section 3.

Figure 13. Energy saving of the input vector control mechanism.

Figure 14 shows the distribution of energy saving achieved by
using the control point addition mechanism of Section 4.1. As one
can see, adding control points to the circuits helps to further reduce
the leakage currents.

Figure 14. Energy saving for control point addition mechanism

arrival_time (fanin)

delay(fanin , out)

delay(fanin , out)

arrival_time (fanin)

arrival_time(out)
SUM

SUM

MAX

CMPdelay_threshold

arrival_time (PO 1)

arrival_time (PO n)

MAX

L total

C

max_delay

Delay_threshold

CMP

CMP

0

2

4

6

8

10
12

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Max/Min Leakage Ratio

N
um

be
r

of
In

st
an

ce
s

0

5

10

15

25% 30% 35% 40% 45% 50% 55% 60% 65% 70%

Percentage of Energy Saving

N
um

be
r

of
In

st
an

ce
s

Switching the inputs of a circuit to its MLV and vise versa
consumes some dynamic power. The amount of power saved using
our runtime leakage control mechanisms depends on the duration of
the standby mode for the circuit. For short standby periods, it is not
worthwhile to switch between the current input and the MLV. For
long standby periods, the energy savings can become quite
significant. To make this statement more precise, we calculated the
minimum duration of the idle time above which power savings by
“shifting” in the MLV becomes possible. Figure 15 shows the
distribution of this minimum time (in terms of the number of clock
cycles) for MCNC91 benchmark circuits.

Figure 15. Minimum number of clock cycles that the circuit should stay in
the standby mode for the dynamic leakage control to become effective.

The runtime of the algorithm LIN_SEARCH_FOR_MLV depends on
the number of quantization levels of leakage values. Obviously
more quantization levels results in more accuracy and more
runtime. Figure 16 shows the distribution of the runtime of the
algorithm for 32 and 64 quantization levels.

Algorithm runtime for 32 quantization levels.
Algorithm runtime for 64 quantization levels.

Figure 16 Algorithm runtime for two different quantization levels.

Figure 17 shows the distribution of energy savings for MCNC91
suite that is achieved by using the control point addition
mechanism of Section 4.2 under different delay constraints. When
we do not allow any speed degradation, only a small number of
gates are changed. As a result, the amount of energy saving is on
average less than 20% for all the benchmarks. Increasing the limit
on the speed degradation helps improve the results as is evident
from the figure. For example, with a 15% tolerance on delay, the
average energy savings for all the benchmarks is 45-50%. The area
overhead is proportional to the number of added transistors and is
at most 15%.

6 Conclusion
In this paper we introduced several methods to decrease the leakage
current of a circuit. Our methods do not require any modifications
in the process technology. Hence, they can be easily used. The
experimental results of using our techniques show that up to 70%
savings in the leakage current can be achieved at the expense of a
small overhead.

Figure 17 Distribution of energy savings that is achieved by using the
control point addition mechanism of Section 4.2 (modifying gates) under

different delay constraints.
Number of Instances for 0% Speed Degradation
Number of Instances for 5% Speed Degradation
Number of Instances for 10% Speed Degradation
Number of Instances for 15% Speed Degradation

7 References
[1] Chandrakasan, A., Bowhill, W. and Fox, F., “Design of High
Performance Microprocessor Circuits”. IEEE Press. 2000.
[2] Borkar, S., “Design Challenges of Technology Scaling”, IEEE MICRO,
July-August 1999.
[3] Ferre, A. and Figueras, J., “Characterization of Leakage Power in
CMOS Technologies”, IEEE International Conference on Electronics,
Circuits and Systems, Vol. 2, 1998, pp. 85 –188.
[4] Cheng, Z., Johnson, M., Wei, L. and Roy, K., “Estimation of Standby
Leakage Power in CMOS Circuits Considering Accurate Modeling of
Transistor Stacks”, ISLPED 98, pp. 239-244.
[5] Johnson, M., Somasekhar, D. and Roy, K., "Models and Algorithms for
Bounds in CMOS Circuits", IEEE Transactions on CAD of Integrated
Circuits and Systems, Vol. 18, No. 6, June 1999, pp. 714-725.
[6] Ye, Y., Borkar, S., and De, V., "A New Technique for Standby Leakage
Reduction in High-Performance Circuits," Symposium on VLSI Circuits,
1998, pp. 40-41.9
[8] Johnson, M., Somasekhar, D. and Roy, K., "Leakage Control With
Efficient Use of Transistor Stacks in Single Threshold CMOS ",
Proceedings of the 36th Design Automation Conference (DAC), June 1999,
pp. 442-445.
[9] Halter J., and Najm, F., "A Gate-level Leakage Power Reduction
Method for Ultra Low Power CMOS Circuits, IEEE Custom Integrated
Circuits Conference, 1997, pp. 475-478.
[10] Mutoh, S., Douskei, T., Matsuya, Y., Aoki, T., Shigematsu, S. and
Yamada J., "1-V Power Supply High-Speed Digital Circuit Technology
with Multi-threshold Voltage CMOS", IEEE Journal of Solid-state Circuits,
pp. 847-854, August 1995.
[11] Wei, L., Chen, Z., Johnson, M., Roy, K. and De, V., “Design and
Optimization of Low Voltage High Performance Dual Threshold CMOS
Circuits”, Proceedings of the 35th Design Automation Conference (DAC),
1998, pp. 489-494.
[12] Kuroda, T., et. al., "A 0.9V 150MHz 10mW 4mm2 2-D discrete cosine
transform core processor with variable threshold voltage (VT) scheme,"
IEEE Journal of Solid-State Circuits, pp. 1770-1779, November 1996.
[13] Assaderaghi, F., Sinitsky, D., Parke, S.A., Bokor, J., Ko, P.K. and Hu,
C., “Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage
VLSI”, IEEE Transactions on Electron Devices, Vol. 44, No. 3, March
1997, pp. 414 –422.
[14] J. Whittemore, J. Kim, K. A. Sakallah, “SATIRE: A New Incremental
Satisfiability Engine,” Proc. of Design Automation Conference, 542-545,
2001.
[15] T. Larrabee. Test Pattern Generation Using Boolean Satisfiability.
IEEE Transactions on Computer-Aided Design, 11:4-15, January 1992.
[16] L. Zhang, C. Madigan, M. Moskewicz, S. Malik, ”Efficient Conflict
Driven Learning in a Boolean Satisfiability Solver,” Proc. of ICCAD 2001,
Nov. 2001.

0

5

10

15

20

25

30

35

40

10% 20% 30% 40% 50% 60% 70%

Percentage of Energy Saving

N
um

be
r

of
In

st
an

ce
s

0

2

4

6

8

10

12

14

50 100 150 200 250 300 350 400 450 500

Minimum Cycles in Idle Mode

N
um

be
r

of
In

st
an

ce
s

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Runtime (x1000 seconds)

N
um

be
r

of
In

st
an

ce
s

	Main
	ISLPED02
	Front Matter
	Table of Contents
	Author Index

