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Abstract 
In this paper, we introduce a class of irredundant low power encoding 
techniques for memory address buses. The basic idea is to partition the 
memory space into a number of sectors. These sectors can, for 
example, represent address spaces for the code, heap, and stack 
segments of one or more application programs. Each address is first 
dynamically mapped to the appropriate sector and then is encoded with 
respect to the sector head. Each sector head is updated based on the last 
accessed address in that sector. The result of this sector-based encoding 
technique is a reduction in the number of bus transitions when encoding 
consecutive addresses that access different sectors. Our proposed 
techniques have small power and delay overhead when compared with 
many of the existing methods in the literature. One of our proposed 
techniques is very suitable for encoding addresses that are sent from an 
on-chip cache to the main memory when multiple application programs 
are executing on the processor in a time-sharing basis. For a computer 
system without an on-chip cache, the proposed techniques decrease the 
switching activity of data address and multiplexed address buses by an 
average of 55% and 67%, respectively. For a system with on-chip 
cache, up to 55% transition reduction is achieved on a multiplexed 
address bus between the internal cache and the external memory. 
Assuming a 10pF per line bus capacitance, we show that power 
reduction of up to 52% for an external data address bus and 42% for the 
multiplexed bus between cache and main memory is achieved using our 
methods.  

Categories and Subject Descriptors: B.4.3. [Input/output 
and data communications]: Interconnections, Interfaces. 
General Terms: Algorithms and Design. 

1  INTRODUCTION 
With the rapid increase in the complexity and speed of integrated 
circuits and the popularity of portable embedded systems, power 
consumption has become a critical design criterion. In today’s 
processors, a large number of I/O pins are dedicated to interface the 
processor core to the external memory through high-speed address and 
data buses. Compared to a general-purpose high-performance 
processor, an embedded processor has much fewer transistors 
integrated on the chip. Therefore, the amount of the energy dissipated 
at I/O pins of an embedded processor is significant when it is 
contrasted with the total power consumption of the processor. It is 
desirable to encode the values sent over these buses to decrease the 
switching activity and thereby reduce the bus power consumption. An 
encoder on the sender side does this encoding whereas a decoder on the  

receiver side is required to restore the original values. For this approach 
to be effective, the power consumed by the encoder and the decoder has 
to be much less than the power saved as a result of activity reduction on 
the bus. Furthermore, there should be little or no delay penalty. These 
constraints, which are imposed on the encoder/decoder logic, limit the 
space of possible encoding solutions.  Although numerous encoding 
techniques for instruction address buses have been reported ([2], [3], 
[4], [5], [7], [9], [10], [11], etc.), there are not as many encoding 
methods for data address or multiplexed address buses ([6], [9]).1 In the 
case of instruction address bus encoding, high temporal correlation 
between consecutive addresses is exploited to decrease the number of 
transitions on the bus. Although sequentiality is interrupted when 
control flow instructions come to execution, it is still possible to encode 
the addresses effectively because the offset (arithmetic difference) 
between consecutive addresses is typically a small integer value [1]. 
Unfortunately, there is much less correlation between consecutive data 
addresses, and the offsets are usually much larger. Therefore, reducing 
the transitions on a data address bus in the course of bus encoding is a 
much more difficult task. In multiplexed address buses, compared to 
data address buses, there is more correlation between addresses because 
of the presence of instruction addresses; thus, more reduction in activity 
can potentially be obtained when compared to data addresses. However 
presence of two different address streams (i.e., instruction and data 
addresses) with different characteristics makes the encoding complex. 

In this paper we introduce low overhead encoding methods targeting 
data address and multiplexed address buses. Our methods are 
irredundant meaning that they do not require any additional line to be 
added to the bus. This feature makes it possible to adopt our techniques 
in an existing system without making any changes to the chip pinouts 
and the designed printed circuit board. It will be seen that second group 
of our encoders are very low overhead in terms of their power 
consumption and delay. No time consuming operation like addition is 
used in them. 

The rest of this paper is organized as follows. In Section 2 the related 
works are described. Section 3 provides the insight and a top-level view 
of the proposed sector-based encoding techniques. Our encoding 
techniques are presented in Section 4. Section 5 presents experimental 
results of utilizing our techniques to encode address buses and the 
number of gates and power consumption of our encoders. Conclusion 
and some future work are discussed in Section 6. 

2 PREVIOUS WORK 
Musoll et al. proposed the working zone method in [6]. Their method 
takes advantage of the fact that data accesses tend to remain in a small 
set of working zones. For the addresses that lie in each of these zones a 
relatively high degree of locality is observed. Each working zone 
requires a dedicated register that is used to keep track of the accesses in 
that zone. When a new address arrives, the offset of this address is 

                                                 
1 A multiplexed address bus refers to a bus that is used for sending 
both instruction and data addresses. 
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calculated with respect to all zone registers. The address is, thus, 
mapped to the working zone with the smallest offset. If the offset is 
sufficiently small, one-hot encoding is performed and the result is sent 
on the bus using transition signaling (by transition signaling we mean 
that instead of sending the code itself we XOR it with the previous 
value of the bus.) Otherwise, the address itself is sent over the bus. The 
working zone method uses one extra line to show whether encoding has 
been done or the original value has been sent. It also uses additional 
lines to identify the working zone that was used to compute the offset. 
Based on this information, the decoder on the other side of the bus can 
uniquely decode the address.  

The working zone method has also the ability to detect a stride in any 
of the working zones. Stride is a constant offset that occurs between 
multiple consecutive addresses repeatedly and can be used to 
completely eliminate the switching activity for those addresses. For 
instruction addresses, stride is the difference between the addresses of 
consecutive instructions. Stride is very important when instruction 
address encoding is tackled. In fact, the large number of sequential 
instructions with constant stride is responsible for the considerable 
transition savings that is usually seen in instruction address encoding 
techniques. For data addresses, stride can happen when, for example, a 
program is accessing elements of an array in the memory. Apart from 
some special cases, detecting and utilizing strides have a very small 
impact on decreasing the switching activity of data addresses. 

The working zone method has a large area and power dissipation 
overhead due to the complexity of the decoder and encoder logic. In 
addition, it is ineffective for data address buses. This is largely due to 
the fact that offsets on a data address bus are often not small enough to 
be mapped to one-hot codes; in such a case the original address is sent 
over the bus, which usually causes many transitions on the bus.  

Another encoding method that can be used for data addresses is the 
bus-invert method [7]. Bus-invert selects between the original and the 
inverted pattern in a way that minimizes the switching activity on the 
bus. The resulting patterns together with an extra bit (to notify whether 
the address or its complement has been sent) are transition signaled 
over the bus. This technique is quite effective for reducing the number 
of 1’s in addresses with random behavior, but it is ineffective when 
addresses exhibit some degree of locality. To make the bus-invert 
method more effective, the bus can be partitioned into a handful bit-
level groups and bus-invert can be separately applied to each of these 
groups. However, this scheme will increase the number of surplus bits 
required for the encoding, which is undesirable. 

In [8], Mamidipaka et al. proposed an encoding technique based on the 
notion of self-organizing lists. They use a list to create a one-to-one 
mapping between addresses and codes. The list is reorganized in every 
clock cycle to map the most frequently used addresses to codes with 
fewer ones. For multiplexed address buses, they used a combination of 
their method and Increment-XOR [9]. In Increment-XOR, which is 
proven to be quite effective on instruction address buses, each address 
is XORed with the summation of the previous address and the stride; 
the result is then transition signaled over the bus. Obviously, when 
consecutive addresses grow by the stride, no transitions will happen on 
the bus. The size of the list in this method has a big impact on the 
performance. To achieve satisfactory results, it is necessary to use a 
long list. However, the large hardware overhead associated with 
maintaining long lists make this technique quite expensive. 
Furthermore, the encoder and the decoder hardware are practically 
complex and their power consumption appears to be quite large. 

Ramprasad et al. proposed a coding framework for low-power address 
and data buses in [9]. Although they have introduced remarkable 
methods for encoding instruction addresses, their framework does not 
introduce effective techniques for data address and multiplexed address 
buses. 

3 OVERVIEW 
In this paper we propose three sector-based encoding techniques. All 
these techniques partition the address space into disjoint sectors. Each 
address is encoded based on the sector in which it is located. Usually 
the addresses in the same sector have a tendency to be close to each 
other; this means if we encode each address with respect to the 
previous address accessed in the same sector, spatial locality enables us 
to develop an encoding technique that results in only a small number of 
transitions on the bus.  

To better explain this, consider two cases. In the first case, a trace of 
addresses, which are scattered all over the address space, is sent over a 
bus without any encoding. Because these addresses are dispersed, it is 
more likely that they have larger Hamming distances in their binary 
representations. In the second case, we partition the address space into 
two sectors so that the original trace is divided into two sub-traces 
based on this sectorization. In each sector, the addresses are closer to 
each other. If we sum up the inter-pattern transitions of these two sub-
traces, this summation will be less than the total transition count for the 
original trace. In practice, addresses are not partitioned into two sub-
traces; rather it is the function of the encoding technique to realize this 
“virtual separation” of addresses in the trace. This last statement reveals 
the key insight for the proposed sector-based encoding techniques.  

Let’s consider the data addresses for a memory system without cache. 
Each data access generated by the CPU can be either for accessing a 
data value in a stack, which is used for storing return addresses and 
local variables, or in a heap, which is used to hold the global data and 
dynamically allocated variables. The stack may reside in some memory 
segment, e.g., in the upper half of the memory, whereas the heap may 
reside in another memory segment, e.g., in the lower half of the 
memory. Let H and S denote Heap and Stack accesses, respectively. By 
H S access, we mean address bus transitions that occur when the 
stack is accessed after a heap access. S H, S S and H H are 
defined similarly. The number of bit transitions caused by H S and 
S H accesses are often higher than those for the S S and H H 
accesses. This is because the heap and stack sectors are usually placed 
very far from one another in the memory address space. Per our 
detailed simulations on benchmark programs, if we apply the Offset-
XOR encoding technique [9] to a data address bus, S H and H S 
accesses will be responsible for almost 73% of the overall bit 
transitions. Now suppose we break the trace into two parts, one 
includes accesses to the stack, whereas the other includes the accesses 
to the heap. If we apply the Offset-XOR encoding to each of these two 
traces separately and add total transitions of each trace, then up to 61% 
reduction in the switching activity will be achieved with respect to the 
undivided trace. 

A key advantage of the encoding techniques presented in this work is 
that they do not require any redundant bits. Obviously, in the codeword 
some bits are dedicated for conveying information about the sector that 
has been used as a reference for encoding. The remaining bits are used 
for encoding the offset or the difference between the new address and 
the previous address accessed in that sector. The value of the last access 
in the sector is kept in a special register called a sector head. Among 
our proposed techniques, the first two are only suitable when addresses 
accessed in two separate sectors. The first method is very general. The 
second method is not as general as the first one, but its implementation 
is much simpler and its encoder’s delay is smaller . The last method is 
an extension of the second method, which maintains its logic simplicity 
and speed, yet it can support arbitrary number of sectors at the expense 
of a marginal hardware overhead. The problem of how to partition the 
address space into disjoint sectors so that addresses are evenly 
distributed over these sectors is a critical one. As it will be explained 
shortly, in the first method, the trace partitioning is dynamically 
changed so that the encoding method can precisely track addresses in 
up to two sectors. However, in the second and third methods, the 
partitioning is done statically. Obviously, a careless partitioning can 



  

cause large chunks of addresses to lie in a single sector and a 
consequent degradation in the performance of the encoding. We will 
show how this scenario can be prevented by a novel sectorization of the 
address space. 

4 ENCODING TECHNIQUES 
4.1 Dynamic-Sector Encoder 
Our first technique, named DS, stands for Dynamic Sector encoding. 
DS encoder partitions the address space into two sectors; thus, it has 
two different sector heads. To encode an address, its offset is computed 
with respect to both sector heads. The closer sector head is chosen for 
encoding the address. The sector heads are dynamically updated. After 
the codeword is computed based on the sector head that is closer to the 
sourceword, that sector head is updated with the value of the 
sourceword, i.e., one of the sector heads always tracks the addresses. A 
detailed explanation is provided next. 

In the sequel, X and Y are assumed to be N-bit 2’s-complement 
integers. The binary digits of X are represented by X1 to XN, where XN 
is the MSB. 

Definition 1. LSB-Inv(X) is defined as: 
if  ( X>=0 ) 

LSB-Inv(X) = X 
else         

LSB-Inv(X)= X  XOR (2N-1-1)    

Definition 2. Given two N-bit integers X and Y, distance of X from 
Y is defined as follows: 
   dist(X,Y) = {R}N-1  
   sign(X,Y) = RN 

where R= LSB-Inv(X – Y). Note that dist is an (N-1)-bit integer. 
Notation {R}N-1 denotes casting R to (N-1) bits by suppressing its 
MSB. 

Definition 3. Given three N-bit integers A, B and X, we say X is 
closer to A when dist(X,A) is smaller than dist(X,B). 

Lemma 1. As X sweeps the N-bit space, half of the time X is closer 
to A and half of the time it is closer to B. If X is closer to A, X 
+2N-1will be closer to B and vice versa. 
Suppose all N-bit integers are put on the periphery of a circle in such a 
way that 2N-1 and 0 are next to each other. For any two integers X and 
Y, the length of the shortest arc between them is equal to dist(X,Y) as 
defined above. The direction of this arc, either clockwise or not, is 
shown by sign(X,Y). Based on this construction, one can easily verify 
Lemma 1.  

Definition 4. Given two arbitrary integers A and B in the N-bit 
space, we define C(X,A;B) as follows: 
 
S = Min {dist(X,A), dist(X,B)}    // S is an (N-1)-bit integer. 
 
if (dist(X,A) < dist(X,B)) 
    M = sign(X,A) 
else 
      M = sign(X,B)    // M is a single bit. 
 
if (SN-1 == 1) 
     C(X,A;B) = NOT (M || {S}N-2 ) // || is the concatenation operator. 
else 
     C(X,A;B) = M || {S}N-2    // C(X,A;B) is an (N-1)-bit integer. 
 
Lemma 2. As X sweeps the N-bit space, C(X,A;B) will sweep the 
(N-1)-bit space. Each integer in this space is covered exactly 

twice: once when X is closer to A and a second time when X is 
closer to B. 
Using Lemma 2 we explain the way the DS encoder works. We call the 
two sector heads SH1 and SH2. First, C(X,SH1;SH2) is calculated. This 
is an (N-1)-bit integer. We use the MSB bit to send the sector 
information, which is the sector whose head was closer to the address 
and was used for encoding. For example, 0 can be used for SH1 and 1 
for SH2. Lets call this bit the Sector-ID. Therefore, the DS encoder is 
defined as follows: 

// DS Encoder 
Codeword = (Sector-ID)|| C(X,SH1;SH2) 
Update the value of the SH that is closer to X with X 

This code is transition signaled over the bus (i.e., it is XORed with the 
previous value of the bus). Lemma 2 guarantees that for any arbitrary 
values of sector heads, the N-bit address is mapped to an N-bit integer 
in a one-to-one manner. As a result, it is possible to uniquely decode 
the numbers on the receiver side. 

The LSB-Inv function used in the DS code is intended to reduce the 
number of 1’s in the generated code since this code will be transition 
signaled on the bus and the number of 1’s will determine the number of 
transitions on the bus. Note that this function is applied to 2’s 
complement numbers to reduce the number of 1’s in small negative 
numbers. When applied to large negative numbers, then the number of 
1’s is increased. In practice and on average, the LSB-Inv function is 
quite effective since offsets in each sector tend to be small numbers.  

To obtain a better understanding of how the DS encoder works, let’s 
ignore the function of the LSB-Inv operator. Subsequently, C(X,A;B) 
becomes equal to a function that calculates the offset of X with respect 
to either A or B, whichever is closer and then deletes its MSB. This bit 
deletion is necessary because one bit of the codeword is used to send 
the Sector-ID; therefore, only the (N-1) remaining bits can be used for 
the offset. Using (N-1) bits each sector head covers 2N-1 numbers (we 
consider a circular address space, i.e., 2N=0). Half of the covered 
numbers are greater than the sector head and the other half are smaller 
(see Figure 1). Note that some addresses are covered twice, while some 
are not covered at all. We call the first set of addresses S1 and the 
second S2. The size of S1 is equal to the size of S2. Moreover, by adding 
2N-1 or -2N-1 to S1, it can be mapped to S2. The addresses in S1 are 
covered by both SH1 and SH2, but they are encoded with respect to the 
closer sector-head only. This means for each address in S1, one code is 
wasted. These wasted codes can be used to encode the addresses in S2. 
This is done by mapping S2 to S1 and encoding the numbers with 

respect to the sector-head, which is not closer. This makes DS a one-to-
one mapping. 

On the receiver side, the sector is directly determined based on the 
MSB bit. Then, by using the value of the corresponding sector head in 
the receiver side (the sector heads on the sender and receiver sides are 
synchronized) and the remaining (N-1) bits of the codeword, the 
sourceword X is computed. After that, it is determined whether the 

SH1

SH2

Covered by SH1

Covered by SH2

Covered by both (S1)

Covered by none (S2)

2N-1

0

 
Figure 1- Address space, two sector heads and their coverage 
sets. 



  

computed X is actually closer to the sector head that has been used for 
decoding. If true, the sourceword has been correctly calculated; 
otherwise, a value of 2N-1 should be added to X to produce the correct 
sourceword. 

// DS Decoder 
// Received Codeword after transition signaling is Z 
U = LSB-Inv ( ZN-1 || 0 || {Z}N-2 ) 
if (ZN == 0) 
 X = SH1 + U 
 If (dist(X,SH2) < dist(X,SH1)) 

X += 2N-1 
else 

X = SH2+ U 
 If (dist(X,SH1) < dist(X,SH2)) 

X += 2N-1 

if (dist(X,SH1) < dist(X,SH2)) 
             SH1=X 
else       
 SH2=X 
Table 1 shows an example of using DS to encode a three-bit address 
space. The first column denotes the original addresses (sourcewords). 
The two bold numbers in this column show the sector heads. The 
second and the third columns provide sign(X,SH) and dist(X,SH) with 
respect to the two sector heads. The fourth column shows the SH that 
has been used in calculation of C(X,SH1;SH2). The fifth column shows 
C(X,SH1;SH2). The last column shows the codewords. The MSB of the 
codewords shows the Sector-ID; 0 for the addresses that are encoded 
with respect to SH1 and 1 for those encoded with respect to SH2.   

Table 1- An example of DS mapping, for a three-bit address space 
and sector heads equal to 001 and 011. 

X sign,dist 
(X,001) 

sign,dist 
(X,011) 

SH,  
SectorID C(X,001;011) Code 

word 

000 1,00 1,10 001,0 10 0 10 

001 0,00 1,01 001,0 00 0 00 

010 0,01 1,00 011,1 10 1 10 

011 0,10 0,00 011,1 00 1 00 

100 0,11 0,01 011,1 01 1 01 

101 1,11 0,10 011,1 11 1 11 

110 1,10 0,11 001,0 01 0 01 

111 1,01 1,11 001,0 11 0 11 

4.2 Fixed-Sector Encoders  
In this section we take a look at another set of sector-based encoding 
techniques that utilize fixed partitioning of address space. In each of the 
sectors there is a sector head that is used for encoding the addresses that 
lie in the sector. These techniques, which are referred to as FS, are not 
as general as DS, in the sense that sometimes even if consecutive 
addresses are far from one another, they may end up being in the same 
sector. Subsequently, they are encoded with respect to the same sector 
head and the value of the encoding totally fades away. However, the FS 
techniques have two major advantages over DS. The first one is the 
simplicity of decoder and encoder and their negligible delay overhead 
for the memory system and the second one is the extensibility of these 
methods. DS cannot be easily extended to support four sectors. If it is 
somehow extended, the encoder/decoder will be too complex and 
costly (in terms of area, delay and power overheads) to be used for low 
power bus encoding schemes. In contrast, as it will be seen, FS can be 
easily extended to support an arbitrary number of sectors. This is 
attractive when for example the target bus is the bus between the 
internal cache and the outside memory chip. Over that bus, the 
addresses of instructions and data blocks of multiple applications are 

sent to main memories, which will makeup a trace of addresses utterly 
scattered over the address space. A sector-based encoder needs more 
than two sectors to be of use for such a bus. Therefore, the importance 
of FS encoding techniques is realized.  

4.2.1 Fixed-Two-Sector Encoder  
In the Fixed-Two-Sector (FTS) encoding, the address space is 
partitioned into two sectors. The sectors are simply lower half and 
upper half of the address space. There is one sector head for each of the 
sectors. Each sector head consists of (N-1) bits (As the MSB is known 
by default). The MSB of the address or sourceword determines the 
sector head to be used for encoding. In addition, this MSB will be equal 
to the MSB of the codeword. The remaining bits are XORed with the 
sector head to generate the codeword. As long as the address trace is 
such that distant addresses lie in different sectors and, within the 
sectors, the addresses show some degree of locality, this technique 
helps reduce the transitions. 

FTS encoder works as follows:  
// FTS encoder 
if (XN ==1) 
       Codeword = 1 || (SH2 XOR {X}N-1) 
       SH2= {X}N-1 
else  
       Codeword = 0 || (SH1 XOR {X}N-1) 
       SH1= {X}N-1 
The codeword is transition signaled over the bus. SH1 and SH2 are (N-
1)-bit numbers and they belong to lower half and upper half of the 
memory map, respectively. Therefore, the MSB of the codeword in the 
above equation will always be equal to the MSB of X. The simplicity 
of FTS comes from the fact that unlike DS, no subtraction and 
comparison operations are required to determine the sector head that is 
used. This also simplifies the decoder.  

4.2.2 Fixed-Multiple-Sector Encoder 
In Fixed-Multiple-Sector (FMS) encoding the address space is 
partitioned into multiple sectors. The number of allowed sectors is a 
power of 2.  

Consider FTS, if all addresses lie in the lower half of the memory, then 
FTS encoding degenerates to that of XORing addresses with the bus 
which clearly leads to poor performance. FMS avoids this problem by 
using two techniques. First one is increasing the number of sectors. 
This helps to reduce the probability of having distant addresses in the 
same sector. Second and more important is that FMS uses a segment-
based method to partition the address space, which further helps to 
prevent the above problem. This method is described next. 

Suppose the address space is divided into 2M sectors. If the same 
approach as FTS is used, the M most significant bits of the sourceword 
are needed to define the sectors. These bits will be the same for the 
sourceword and the codeword. The remaining bits in the sourceword 
are then XORed with the corresponding sector head to compose the 
codeword. However, the increased number of sectors may not be 
enough to evenly distribute the addresses over the sectors. Consider the 
main memory of a system with an internal cache. When compared to 
the whole address space, the main memory can be so small that it may 
totally reside in one of the 2M sectors. For this reason, we propose a 
new technique for partitioning the address space. Now, instead of using 
the MSB bits, some of the center bits in the addresses are used as 
Sector-ID bits. Implicitly, this changes the sectors from a large 
contiguous section of address space to smaller disjoint (dispersed) 
sections. We call each of these subsections a segment of the sector and 
this type of partitioning dispersed sectorization.  

Now consider the two different sectorization methods as depicted in 
Figure 2. In contiguous sectorization, the number of sectors that cover 



  

the addresses between any two arbitrary numbers in the address space 
depends on the value of those boundary numbers and number of 
sectors. However, in dispersed sectorization, the size of the segments 
will also be a decisive factor to determine the number of sectors 
between two different addresses. Even if a subsection of the address 
space is small, as long as that space includes a segment from each of 
the sectors, addresses that lie in that space can fall in any of the 2M 
sectors.  

Suppose there are 2M sectors in FMS. Each of the sector heads is an 
address bounded to one of the sectors. Consequently, M bits of each 
sector head are constant and known. Therefore, we only need (N-M) for 
storing each sector head. However, to make the following pseudo-code 
easier to understand we assume that sector heads are also N-bit 
numbers and those bits that are in the position of the sector-ID bits are 
all zeros. We implicitly know the sector to which each sector head 
belongs. The Sector-ID bits in the sourceword are used to select the 
correct sector head for codeword calculation and they have to be copied 
to the codeword exactly as they are. When these bits are XORed with 
corresponding zeros in the sector head, they do not change. 

// FMS encoder 
// 2M sectors, 2M Sector Heads, SH[1]…SH[2M] 
// Sector-ID bits: Xi+M…Xi+1  ( An M-bit number) 
Codeword = X XOR SH[Xi+M…Xi+1] 
Update SH[Xi+M…Xi+1] with X and make the Sector-ID bits zero. 
 
A basic question to ask is, “Which bits do we use for Sector-ID?” The 
number of bits defines the number and size of sectors. The location of 
bits defines the number and size of segments. In the sequel, we 
consider a bus between an internal cache and an external memory. We 
determine a range for the Sector-ID bits. As long as the Sector-ID bits 
are within that range, the reduction in switching activity will be almost 
the same. 
We assume that Sector-ID bits are M contiguous bits in the address. 
Shifting the position of the Sector-ID bits to right will make the 
segments smaller. A main memory usually occupies a small portion of 
the address space. The segments should be small enough so that one 
segment of each sector goes into the space taken by the memory. On 
the other hand, the Sector-ID bits should be shifted to left to make each 
segment at least as large as one physical page in the memory paging 
system. Although consecutive pages in virtual addressing can be far 
from each other when they are translated to physical memory 
addresses, all the addresses that are in the same physical page will be 
very close. Suppose that multiple programs are executed. All cache 
misses cause requests to the external memory. Whenever a program is 
switched out and a new program is executed, many second level misses 
happen that read the code and data of the new program form 
consecutive blocks in physical pages. The dispersed sectorization 
scheme should work in a fashion to put all of these addresses in the 
same sector. As long as the Sector-ID bits satisfy the two 
aforementioned constraints, a good performance will be achieved. 

5 EXPERMINETAL RESULTS 
To evaluate our encoding techniques, we simulated SPEC2000 
benchmark programs [13] using the simplescalar simulator [12]. The 
results are based on averaging over six programs named vpr, parser, 
equake, vortex, gcc and art. We generated three different kinds of 
address traces. These traces represent different memory configurations. 
The first two traces were generated for a memory system without an 
on-chip cache and are traces of data and multiplexed addresses, 
respectively. A data address trace includes all data accesses and 
assumes that data and instruction buses are separate. A multiplexed 
address trace includes all instruction and data addresses. The third set 
of traces was generated for a system with two levels of internal caches 
and a memory management unit that translates second level cache 
misses into physical addresses. The second level cache is a unified 
cache; therefore, addresses that miss this cache are either instruction or 
data addresses requesting for data and instruction blocks. 

 We have compared our proposed techniques with the Working Zone 
method with two registers or briefly WZE-2. We first show a detailed 
comparison of our techniques and WZE-2 when applied over the data 
address traces. After that we present the final results of comparison of 
our techniques and WZE-2 for all traces. 

 In Table 2 the detailed results have been shown for data address traces 
(no cache). For each trace we have shown the original number of 
transitions (Base) and the number of suppressed transitions after 
applying different techniques. We have also shown the percentage 
reduction in the total number of transitions for each set of traces and 
each encoding technique.  

Table 2- Total suppressed transitions (in millions) and percentage 
savings for traces of data address (without cache).  

 Base WZE-2 DS FTS FMS 
26.13 40.31 41.11 37.71 vpr 72.37 
36.1% 55.7% 56.8% 52.1% 
28.09 52.69 53.16 51.25 parser 79.58 
35.3% 66.2% 66.8% 64.4% 
11.37 29.17 32.35 25.31 equake 67.68 
16.8% 43.1% 47.8% 37.4% 
17.00 34.53 39.58 41.15 vortex 87.18 
19.5% 39.6% 45.4% 47.2% 
11.09 32.87 37.16 31.61 gcc 65.99 
16.8% 49.8% 56.3% 47.9% 
12.89 41.65 49.13 45.48 art 83.13 
15.5% 50.1% 59.1% 54.7% 

Average 0% 23% 51% 55% 51% 

 
The same procedure has been repeated for two other sets of traces and 
the results are shown in Table 3. The numbers in parentheses in the 
FMS column shows the number of Sector-ID bits that have been used. 
As one can see, for data addresses and multiplexed addresses our 
techniques outperform the WZE-2. For the multiplexed address bus 
with a cache, FMS performs significantly better than the other 
techniques. 

Table 3- Average transition saving for different techniques. 
 WZ-2 DS FTS FMS 

Data Address 
(No Cache) 23% 51% 55% 51%(1) 

Multiplexed Address 
(No Cache) 47% 41% 52% 67%(3) 

Multiplexed Address 
(Cache) 16% 19% 6% 55%(3) 

Figures 2 and 3 depict the encoders for DS and FMS, respectively. The 
encoder for FTS has not been shown because of its similarity with the 
FMS encoder. The signals have been tagged with the bits they carry. 

 
Figure 2- Comparison of contiguous versus dispersed



  

For example 32,30 1 represents bit 32 and bits 30 to 1. To better 
compare the overhead of these techniques, we made a comparison 
between the power consumption of the encoders. For this, all three 
encoders and decoders were designed and their netlists were generated 
in Berkeley Logic Interchange Format (BLIF). The netlists were 
optimized using SIS script.rugged and mapped to a 1.5-volt 0.18u 
CMOS library using the SIS technology mapper. The I/O voltage was 
assumed to be 3.3 volts. The address traces were fed into a gate-level 
simulation program called sim-power to estimate the power 
consumption of the encoders and decoders. The clock frequency was 50 
MHZ. We also calculated the power dissipated on the bus in absence of 
any encoding. We assumed a 10pF capacitance per bus line. Different 
bus configurations were assumed for evaluation of different encoding 
techniques. For DS and FTS we assumed a data address bus without 
any internal cache. For FMS we experimented over the multiplexed bus 
between cache and main memory. FMS was the most efficient 
technique for this bus. The results are shown in Table 4. The reduced 
bus power shows the power after encoding. The last column shows the 
percentage power saving after considering the extra overhead of 
decoder and encoder for different techniques. 

Given the fact that Working-Zone encoder needs several subtractors for 
calculating offsets with respect to zone registers, several comparators 
for choosing the zone register with the smallest offset, a subtractor and 
several registers and comparators for detecting the stride, and a special 
table for encoding the offset to a one-hot code, its overhead will be 
much higher than that of our sector-based encoders. 

Table 4- Percentage Power Saving for Different Techniques 
 Original Bus 

Power (mW) 
Encoder 
Power  

Reduced Bus Power 
(after encoding) 

Power 
Saving 

DS 13.7  0.67 6.71 41% 
FTS 13.7 0.24 6.16 52% 
FMS 6.7 0.41 3.01 42% 

In terms of delay and area, FMS produces the best results. It only 
consists of four levels of logic, whereas the encoding techniques that 
require adding addresses or incrementing them ([2],[3],[6], etc.) need 
more than ten levels of logic for a 32-bit bus. The following table 
shows the number of gates and area required for each of the sector-
based encoders.  

Table 5- Comparison of the encoder hardware for the proposed 
techniques 

 Number of gates Area (* 1000) 
DS 505 488.7 
FTS 256 205.8 
FMS 313 282.7 

6 CONCLUSION 
In this paper, we proposed a new approach toward bus encoding by 
sectorization of address space. The sectorization can be either dynamic 
or fixed. We compared different approaches in terms of power, speed 
and extensibility. For the multiple fixed-sector method, we introduced a 
technique that partitions the sectors evenly. We also showed that using 
our methods up to 52% power reduction for an external data address 
bus and 42% reduction for a multiplexed bus between internal cache 
and external memory can be achieved. 
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Figure 3- DS Encoder 
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Figure 4- FMS Encoder 
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