

Reducing Transitions on Memory Buses Using
Sector-based Encoding Technique

Yazdan Aghaghiri
University of Southern California

3740 McClintock Ave
Los Angeles, CA 90089

yazdan@sahand.usc.edu

Farzan Fallah
Fujitsu Laboratories of America

595 Lawrence Expressway
Sunnyvale, CA 94086

farzan@fla.fujitsu.com

Massoud Pedram
University of Southern California

3740 McClintock Ave
Los Angeles, CA 90089

pedram@ceng.usc.edu

Abstract
In this paper, we introduce a class of irredundant low power encoding
techniques for memory address buses. The basic idea is to partition the
memory space into a number of sectors. These sectors can, for
example, represent address spaces for the code, heap, and stack
segments of one or more application programs. Each address is first
dynamically mapped to the appropriate sector and then is encoded with
respect to the sector head. Each sector head is updated based on the last
accessed address in that sector. The result of this sector-based encoding
technique is a reduction in the number of bus transitions when encoding
consecutive addresses that access different sectors. Our proposed
techniques have small power and delay overhead when compared with
many of the existing methods in the literature. One of our proposed
techniques is very suitable for encoding addresses that are sent from an
on-chip cache to the main memory when multiple application programs
are executing on the processor in a time-sharing basis. For a computer
system without an on-chip cache, the proposed techniques decrease the
switching activity of data address and multiplexed address buses by an
average of 55% and 67%, respectively. For a system with on-chip
cache, up to 55% transition reduction is achieved on a multiplexed
address bus between the internal cache and the external memory.
Assuming a 10pF per line bus capacitance, we show that power
reduction of up to 52% for an external data address bus and 42% for the
multiplexed bus between cache and main memory is achieved using our
methods.

Categories and Subject Descriptors: B.4.3. [Input/output
and data communications]: Interconnections, Interfaces.
General Terms: Algorithms and Design.

1 INTRODUCTION
With the rapid increase in the complexity and speed of integrated
circuits and the popularity of portable embedded systems, power
consumption has become a critical design criterion. In today’s
processors, a large number of I/O pins are dedicated to interface the
processor core to the external memory through high-speed address and
data buses. Compared to a general-purpose high-performance
processor, an embedded processor has much fewer transistors
integrated on the chip. Therefore, the amount of the energy dissipated
at I/O pins of an embedded processor is significant when it is
contrasted with the total power consumption of the processor. It is
desirable to encode the values sent over these buses to decrease the
switching activity and thereby reduce the bus power consumption. An
encoder on the sender side does this encoding whereas a decoder on the

receiver side is required to restore the original values. For this approach
to be effective, the power consumed by the encoder and the decoder has
to be much less than the power saved as a result of activity reduction on
the bus. Furthermore, there should be little or no delay penalty. These
constraints, which are imposed on the encoder/decoder logic, limit the
space of possible encoding solutions. Although numerous encoding
techniques for instruction address buses have been reported ([2], [3],
[4], [5], [7], [9], [10], [11], etc.), there are not as many encoding
methods for data address or multiplexed address buses ([6], [9]).1 In the
case of instruction address bus encoding, high temporal correlation
between consecutive addresses is exploited to decrease the number of
transitions on the bus. Although sequentiality is interrupted when
control flow instructions come to execution, it is still possible to encode
the addresses effectively because the offset (arithmetic difference)
between consecutive addresses is typically a small integer value [1].
Unfortunately, there is much less correlation between consecutive data
addresses, and the offsets are usually much larger. Therefore, reducing
the transitions on a data address bus in the course of bus encoding is a
much more difficult task. In multiplexed address buses, compared to
data address buses, there is more correlation between addresses because
of the presence of instruction addresses; thus, more reduction in activity
can potentially be obtained when compared to data addresses. However
presence of two different address streams (i.e., instruction and data
addresses) with different characteristics makes the encoding complex.

In this paper we introduce low overhead encoding methods targeting
data address and multiplexed address buses. Our methods are
irredundant meaning that they do not require any additional line to be
added to the bus. This feature makes it possible to adopt our techniques
in an existing system without making any changes to the chip pinouts
and the designed printed circuit board. It will be seen that second group
of our encoders are very low overhead in terms of their power
consumption and delay. No time consuming operation like addition is
used in them.

The rest of this paper is organized as follows. In Section 2 the related
works are described. Section 3 provides the insight and a top-level view
of the proposed sector-based encoding techniques. Our encoding
techniques are presented in Section 4. Section 5 presents experimental
results of utilizing our techniques to encode address buses and the
number of gates and power consumption of our encoders. Conclusion
and some future work are discussed in Section 6.

2 PREVIOUS WORK
Musoll et al. proposed the working zone method in [6]. Their method
takes advantage of the fact that data accesses tend to remain in a small
set of working zones. For the addresses that lie in each of these zones a
relatively high degree of locality is observed. Each working zone
requires a dedicated register that is used to keep track of the accesses in
that zone. When a new address arrives, the offset of this address is

1 A multiplexed address bus refers to a bus that is used for sending
both instruction and data addresses.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’02, August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008…$5.00.

calculated with respect to all zone registers. The address is, thus,
mapped to the working zone with the smallest offset. If the offset is
sufficiently small, one-hot encoding is performed and the result is sent
on the bus using transition signaling (by transition signaling we mean
that instead of sending the code itself we XOR it with the previous
value of the bus.) Otherwise, the address itself is sent over the bus. The
working zone method uses one extra line to show whether encoding has
been done or the original value has been sent. It also uses additional
lines to identify the working zone that was used to compute the offset.
Based on this information, the decoder on the other side of the bus can
uniquely decode the address.

The working zone method has also the ability to detect a stride in any
of the working zones. Stride is a constant offset that occurs between
multiple consecutive addresses repeatedly and can be used to
completely eliminate the switching activity for those addresses. For
instruction addresses, stride is the difference between the addresses of
consecutive instructions. Stride is very important when instruction
address encoding is tackled. In fact, the large number of sequential
instructions with constant stride is responsible for the considerable
transition savings that is usually seen in instruction address encoding
techniques. For data addresses, stride can happen when, for example, a
program is accessing elements of an array in the memory. Apart from
some special cases, detecting and utilizing strides have a very small
impact on decreasing the switching activity of data addresses.

The working zone method has a large area and power dissipation
overhead due to the complexity of the decoder and encoder logic. In
addition, it is ineffective for data address buses. This is largely due to
the fact that offsets on a data address bus are often not small enough to
be mapped to one-hot codes; in such a case the original address is sent
over the bus, which usually causes many transitions on the bus.

Another encoding method that can be used for data addresses is the
bus-invert method [7]. Bus-invert selects between the original and the
inverted pattern in a way that minimizes the switching activity on the
bus. The resulting patterns together with an extra bit (to notify whether
the address or its complement has been sent) are transition signaled
over the bus. This technique is quite effective for reducing the number
of 1’s in addresses with random behavior, but it is ineffective when
addresses exhibit some degree of locality. To make the bus-invert
method more effective, the bus can be partitioned into a handful bit-
level groups and bus-invert can be separately applied to each of these
groups. However, this scheme will increase the number of surplus bits
required for the encoding, which is undesirable.

In [8], Mamidipaka et al. proposed an encoding technique based on the
notion of self-organizing lists. They use a list to create a one-to-one
mapping between addresses and codes. The list is reorganized in every
clock cycle to map the most frequently used addresses to codes with
fewer ones. For multiplexed address buses, they used a combination of
their method and Increment-XOR [9]. In Increment-XOR, which is
proven to be quite effective on instruction address buses, each address
is XORed with the summation of the previous address and the stride;
the result is then transition signaled over the bus. Obviously, when
consecutive addresses grow by the stride, no transitions will happen on
the bus. The size of the list in this method has a big impact on the
performance. To achieve satisfactory results, it is necessary to use a
long list. However, the large hardware overhead associated with
maintaining long lists make this technique quite expensive.
Furthermore, the encoder and the decoder hardware are practically
complex and their power consumption appears to be quite large.

Ramprasad et al. proposed a coding framework for low-power address
and data buses in [9]. Although they have introduced remarkable
methods for encoding instruction addresses, their framework does not
introduce effective techniques for data address and multiplexed address
buses.

3 OVERVIEW
In this paper we propose three sector-based encoding techniques. All
these techniques partition the address space into disjoint sectors. Each
address is encoded based on the sector in which it is located. Usually
the addresses in the same sector have a tendency to be close to each
other; this means if we encode each address with respect to the
previous address accessed in the same sector, spatial locality enables us
to develop an encoding technique that results in only a small number of
transitions on the bus.

To better explain this, consider two cases. In the first case, a trace of
addresses, which are scattered all over the address space, is sent over a
bus without any encoding. Because these addresses are dispersed, it is
more likely that they have larger Hamming distances in their binary
representations. In the second case, we partition the address space into
two sectors so that the original trace is divided into two sub-traces
based on this sectorization. In each sector, the addresses are closer to
each other. If we sum up the inter-pattern transitions of these two sub-
traces, this summation will be less than the total transition count for the
original trace. In practice, addresses are not partitioned into two sub-
traces; rather it is the function of the encoding technique to realize this
“virtual separation” of addresses in the trace. This last statement reveals
the key insight for the proposed sector-based encoding techniques.

Let’s consider the data addresses for a memory system without cache.
Each data access generated by the CPU can be either for accessing a
data value in a stack, which is used for storing return addresses and
local variables, or in a heap, which is used to hold the global data and
dynamically allocated variables. The stack may reside in some memory
segment, e.g., in the upper half of the memory, whereas the heap may
reside in another memory segment, e.g., in the lower half of the
memory. Let H and S denote Heap and Stack accesses, respectively. By
H S access, we mean address bus transitions that occur when the
stack is accessed after a heap access. S H, S S and H H are
defined similarly. The number of bit transitions caused by H S and
S H accesses are often higher than those for the S S and H H
accesses. This is because the heap and stack sectors are usually placed
very far from one another in the memory address space. Per our
detailed simulations on benchmark programs, if we apply the Offset-
XOR encoding technique [9] to a data address bus, S H and H S
accesses will be responsible for almost 73% of the overall bit
transitions. Now suppose we break the trace into two parts, one
includes accesses to the stack, whereas the other includes the accesses
to the heap. If we apply the Offset-XOR encoding to each of these two
traces separately and add total transitions of each trace, then up to 61%
reduction in the switching activity will be achieved with respect to the
undivided trace.

A key advantage of the encoding techniques presented in this work is
that they do not require any redundant bits. Obviously, in the codeword
some bits are dedicated for conveying information about the sector that
has been used as a reference for encoding. The remaining bits are used
for encoding the offset or the difference between the new address and
the previous address accessed in that sector. The value of the last access
in the sector is kept in a special register called a sector head. Among
our proposed techniques, the first two are only suitable when addresses
accessed in two separate sectors. The first method is very general. The
second method is not as general as the first one, but its implementation
is much simpler and its encoder’s delay is smaller . The last method is
an extension of the second method, which maintains its logic simplicity
and speed, yet it can support arbitrary number of sectors at the expense
of a marginal hardware overhead. The problem of how to partition the
address space into disjoint sectors so that addresses are evenly
distributed over these sectors is a critical one. As it will be explained
shortly, in the first method, the trace partitioning is dynamically
changed so that the encoding method can precisely track addresses in
up to two sectors. However, in the second and third methods, the
partitioning is done statically. Obviously, a careless partitioning can

cause large chunks of addresses to lie in a single sector and a
consequent degradation in the performance of the encoding. We will
show how this scenario can be prevented by a novel sectorization of the
address space.

4 ENCODING TECHNIQUES
4.1 Dynamic-Sector Encoder
Our first technique, named DS, stands for Dynamic Sector encoding.
DS encoder partitions the address space into two sectors; thus, it has
two different sector heads. To encode an address, its offset is computed
with respect to both sector heads. The closer sector head is chosen for
encoding the address. The sector heads are dynamically updated. After
the codeword is computed based on the sector head that is closer to the
sourceword, that sector head is updated with the value of the
sourceword, i.e., one of the sector heads always tracks the addresses. A
detailed explanation is provided next.

In the sequel, X and Y are assumed to be N-bit 2’s-complement
integers. The binary digits of X are represented by X1 to XN, where XN
is the MSB.

Definition 1. LSB-Inv(X) is defined as:
if (X>=0)

LSB-Inv(X) = X
else

LSB-Inv(X)= X XOR (2N-1-1)

Definition 2. Given two N-bit integers X and Y, distance of X from
Y is defined as follows:
 dist(X,Y) = {R}N-1
 sign(X,Y) = RN

where R= LSB-Inv(X – Y). Note that dist is an (N-1)-bit integer.
Notation {R}N-1 denotes casting R to (N-1) bits by suppressing its
MSB.

Definition 3. Given three N-bit integers A, B and X, we say X is
closer to A when dist(X,A) is smaller than dist(X,B).

Lemma 1. As X sweeps the N-bit space, half of the time X is closer
to A and half of the time it is closer to B. If X is closer to A, X
+2N-1will be closer to B and vice versa.
Suppose all N-bit integers are put on the periphery of a circle in such a
way that 2N-1 and 0 are next to each other. For any two integers X and
Y, the length of the shortest arc between them is equal to dist(X,Y) as
defined above. The direction of this arc, either clockwise or not, is
shown by sign(X,Y). Based on this construction, one can easily verify
Lemma 1.

Definition 4. Given two arbitrary integers A and B in the N-bit
space, we define C(X,A;B) as follows:

S = Min {dist(X,A), dist(X,B)} // S is an (N-1)-bit integer.

if (dist(X,A) < dist(X,B))
 M = sign(X,A)
else
 M = sign(X,B) // M is a single bit.

if (SN-1 == 1)
 C(X,A;B) = NOT (M || {S}N-2) // || is the concatenation operator.
else
 C(X,A;B) = M || {S}N-2 // C(X,A;B) is an (N-1)-bit integer.

Lemma 2. As X sweeps the N-bit space, C(X,A;B) will sweep the
(N-1)-bit space. Each integer in this space is covered exactly

twice: once when X is closer to A and a second time when X is
closer to B.
Using Lemma 2 we explain the way the DS encoder works. We call the
two sector heads SH1 and SH2. First, C(X,SH1;SH2) is calculated. This
is an (N-1)-bit integer. We use the MSB bit to send the sector
information, which is the sector whose head was closer to the address
and was used for encoding. For example, 0 can be used for SH1 and 1
for SH2. Lets call this bit the Sector-ID. Therefore, the DS encoder is
defined as follows:

// DS Encoder
Codeword = (Sector-ID)|| C(X,SH1;SH2)
Update the value of the SH that is closer to X with X

This code is transition signaled over the bus (i.e., it is XORed with the
previous value of the bus). Lemma 2 guarantees that for any arbitrary
values of sector heads, the N-bit address is mapped to an N-bit integer
in a one-to-one manner. As a result, it is possible to uniquely decode
the numbers on the receiver side.

The LSB-Inv function used in the DS code is intended to reduce the
number of 1’s in the generated code since this code will be transition
signaled on the bus and the number of 1’s will determine the number of
transitions on the bus. Note that this function is applied to 2’s
complement numbers to reduce the number of 1’s in small negative
numbers. When applied to large negative numbers, then the number of
1’s is increased. In practice and on average, the LSB-Inv function is
quite effective since offsets in each sector tend to be small numbers.

To obtain a better understanding of how the DS encoder works, let’s
ignore the function of the LSB-Inv operator. Subsequently, C(X,A;B)
becomes equal to a function that calculates the offset of X with respect
to either A or B, whichever is closer and then deletes its MSB. This bit
deletion is necessary because one bit of the codeword is used to send
the Sector-ID; therefore, only the (N-1) remaining bits can be used for
the offset. Using (N-1) bits each sector head covers 2N-1 numbers (we
consider a circular address space, i.e., 2N=0). Half of the covered
numbers are greater than the sector head and the other half are smaller
(see Figure 1). Note that some addresses are covered twice, while some
are not covered at all. We call the first set of addresses S1 and the
second S2. The size of S1 is equal to the size of S2. Moreover, by adding
2N-1 or -2N-1 to S1, it can be mapped to S2. The addresses in S1 are
covered by both SH1 and SH2, but they are encoded with respect to the
closer sector-head only. This means for each address in S1, one code is
wasted. These wasted codes can be used to encode the addresses in S2.
This is done by mapping S2 to S1 and encoding the numbers with

respect to the sector-head, which is not closer. This makes DS a one-to-
one mapping.

On the receiver side, the sector is directly determined based on the
MSB bit. Then, by using the value of the corresponding sector head in
the receiver side (the sector heads on the sender and receiver sides are
synchronized) and the remaining (N-1) bits of the codeword, the
sourceword X is computed. After that, it is determined whether the

SH1

SH2

Covered by SH1

Covered by SH2

Covered by both (S1)

Covered by none (S2)

2N-1

0

Figure 1- Address space, two sector heads and their coverage
sets.

computed X is actually closer to the sector head that has been used for
decoding. If true, the sourceword has been correctly calculated;
otherwise, a value of 2N-1 should be added to X to produce the correct
sourceword.

// DS Decoder
// Received Codeword after transition signaling is Z
U = LSB-Inv (ZN-1 || 0 || {Z}N-2)
if (ZN == 0)
 X = SH1 + U
 If (dist(X,SH2) < dist(X,SH1))

X += 2N-1
else

X = SH2+ U
 If (dist(X,SH1) < dist(X,SH2))

X += 2N-1

if (dist(X,SH1) < dist(X,SH2))
 SH1=X
else
 SH2=X
Table 1 shows an example of using DS to encode a three-bit address
space. The first column denotes the original addresses (sourcewords).
The two bold numbers in this column show the sector heads. The
second and the third columns provide sign(X,SH) and dist(X,SH) with
respect to the two sector heads. The fourth column shows the SH that
has been used in calculation of C(X,SH1;SH2). The fifth column shows
C(X,SH1;SH2). The last column shows the codewords. The MSB of the
codewords shows the Sector-ID; 0 for the addresses that are encoded
with respect to SH1 and 1 for those encoded with respect to SH2.

Table 1- An example of DS mapping, for a three-bit address space
and sector heads equal to 001 and 011.

X sign,dist
(X,001)

sign,dist
(X,011)

SH,
SectorID C(X,001;011) Code

word

000 1,00 1,10 001,0 10 0 10

001 0,00 1,01 001,0 00 0 00

010 0,01 1,00 011,1 10 1 10

011 0,10 0,00 011,1 00 1 00

100 0,11 0,01 011,1 01 1 01

101 1,11 0,10 011,1 11 1 11

110 1,10 0,11 001,0 01 0 01

111 1,01 1,11 001,0 11 0 11

4.2 Fixed-Sector Encoders
In this section we take a look at another set of sector-based encoding
techniques that utilize fixed partitioning of address space. In each of the
sectors there is a sector head that is used for encoding the addresses that
lie in the sector. These techniques, which are referred to as FS, are not
as general as DS, in the sense that sometimes even if consecutive
addresses are far from one another, they may end up being in the same
sector. Subsequently, they are encoded with respect to the same sector
head and the value of the encoding totally fades away. However, the FS
techniques have two major advantages over DS. The first one is the
simplicity of decoder and encoder and their negligible delay overhead
for the memory system and the second one is the extensibility of these
methods. DS cannot be easily extended to support four sectors. If it is
somehow extended, the encoder/decoder will be too complex and
costly (in terms of area, delay and power overheads) to be used for low
power bus encoding schemes. In contrast, as it will be seen, FS can be
easily extended to support an arbitrary number of sectors. This is
attractive when for example the target bus is the bus between the
internal cache and the outside memory chip. Over that bus, the
addresses of instructions and data blocks of multiple applications are

sent to main memories, which will makeup a trace of addresses utterly
scattered over the address space. A sector-based encoder needs more
than two sectors to be of use for such a bus. Therefore, the importance
of FS encoding techniques is realized.

4.2.1 Fixed-Two-Sector Encoder
In the Fixed-Two-Sector (FTS) encoding, the address space is
partitioned into two sectors. The sectors are simply lower half and
upper half of the address space. There is one sector head for each of the
sectors. Each sector head consists of (N-1) bits (As the MSB is known
by default). The MSB of the address or sourceword determines the
sector head to be used for encoding. In addition, this MSB will be equal
to the MSB of the codeword. The remaining bits are XORed with the
sector head to generate the codeword. As long as the address trace is
such that distant addresses lie in different sectors and, within the
sectors, the addresses show some degree of locality, this technique
helps reduce the transitions.

FTS encoder works as follows:
// FTS encoder
if (XN ==1)
 Codeword = 1 || (SH2 XOR {X}N-1)
 SH2= {X}N-1
else
 Codeword = 0 || (SH1 XOR {X}N-1)
 SH1= {X}N-1
The codeword is transition signaled over the bus. SH1 and SH2 are (N-
1)-bit numbers and they belong to lower half and upper half of the
memory map, respectively. Therefore, the MSB of the codeword in the
above equation will always be equal to the MSB of X. The simplicity
of FTS comes from the fact that unlike DS, no subtraction and
comparison operations are required to determine the sector head that is
used. This also simplifies the decoder.

4.2.2 Fixed-Multiple-Sector Encoder
In Fixed-Multiple-Sector (FMS) encoding the address space is
partitioned into multiple sectors. The number of allowed sectors is a
power of 2.

Consider FTS, if all addresses lie in the lower half of the memory, then
FTS encoding degenerates to that of XORing addresses with the bus
which clearly leads to poor performance. FMS avoids this problem by
using two techniques. First one is increasing the number of sectors.
This helps to reduce the probability of having distant addresses in the
same sector. Second and more important is that FMS uses a segment-
based method to partition the address space, which further helps to
prevent the above problem. This method is described next.

Suppose the address space is divided into 2M sectors. If the same
approach as FTS is used, the M most significant bits of the sourceword
are needed to define the sectors. These bits will be the same for the
sourceword and the codeword. The remaining bits in the sourceword
are then XORed with the corresponding sector head to compose the
codeword. However, the increased number of sectors may not be
enough to evenly distribute the addresses over the sectors. Consider the
main memory of a system with an internal cache. When compared to
the whole address space, the main memory can be so small that it may
totally reside in one of the 2M sectors. For this reason, we propose a
new technique for partitioning the address space. Now, instead of using
the MSB bits, some of the center bits in the addresses are used as
Sector-ID bits. Implicitly, this changes the sectors from a large
contiguous section of address space to smaller disjoint (dispersed)
sections. We call each of these subsections a segment of the sector and
this type of partitioning dispersed sectorization.

Now consider the two different sectorization methods as depicted in
Figure 2. In contiguous sectorization, the number of sectors that cover

the addresses between any two arbitrary numbers in the address space
depends on the value of those boundary numbers and number of
sectors. However, in dispersed sectorization, the size of the segments
will also be a decisive factor to determine the number of sectors
between two different addresses. Even if a subsection of the address
space is small, as long as that space includes a segment from each of
the sectors, addresses that lie in that space can fall in any of the 2M
sectors.

Suppose there are 2M sectors in FMS. Each of the sector heads is an
address bounded to one of the sectors. Consequently, M bits of each
sector head are constant and known. Therefore, we only need (N-M) for
storing each sector head. However, to make the following pseudo-code
easier to understand we assume that sector heads are also N-bit
numbers and those bits that are in the position of the sector-ID bits are
all zeros. We implicitly know the sector to which each sector head
belongs. The Sector-ID bits in the sourceword are used to select the
correct sector head for codeword calculation and they have to be copied
to the codeword exactly as they are. When these bits are XORed with
corresponding zeros in the sector head, they do not change.

// FMS encoder
// 2M sectors, 2M Sector Heads, SH[1]…SH[2M]
// Sector-ID bits: Xi+M…Xi+1 (An M-bit number)
Codeword = X XOR SH[Xi+M…Xi+1]
Update SH[Xi+M…Xi+1] with X and make the Sector-ID bits zero.

A basic question to ask is, “Which bits do we use for Sector-ID?” The
number of bits defines the number and size of sectors. The location of
bits defines the number and size of segments. In the sequel, we
consider a bus between an internal cache and an external memory. We
determine a range for the Sector-ID bits. As long as the Sector-ID bits
are within that range, the reduction in switching activity will be almost
the same.
We assume that Sector-ID bits are M contiguous bits in the address.
Shifting the position of the Sector-ID bits to right will make the
segments smaller. A main memory usually occupies a small portion of
the address space. The segments should be small enough so that one
segment of each sector goes into the space taken by the memory. On
the other hand, the Sector-ID bits should be shifted to left to make each
segment at least as large as one physical page in the memory paging
system. Although consecutive pages in virtual addressing can be far
from each other when they are translated to physical memory
addresses, all the addresses that are in the same physical page will be
very close. Suppose that multiple programs are executed. All cache
misses cause requests to the external memory. Whenever a program is
switched out and a new program is executed, many second level misses
happen that read the code and data of the new program form
consecutive blocks in physical pages. The dispersed sectorization
scheme should work in a fashion to put all of these addresses in the
same sector. As long as the Sector-ID bits satisfy the two
aforementioned constraints, a good performance will be achieved.

5 EXPERMINETAL RESULTS
To evaluate our encoding techniques, we simulated SPEC2000
benchmark programs [13] using the simplescalar simulator [12]. The
results are based on averaging over six programs named vpr, parser,
equake, vortex, gcc and art. We generated three different kinds of
address traces. These traces represent different memory configurations.
The first two traces were generated for a memory system without an
on-chip cache and are traces of data and multiplexed addresses,
respectively. A data address trace includes all data accesses and
assumes that data and instruction buses are separate. A multiplexed
address trace includes all instruction and data addresses. The third set
of traces was generated for a system with two levels of internal caches
and a memory management unit that translates second level cache
misses into physical addresses. The second level cache is a unified
cache; therefore, addresses that miss this cache are either instruction or
data addresses requesting for data and instruction blocks.

 We have compared our proposed techniques with the Working Zone
method with two registers or briefly WZE-2. We first show a detailed
comparison of our techniques and WZE-2 when applied over the data
address traces. After that we present the final results of comparison of
our techniques and WZE-2 for all traces.

 In Table 2 the detailed results have been shown for data address traces
(no cache). For each trace we have shown the original number of
transitions (Base) and the number of suppressed transitions after
applying different techniques. We have also shown the percentage
reduction in the total number of transitions for each set of traces and
each encoding technique.

Table 2- Total suppressed transitions (in millions) and percentage
savings for traces of data address (without cache).

 Base WZE-2 DS FTS FMS
26.13 40.31 41.11 37.71 vpr 72.37
36.1% 55.7% 56.8% 52.1%
28.09 52.69 53.16 51.25 parser 79.58
35.3% 66.2% 66.8% 64.4%
11.37 29.17 32.35 25.31 equake 67.68
16.8% 43.1% 47.8% 37.4%
17.00 34.53 39.58 41.15 vortex 87.18
19.5% 39.6% 45.4% 47.2%
11.09 32.87 37.16 31.61 gcc 65.99
16.8% 49.8% 56.3% 47.9%
12.89 41.65 49.13 45.48 art 83.13
15.5% 50.1% 59.1% 54.7%

Average 0% 23% 51% 55% 51%

The same procedure has been repeated for two other sets of traces and
the results are shown in Table 3. The numbers in parentheses in the
FMS column shows the number of Sector-ID bits that have been used.
As one can see, for data addresses and multiplexed addresses our
techniques outperform the WZE-2. For the multiplexed address bus
with a cache, FMS performs significantly better than the other
techniques.

Table 3- Average transition saving for different techniques.
 WZ-2 DS FTS FMS

Data Address
(No Cache) 23% 51% 55% 51%(1)

Multiplexed Address
(No Cache) 47% 41% 52% 67%(3)

Multiplexed Address
(Cache) 16% 19% 6% 55%(3)

Figures 2 and 3 depict the encoders for DS and FMS, respectively. The
encoder for FTS has not been shown because of its similarity with the
FMS encoder. The signals have been tagged with the bits they carry.

Figure 2- Comparison of contiguous versus dispersed

For example 32,30 1 represents bit 32 and bits 30 to 1. To better
compare the overhead of these techniques, we made a comparison
between the power consumption of the encoders. For this, all three
encoders and decoders were designed and their netlists were generated
in Berkeley Logic Interchange Format (BLIF). The netlists were
optimized using SIS script.rugged and mapped to a 1.5-volt 0.18u
CMOS library using the SIS technology mapper. The I/O voltage was
assumed to be 3.3 volts. The address traces were fed into a gate-level
simulation program called sim-power to estimate the power
consumption of the encoders and decoders. The clock frequency was 50
MHZ. We also calculated the power dissipated on the bus in absence of
any encoding. We assumed a 10pF capacitance per bus line. Different
bus configurations were assumed for evaluation of different encoding
techniques. For DS and FTS we assumed a data address bus without
any internal cache. For FMS we experimented over the multiplexed bus
between cache and main memory. FMS was the most efficient
technique for this bus. The results are shown in Table 4. The reduced
bus power shows the power after encoding. The last column shows the
percentage power saving after considering the extra overhead of
decoder and encoder for different techniques.

Given the fact that Working-Zone encoder needs several subtractors for
calculating offsets with respect to zone registers, several comparators
for choosing the zone register with the smallest offset, a subtractor and
several registers and comparators for detecting the stride, and a special
table for encoding the offset to a one-hot code, its overhead will be
much higher than that of our sector-based encoders.

Table 4- Percentage Power Saving for Different Techniques
 Original Bus

Power (mW)
Encoder
Power

Reduced Bus Power
(after encoding)

Power
Saving

DS 13.7 0.67 6.71 41%
FTS 13.7 0.24 6.16 52%
FMS 6.7 0.41 3.01 42%

In terms of delay and area, FMS produces the best results. It only
consists of four levels of logic, whereas the encoding techniques that
require adding addresses or incrementing them ([2],[3],[6], etc.) need
more than ten levels of logic for a 32-bit bus. The following table
shows the number of gates and area required for each of the sector-
based encoders.

Table 5- Comparison of the encoder hardware for the proposed
techniques

 Number of gates Area (* 1000)
DS 505 488.7
FTS 256 205.8
FMS 313 282.7

6 CONCLUSION
In this paper, we proposed a new approach toward bus encoding by
sectorization of address space. The sectorization can be either dynamic
or fixed. We compared different approaches in terms of power, speed
and extensibility. For the multiple fixed-sector method, we introduced a
technique that partitions the sectors evenly. We also showed that using
our methods up to 52% power reduction for an external data address
bus and 42% reduction for a multiplexed bus between internal cache
and external memory can be achieved.

7 REFERENCES
[1] D. Patterson, J. Hennessy, “Computer Architecture, A Quantitative

Approach”, second edition, 1996.

[2] L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano,
“Asymptotic Zero-Transition Activity Encoding for Address Buses in
Low-Power Microprocessor-Based Systems,” IEEE 7th Great Lakes
Symposium on VLSI, Urbana, IL, pp. 77-82, Mar. 1997.

[3] W. Fornaciari, M. Polentarutti, D.Sciuto, and C. Silvano, “Power
Optimization of System-Level Address Buses Based on Software
Profiling,” CODES, pp. 29-33, 2000.

[4] L. Benini, G. De Michelli, E. Macii, M. Poncino, and S. Quer,
“System-Level Power Optimization of Special Purpose Applications:
The Beach Solution,” IEEE Symposium on Low Power Electronics
and Design, pp. 24-29, Aug. 1997.

[5] P. Panda, N. Dutt, “Reducing Address Bus Transitions for Low Power
Memory Mapping”, European Design and Test Conference, pp. 63-67,
March 1996.

[6] E. Musoll, T. Lang, and J. Cortadella, “ Exploiting the locality of
memory references to reduce the address bus energy”, Proceedings of
International Symposium on Low Power Electronics and Design, pp.
202-207, Monterey CA, August 1997.

[7] M. R. Stan, W. P. Burleson, “ Bus-Invert Coding for Low Power I/O”,
IEEE Transactions on Very Large Integration Systems, Vol. 3, No. 1,
pp. 49-58, March 1995.

[8] M. Mamidipaka, D. Hirschberg, N. Dutt, “Low Power Address
Encoding using Self-Organizing Lists”, International Symposium on
Low Power Design, Aug 2001.

[9] S. Ramprasad, N. Shanbhag, I. Hajj, “A Coding Framework for Low
Power Address and Data Busses”, IEEE Transactions on Very Large
Scale Integration Systems, 7:212:221, 1999.

[10] Y. Aghaghiri, F. Fallah, M. Pedram, “Irredundant Address Bus
Encoding for Low Power”, International Symposium on Low Power
Design, Aug 2001, pp 182-187.

[11] L. Macchiarulo, E. Macii, M. Poncino, “Low-energy for Deep-
submicron Address Buses”, International Symposium on Low Power
Design, Aug 2001, pp176-181.

[12] www.simplescalar.org

[13] www.spec.org

Subtract & -Inv

Sector Head

Sector Head

Transitio
Signa

BUS

B32-B1

Addres

(X32-X1)
>

31

32,30 1
32 1

31 1

31 1
Secto-ID

32,30 1

Subtract & -Inv

Figure 3- DS Encoder

Sector Head

Sector Head

Transitio
Signa

Addres

(X32-X1)

BUS

B32-B1
32 1

32 1

…

Sector Head
i+M i+1

Figure 4- FMS Encoder

	Main
	ISLPED02
	Front Matter
	Table of Contents
	Author Index

