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ABSTRACT

Just-In-Time instruction delivery is a general method for
saving energy in a microprocessor by dynamically limiting
the number of in-flight instructions. The goal is to save en-
ergy by 1) fetching valid instructions no sooner than neces-
sary, avoiding cycles stalled in the pipeline -- especially the
issue queue, and 2) reducing the number of fetches and sub-
sequent processing of mis-speculated instructions. A simple
algorithm monitors performance and adjusts the maximum
number of in-flight instructions at fairly long intervals, 100K
instructions in this study. The proposed JIT instruction de-
livery scheme provides the combined benefits of more tar-
geted schemes proposed previously. With only a 3% per-
formance degradation, energy savings in the fetch, decode
pipe, and issue queue are 10%, 12%, and 40%, respectively.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architedure Styles —
adaptable architectures, pipeline processors.

General Terms
Performance, Design

Keywords

Low-power, adaptive procesr, instruction delivery

1. INTRODUCTION

Instruction dHlivery — fetch, demde, renaming, dispatch,
and isuue — acount for a significant propartion o energy con-
sumed in a superscdar microprocesor. For example, instruction
delivery in the Alpha 212649] acourts for 25.5% of the total
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energy. Instruction celivery energy consumption is higher than
necessry, however, becaise of the performance-driven design
philosophy that is typicdly followed. In particular, a @nven-
tional superscdar processor attempts to maximize the number of
“in-flight” instructions at al times. Following a branch mispre-
diction, it begins fetching at full speed and continues urtil the
next branch misprediction flushes the pipéline or until the issue
queue (or re-order buffer) fills, the decode pipeline bads up,
and instruction fetching beginsto stall.

This philosophy often wastes energy becaise 1) useful in-
structions are fetched ealier than neadled, then spend many cy-
cles gdled in the deamde pipeline and/or sitting in the issue
gueue waiting for operands, and 2 when a branch misprediction
ocaurs, al the speculative instructions following the mispre-
dicted branch in the issue queue and deaode pipeline ae flushed
[71.

1.1 Just-In-Time (JIT) Instruction Delivery

We propose asimple, unified scheme for saving energy in
the entire instruction delivery subsystem. This sheme monitors
and dynamicdly adjusts the maximum number of in-flight
ingtructions in the procesor. The maximum number is
determined by monitoring procesor performance and is
adjusted to the lowest number that does not reduce performance
significently.  When the maximum number of in-flight
instructions is readed, instruction fetching is inhibited. Often
this occurs well before dl pipeline stages and issue window
dots are full. In effed, instructions are fetched just-in-time so
performance is relatively unchanged, but fewer instruction
delivery resources consume energy with stalled and/or flushed
instructions. Overall, the resulting scheme works better than
other previously proposed, more targeted approaces.

1.2 Prior Approaches

Severa studies have focused onreducing energy in the in-
struction dHlivery portion o the microprocessor. Pipeline Gating
[7] attempts to reduce flushed (mis-speaulated) instructions by
inhibiting instruction fetching when the number of low-
confidence branch predictions exceads a cetain level. In ared-
isticdly modeled superscdar pipeline, our approach performs
better at reducing energy due to flushed instructions.

Buyuktosunoglu, et a. [2] and Folegnani and Gonzdez[1]
attempt to reduce anergy by resizing the issue queue. The objec-
tive is to reduce the number of instructions galled in the isue
gueue, a high energy consumer. Again, our JT scheme does
better in terms of reduction o energy consumed by the issuie
queue.



In [5] Banasadi, et a. attempt to save energy by gating the
deaode pipeline when the number of instructions to be decoded
is fewer than the deade width. They do so by delaying the exe-
cution o instructions and managing the pipeline & single in-
struction granularity. We perform no dred comparison with this
method we aaume instructions flow up the pipeline in coarser
granularity groups as would be dore in atypicd microprocesor
(seesedion 4.1).

2. QUANTIFYING ENERGY ACTIVITY

We onsider instruction ddlivery to be coomposed o three
major parts: 1) instruction cade access 2) instruction cecoding,
renaming, and dspatching into the issue queue, and 3 isaling
from the issue queue. For brevity, we refer to the aitire de-
code/rename/dispatch pation simply as “instruction decode”.

We focus on five types of instruction ddivery adivities.
Energy isdiredly related to these adivities.
= | fetch: aninstruction cache access.
= Decode pipe active: a valid instruction is in the decode

pipeline (decode, rename, dispatch), is being proc-
essed, and is moving to the next pipeline stage on the
following cycle.

= Decode pipe stall: a valid instruction is in the decode
pipeling, but is being held (stalled) this cycle; it does
not move to the next pipeline stage the following cycle.

= |ssue queue active: a valid instruction is in the issue
queue and isissuing for execution this cycle.

» |ssue queue stall: a valid instruction is in the issue
queue, but is not issuing this cycle, for example because
its operands or a required resource are not available.

We then dvide eab of the above five adivities into two
groups — one for instructions that eventually commit (Used) and
the other for mis-speaulated instructions (Flushed). For exam-
ple, Isaie-queue Stalled Used is the adivity for the instructions
that stall in the isue queue and eventually commit.

The bre&kdown of energy-consuming adivity into adive
and stalled comporents can be used to model forms of clock
gating where adive instructions may consume more energy than
stalled instructions, and where valid instructions may consume
more energy than invalid ores (i.e. empty pipeline slots). For
example, consider the logic shown in Figure 1. Here, a typicd
pipeline latch is down, as might appea in the deade pipeline.
An inpu multiplexor (typicdly built into the latch) is used to
"redrculate” latched pipeline values when the hold signa is
active. In addition, the vaid hit from the preceding stage is used
to gate the latch itself; if thereis no valid data being fed into the
latch, then the latch is not clocked. In this g/stem, a cetain
amourt of energy is consumed if an instruction moves up the
pipeline (the hold signal is inadive) and is latched into the next
stage. A different (lower) amourt is consumed if the hold signal
is adive, the multi plexor feeds the same data badk into the latch
and the latched is clocked, but the logic foll owing the latch does
not see any of its inpus change. Finally, a different (still | ower)
amourt of energy is consumed if the valid signd is off, and the
latch is not clocked at all. Similarly, in the isaue queue, a par-
ticular issue queue slot may consume different amourts of en-
ergy depending on whether or not it holds an adive instruction
and whether or not the instruction acdually issues.

hold from next stage

MUX Latch - data out

datain

Valid from previous stage ﬂ

clock

Figure1: A pipelinelatch. A valid bit from the previous stage
is used to gate the clock signal. A hold signal from the suc-
ceeding stage is used to switch the multiplexcr and recirculate
data being stalled.

The adivities given above can be used to compute overall
dynamic energy consumption, given the amourt of energy per
adivity. For most of this paper, we focus on the adivity counts,
rather than energy numbers, to reduce the dependence of results
on specific drcuit and logic design styles’. In the penultimate
sedion, however, we give energy estimates for a particular state
of the at circuit/l ogic design technology.

3. IMPLEMENTING JIT INSTRUCTION

DELIVERY

The method we propcse is ill ustrated in Figure 2. The total
number of in-flight instructions is kept in instruction count reg-
ister. For ead instruction fetched, instruction count is incre-
mented; for ead instruction that is either committed o
squashed, it is deaemented. There is also an adjustable MAX-
count, and instruction fetching is inhibited whenever MAXcount
is excealed by instruction count.

To adjust the MAXcount value dynamicdly, we use an a-
gorithm that is very similar to ore previously propacsed in [8] for
finding optimal cade sizes. This agorithm is implemented ei-
ther in hardware or low-level software, and “tunes’ for the least
value of MAXcount such that performance is not reduced hy
some threshold amourt, e.g. 2%. For brevity, we only summea-
rizethe dgorithm.

MAXcount

instruction count

stop fetch if
instruction count > MAXcount

decrement on commit

incrementon or flush

fetch

A

Execution Units

Instruction |
Cache Decode Pipeline ssue D
Queue
b—Pp instruction fetch |_>|

gating

Reorder Buffer

Figure 2: Pipeline with control logic to dynamically limit the
number of in-flight instructions.

! This is not unlike giving microarchitecture performance in terms of
instructions per cycle (IPC) rather than instructions per second, which
would require estimation of the exad cycletime.



First, the dgorithm uses a small number of courters to
monitor performance daraderistics. There is a procesor cycle
courter and a mmmitted instruction courter, incremented for
eadh committing instruction. By realing and cleaing these
courters at fixed intervals (e.g. 10K instructions) overall per-
formance (instructions per cycle) can be determined. Also, there
is a murter for the number of branch instructions exeauted dur-
ing an interval; this courter is used to deted the occurrence of
program phase dhanges [8].

To perform dynamic tuning, MAXcount is st to the maxi-
mum posshble number of in-flight instructions (e.g. 80) and the
performanceis recrded after one 10K interval. In the foll ow-
ing interval, MAXcount is st to the minimum in-flight instruc-
tions (e.g. 8). In subsequent intervals MAXcount is incremented
by eight urtil the performance for an interval is within a thresh-
old vaue (e.g. 2%) of the performance for the maximum MAX-
count; this processis cdled a tuning cycle. MAXcount is kept at
this “optimal” value until either the performance (IPC) or the
number of dynamic branches changes by more than some
“noise” margin; in pradice this is often hundeds of 10K in-
struction intervals. If atuning cycle results in no change in the
optimal MAXcount, then the IPC and tranch ndse levels are
increased to prevent unnecessary tunings. The tuning algorithm
itself has an overheal of at most afew tens of cycles every 100K
instructions and hes minimal performanceimpad [8].

4. EVALUATION METHODOLOGY

This dion pesents the methoddogy used for evaluating
the performance of the proposed JT instruction divery
scheme. First, the simulation model is described, then the spec-
trum of simulated schemes and the workload. Finally, metrics
used to evaluate dfedivenessof various methods are defined.

4.1 Simulation M odel

To evduate performance, we used a modified version o
the SimpleScdar simulator [4]. Modificaions are intended to
model the instruction delivery system in more detail and with
greder acaracy than is dore in baseline SimpleScaar. In par-
ticular, the issue queue is modeled as a separate structure from
the re-order buffer. The isaue queue isaues out-of-order at most
four instructions every cycle. Also, ead stage in the instruction
deaode pipeline is modeled and courters are provided to court
the number of instructions in ead stage, whether useful or later-
to-be-flushed. Findly, the instructions in the pipeline ae seg-
mented at granularity equal to the pipeline width. That is, the
fetched groups of instructions that enter the pipeline together
can only move from one pipeline level to the next as aunit. This
isin contrast to the SimpleScdar method d modeling the entire
pipeline & one large queue with single-instruction granularity.
In effed, the single instruction granularity would require a ©m-
plex switching network conreding all the instruction slots
within and between successve pipe stages.

Our simulation model also dffersin other ways from Pipe-
line Gating (PG) [7] and the Adaptive Issue Queue (AIQ) [2]. In
[7], the authors use four stages before the isale stage; we &
sume amore redistic and dightly deeper pipeline of five stages.
Thus the branch misprediction penalty as well as the penalty for
incorred confidence etimation increases. In [2], the aithors use
fetch/deade width of 16 instructions and isue width of 8 in-
structions. We use more mnservative fetch/decode/isaue widths
of four because performance benefits ggnificantly diminish

when going beyond four, and we believe four is a more redistic
number if power efficiency isamajor design consideration.
Table 1 summarizes the procesor parameters used in all
simulations.
Table 1: Processor Configuration

ROB size 64 entries
Issue Queue Size 32entries
LSQ size 32entries

IF, ID, IS, IC Width 4 ingtructions/cycle

Branch Predictor Gshare: 4K entries, 10 bt GHR

Return Address Stack 64 entries

Branch Target Buffer 1K entry, 4 way

Functional Units 4 Int. ALUs, 1 Int. MULT/DIV

4FP ALUs, 1 FP MULT/DIV

L1 and D Caches 1K sets, 2-way, 32 hyte block size

L2 Unified Cache 2K sets, 4-way, 64 hyte block size

Pipeline Depth 5 stages before the isaue stage

4.2 Simulated Schemes

4.2.1 Establishing upper and lower bounds

To establish the envelope in which we ae working we de-
termine upper (orade) and lower (baseling) bounds for instruc-
tion celivery adivities. For the baseline simulation model, no
adivity saving mechanisms are used. The oracle model givesthe
same performance & the baseline and wses orade knowledge to
save energy. In particular, branch mispredictions occur, but the
oracle model stops fetching until a mispredicted branch is re-
solved; no mis peaulated instructions are fetched. Furthermore,
in the oracle scheme instruction fetching for all committed in-
structions is deferred as long as possble such that 1) the instruc-
tionissietimeis nat delayed for any instruction and 2 in-order
instruction fetching of cace-line granularity is maintained.

4.2.2 JIT I-fetch

The proposed JIT instruction delivery scheme is smulated
with performance tuning thresholds of 2%, 5%, and 10%.
JIT{X%} will be used to identify the scheme where the perform-
ancetuning threshold is X%.

4.2.3 Pipeline Gating

PG is smulated as propased in [7]. A 128 entry JRS corfi-
dence estimator [10] is used. A branch is classfied as high con-
fidence when the munter accessd in the confidence table ex-
ceals 12. At most threelow confidence branches are dlowed in
the procesor at any given time.

4.2.4 Adaptive Issue Queue

The AlQ scheme proposed in [2] is smulated. The isaue
queue is 32 entries. It is re-sized updown in churks of eight
entries. Every 8000 cycles the utilization d the queue is sam-
pled. If the utili zetion exceeds a threshold it is $zed up - for
example, if the aurrent sizeis 8 and the utili zation is 7 then the
queue is szed upto 16for the following interval. If the utili za-
tion is below a size down threshald then the queue is szed
down. There ae different size up/down thresholds for different
number of adive entries. Also, if the performance after sizing
down the queue is worse than the performance before by a factor
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(0.9 in this case) then the queue is $zed up again. The isse
gueue is noncollapsing, thus holes might be present in the
queue if instructions issie from the midde of the queue. We
asumethe “holes” will be dock gated to save energy.

4.3 Benchmarks

We simulated SPEC 2000INT benchmarks compiled with
base optimizaion level (-arch ev6 —non_shared —fast). The test
inpus were used and, all benchmarks were fast forwarded 100
milli on instructions and then simulated for 200 milli on commit-
ted instructions except mcf. Benchmark mcf completes exeaution
at 159 milli on committed instructions after fast-forwarding 100
millioninstructions.

4.4 Performance Metrics

To evauate energy savings, we mlled the adivity counts
(refer to sedion 2) for the three parts of the instruction ddlivery
subsystem. Both mis-speaulated (flushed) and committed (used)
instructions are included and are mnsidered as eparate adivi-
ties. For eat type of adivity the average adivity is computed
by taking the aithmetic mean of that adivity over all bench-
marks. Then, courts for ead o the three parts (fetch, deade,
and issue queue) are normali zed between Oand 1, so that eadh is
some fradion d the overall adivity for the part being consid-
ered. Next, for al other (nonbaseline) schemes the average
adivity of ead part of instruction celivery is normalized with
resped to the baseline total average adivity.

For evaluating performance we use the number of commit-
ted instructions per cycle (IPC). Average IPC is cdculated by
taking the harmonic mean of the IPC over al benchmarks. Per-
formanceis then normali zed with resped to the baseline.

5. RESULTS

Figure 3 shows the normaized IPC averaged over all
benchmarks. Figure 4(a-c) has normalized adivities averaged
over dl the benchmarks as described in the precaling sedion.

First, consider instruction fetch adivity in Figure 4(a). Be-
cause it has foreknowledge of branch misprediction, the orade
method wastes no energy fetching flushed instructions. PG,
based on lranch prediction confidence reduces the adivity for
flushed instructions substantialy, as is intended; it saves abou
half the wasted flush adivity. However, PG reduces perform-
ance by 9%(Figure 3). The reason for the performance drop is
that some branch predictions are assgned low confidence, yet
are corred predictions. This occasionally causes the instruction
deade pipeline to be neallesdy starved of instructions. The
performance degradation we ohserve is worse than that observed
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by the aithors in [7] primarily due to the longer instruction
pipeline (this tendency was pointed ot in [7]).

AlQ saves ome I-fetch adivity, athough na as much as
PG. Reducing the isaue queue ultimately reduces fetch adivity
whenever the queue and ppeline become full. The JT method
saves as much adivity as PG, when their performance levels are
the same (this occurs with JT using a threshold of 10%, noted
as JT{10%}). With JT{2%}, the overal performance lossis
only 3%, and %% of theinstruction fetch activity is saved.

Now consider the decode pipeline adivity (including de-
code, rename, dispatch) shown in Figure 4(b). Here AIQ has
more adivity than any of the other methods, including the base-
line. These ae primarily stall cycles because ashortened issue
gueue causes instructions to more reaily bad up into the rest
of the pipeline. PG and the JIT methods provide similar adivity
savings, but the JT method tes dightly less adivity when the
IPC performanceisthe same (i.e. for JT{10%}).

In saving issue queue adivity (Figure 4 (c)) AlQ performs
quite well, as expeded. In fad, it has fewer instructions galled
in the queue than the orade scheme. But the undesirable dfed
is that its performance degradation is 12%. Note that this lossis
significantly more than reported in [2] where the degradation is
4%. As mentioned above — our simulation model has
fetch/decdel/issue width of four instructions wheress the au-
thors in [2] have a issue width of eight instructions. Another
contributor to the performance difference is more acarate
modeling of theindividua pipeline stages.

PG shows relatively littl e (6%) savings in stalled useful in-
structions, and reduces the adive flushed instructions by about
half compared with the basdline. The JIT (10%) method po-
vides adivity savings as good as the AlQ method, and performs
better.

To summarize, with equivalent (or lesg performance deg-
radation, the J T scheme performs as well as PG in reducing
adivity due to flushed instructions, and simultaneously it per-
forms as well as AlQ at saving wasted adivity in the isae
queue. Additiondly, it reduces more adivity in the instruction
deade pipeline than either of these schemes. Although JIT also
saves adivity for accesing the data catie and in the exeaution
units we do nd include these savings here.

6. ENERGY ESTIMATES

To give an ideaof adual energy benefits of the propased
scheme, we evaluate the energy consumed for a state of the at
microprocesor (POWER4™) [11]. The pipeline latches are
taken from this high-end design environment. A 2-to-1 static
mux re-circulates the latched data when stalled. Energy of the
wake-up logic is modeled by multiplying the number of com-
parators by energy for a single mmparator; energy for a single
comparator is measured with circuit simulations. Similarly the
selection logic energy is modeled by multiplying energy for a
single abiter cdl by the total number of arbiter cdls. We &
sume one abiter per isuue port — in ou case four isse ports.
The energy for a single abiter cdl is measured with circuit
simulations and the number of arbiter cdls is computed based
ontheissle queue size and theissue width.

Figure 5 gives the relative energy savings for the various
schemes gudied. The PG and JIT{10%} schemes swve the most
energy (13%) in I-cacdhe access, followed by a 12% savings
for the AlQ. In theinstruction decode pipe JT{10%} saves 14%
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Figure 5: Relative Energy Reduction in a High Performance
Processor.

of the energy. PG saves 11%. AlQ increases the energy con-
sumed in the instruction deaode pipe by 0.5% becaise of more
instruction back-ups as noted ealier. In the issue queue Al1Q and
JT{10%} both reduce the energy by 53%. PG reduces 21% of
the energy. AIQ and JT{10%} reduce more energy than the
Oradebut at alossof 10%in IPC.

7. SUMMARY AND CONCLUSIONS

Energy reduction benefits come from avoiding fetch of mis-
speaulated instructions and from avoiding stalls of useful in-
structions, espedaly in the isue queue. In effed, JT instruc-
tion delivery combines the alvantages of PG and AlQ methods.

Further, the implementation is $Smpler than either of the
previoudy proposed schemes. In PG a branch confidence table
is added to the procesr resulting in area ad power overheal.



As pipelines get degoer the pendty for incorred confidence
estimation will increase. AlQ has to continually monitor every
stage of the issue queue to tune it. In contrast, the proposed JIT
scheme uses only afew nonrintrusive aurters and control logic.
The ourters are very similar to the performance murters exist-
ing in current procesors. Finally, with the JT method, recmn-
figurations occur a much coarser granularity (100K instructions)
than the other methods, alowing low level software or off-
criticd-path hardware to perform the dynamic adjustment of
MAXcount.
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