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ABSTRACT 
This paper presents effective metrics to evaluate the power 
dissipation of scheduled data flow graphs (DFGs). This enables 
early evaluation of schedules without performing the 
computationally expensive resource-binding step. Our metrics 
correlate heavily (as high as 0.95 and > 0.75 for most test cases) 
with power dissipation values obtained after resource binding 
and rescheduling for power optimization steps. An experimental 
flow that integrates path-based scheduling, power optimal 
binding and power driven iterative rescheduling stages is 
constructed. The flow integrates commercial tools like Synopsys, 
VSS and academic compilers like SUIF in a common 
optimization framework. Experimental results on DFGs from 
MediaBench suit also demonstrate the fact that metric evaluation 
is on average 42.6 times faster than performing optimal binding 
and iterative power improvement. Hence metric based evaluation 
enables fast design exploration at early stages. 

Categories & Subject Descriptors: [Design] High Level 
Synthesis, Power Optimization, Scheduling, Resource Binding. 

General Terms: Design 

Keywords: Low Power Design, Scheduling, Resource Binding, 
Metric Evaluation.  

1. INTRODUCTION 
In recent years personal computing devices and wireless 
communication systems have gained remarkable popularity. 
Their demand for high-speed computation and complex 
functionality with low power consumption were among the major 
driving factors, inducing power to be a critical design concern. 
Not too long ago, performance, area and testability were 
considered as major design considerations, while power issues 
were of secondary importance. Number of on-chip transistors 
continued to increase and power dissipation reached excessive 
values, becoming limiting factor in many designs. This has led to 
an increase in the cost of packaging and cooling devices, drawing 
the attention of the industry as well as the research community to 
power optimization. 

Power optimization techniques can be applied at various 
abstraction levels of design. Effective high level power 

optimization methodologies are desired at the early stages of the 
behavioral synthesis, as the decisions made at the earlier steps of 
the design cycle have more impact on the final implementation. 
An extensive body of work exists on behavioral synthesis for low 
power. Chang and Pedram [1] proposed a switching activity 
calculation technique for registers. They also solved the register 
assignment problem for minimum power consumption using a 
max-flow formulation optimally. Raghunathan et al. [14] 
presented an iterative improvement technique on switched 
capacitance matrices. Dasgupta et al. [5], [6] introduced 
simulated annealing based transition minimization algorithms. 
Recently Lyuh et al [2] proposed network flow based approach 
for low power data path optimization, which reduces the 
redundancy in flow computations. The behavioral level power 
optimization, iterative power improvement techniques, and 
network flow based formulation of related problems can be found 
in [1]-[6], [14]- [16].  

Power driven high-level synthesis methodologies commonly 
incorporate a scheduler followed by binder [1], [4]. Rescheduling 
step that modifies the existing solution to improve the power 
dissipation follows the power driven binder [2]. The objective of 
rescheduling is to modify the original schedule to improve the 
power. The effectiveness of this extra optimization becomes 
lesser or even negligible if the initial schedule is wisely selected. 
However, the lack of criteria to evaluate the initial schedule is an 
important factor that hinders this. Hence iterative power 
optimization techniques are commonly used in practice. 

In this paper we develop metrics to serve as optimization criteria 
leading to better initial schedules. Utilization of these metrics in 
initial schedule selection provides reduction in the design effort 
required for iterative improvement. Our experiments illustrate 
that in some cases, it even eliminates the need of iterative 
rescheduling. The proposed metrics exhibit high correlation with 
the post binding power dissipation and power driven 
rescheduling improvement, enabling prediction of the power 
dissipation at the prebinding-post scheduling stage. Post resource 
binding power dissipation values are reduced, when initial 
schedule selection is based on metric evaluation. As a result, 
design effort required for iterative improvement steps can be 
reduced significantly or even eliminated.  

A design flow with the following properties is implemented for 
experimental validation: Data Flow Graphs from algorithm 
specifications in C are extracted using SUIF [13]. Alternative 
schedules are generated for the extracted DFGs such that the 
resource and timing constraints are met for each schedule. Metric 
values are computed for the generated schedules after module 
characterization and simulation steps are completed. Subsequent 
to the optimal binding and iterative rescheduling-rebinding, 
correlation of the metric values with post binding power 
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dissipation and rescheduling improvement is investigated for 
each schedule respectively. This correlation was found to be as 
high as 0.95 and higher than 0.75 for most test cases. These 
metrics enable quick power estimation without executing the 
computationally expensive resource binding and iterative 
rescheduling. Hence they can be employed in attaining better 
design space exploration and better power management. 

The rest of the paper is organized as follows: Section 2 describes 
the low power binding and iterative rescheduling problem. 
Section 3 presents the design flow. Section 4 introduces the 
metrics and the representative implementation of a rescheduling 
algorithm is described in Section 5. Experimental results are 
reported in Section 6 and conclusion is in Section 7. 

2. PRELIMINARIES 
  2.1 The Low Power Binding Problem 

The low-power binding problem was optimally solved using the 
max-cost flow and matching techniques in [1] and [4] 
respectively. This study focuses on the max-cost flow formulation 
of the problem. In [1], compatibility graphs are generated from 
the scheduling information. Operations are represented as nodes 
in the compatibility graph. Every operation pair u, v that can 
potentially be executed on the same resource in succession, have 
a directed edge (u,v) connecting them. These operations are 
called compatible operations. 

Optimal solution to the low-power binding problem is computed 
by executing max-cost flow algorithm on the network flow graph, 
constructed immediately from this compatibility graph [1]. The 
max-cost flow algorithm finds a maximum cost set of cliques that 
cover the graph. Negating the cost of each arc in the network and 
running the min-cost flow problem is a practical way of doing 
this. Hence we will use min-cost flow problem formulation term 
instead in the following sections. The flow values are all 1 on 
each path and the cost of each path is the power consumption of 
the corresponding resource.  A minimum cost solution minimizes 
the overall switching activity. Details of the formulation are 
skipped here for brevity.  Chang et al. [1] present an in-depth 
discussion of the max-cost flow methodology for the low-power 
binding problem.  

2.2   Rescheduling for Low Power 
Most synthesis methodologies utilize iterative refinement to 
improve the final design. Primary reason for this is the fact that 
in most of the cases an accurate estimate of design quality is not 
available at the initial stages. Therefore the moment more 
accurate information becomes available, initial design decision is 
further refined and improved upon. An example of this design 
paradigm is the methodology of Layout Driven Logic Synthesis. 
The synthesis decisions are improved when more accurate wire-
length and wire-delay estimates are available. Rescheduling-
rebinding exploits the same paradigm as well. The goal is to 
modify the existing schedule and resource binding solution by 
rescheduling-rebinding the operations to reduce the power 
dissipation. The lack of solid criteria required for choosing initial 
scheduling can be overcome by picking any initial schedule and 
improving the overall power consumption by modifying binding 
result iteratively. However, even local changes such as 

rescheduling an operation n from schedule step si to sj, change 
the data transfers, which invalidates some paths from the 
previous solution. One way to solve this problem is to perform 
the max-cost flow algorithm after each iteration step to refine the 
binding; nevertheless this is not desirable because of its high 
computational complexity. Recently Lyuh et al [2] proposed a 
method that addresses this running time problem. Their two-step 
iterative algorithm for bus binding can be extended to other 
components as well. In the first step the max-cost flow 
computation is performed, the algorithm retains the previous 
binding solution as much as possible. This avoids the 
unnecessary computation but still yields an optimal binding at 
the end of each iteration step. In the second stage the algorithm 
finds the negative cost cycles in the residual graph of the flow, 
which refines the solution of step 1.  

The algorithm offers both running time improvement and power 
efficiency. The rectification at the end of each iteration step to 
validate the flow for the current schedule might still be time 
consuming. An alternative to this might be improving the 
running time of the iteration step and proceed until no power 
improvement can be attained by rescheduling-rebinding moves. 
In this paper we use such an iterative power improvement 
method, where operations are rescheduled and rebinded 
simultaneously to reduce the power dissipation. This 
representative iterative rescheduling algorithm puts more 
emphasis on the running time than optimality of each step, but 
still is able to generate good quality results. The algorithm runs 
until there is no rescheduling move with possible gain. The basic 
idea is to avoid the computational expense of reaching an optimal 
binding solution at each step and having an improved valid 
binding instead. In our methodology, modifications performed by 
the iterative rescheduling-rebinding algorithm are restricted to 
the movements that satisfy the DFG and resource constraints, 
which guarantee a valid binding after every iteration step. Hence, 
the need to make the resource binding solution valid at the end of 
each iteration step is completely eliminated and provides 
possible improvement in speed over the methodology proposed 
by Lyuh et al. [2]. This iterative rescheduling algorithm is 
utilized during the experimentation along with the metrics 
formulated for estimating the power dissipation after resource 
binding. Schedules with favorable metric values lead to lower 
post binding power dissipation, hence reducing or even 
eliminating the effort needed for rescheduling. In Section 4, we 
describe these metrics in detail. 

3. DESIGN FLOW 
The design flow constructed for experimentation is illustrated in 
Figure 1. Benchmark DFGs used in our experiments are 
extracted from the MediaBench suit [12] using SUIF compiler 
infrastructure [13]. Scheduling is performed on these DFGs 
according to the timing and resource constraints. Algorithms such 
as the ones proposed in [7], [8], [11] can be used for this 
purpose. Alternative schedules that meet the constraints are 
generated. For each schedule generated, post-binding power 
dissipation and the correlation factors for the metrics will be 
computed in the subsequent steps. Based on the trace 
information, DFG simulation is performed. Internal DFG 
variables are calculated for the given input trace, which is a 
representative of the input statistics of the DFG. Subsequently 



module characterization and switching power computation is 
performed. Module characterization engine incorporates VSS and 
Synopsys Design Compiler tools. The input to the engine comes 
from the scheduler, module library, and simulation results of the 
scheduled DFG. Edge cost information is extracted based on this 
data. The outputted edge costs indicate switched capacitance of 
executing the corresponding operation pairs in succession on the 
same module. 

                                                          

Figure 1: Design flow 

Metric evaluation is performed at this stage based on the 
scheduling and module characterization information. Metric 
functions are formulated and discussed in Section 4. The 
correlation factors for the metrics are extracted at the final stage.  

In the next step optimal binding is performed on the scheduled 
data flow graph for pre-estimated number of resources. A power 
optimal binder such as the one proposed by Chang et al. [1] can 
be used in this stage. Initial schedule selection has a significant 
effect on the power dissipation. As a result of this, only an 
optimal binder is not sufficient to find low power solutions by 
itself. Hence, the existing design flow incorporates an iterative 
rescheduling-rebinding step to improve the binding solution, as 
discussed in Section 2.  

The iterative rescheduling-rebinding stage reschedules the 
operations and binds them to different resources as long as the 
power dissipation is improved. This step is repeated until no 
possible power improvement can be attained by the rescheduling-
rebinding iterations. In the following sections we argue that if the 
initial schedule is optimized for the proposed metrics, the design 
effort on this rescheduling step can be minimized or even 
eliminated, based on the experimental results. 

4. METRICS FOR LOW POWER BINDING 
Proposed metric functions will be discussed in this section. 
These metrics are based on the network flow graph information, 
extracted from schedule and module characteristics. 

4.1   Min-Cost Flow Formulation 
A compatibility graph Gi: (V, E) is defined for each operation 
type i in the DFG respectively such as ADD, MUL…etc. The 
network flow graphs Fi’: (V’, E’) corresponding to each Gi can 
be constructed simply as follows: a node v ∈  V in F’i, represents 
an operation of the type i in the DFG.  Similarly, a directed edge 
e: (u,v)∈  E’i, implies that operations corresponding to the nodes 
(i.e. u and v) connected to this edge are compatible. Operations u 
and v, of the type i, are said to be compatible if it is possible 
execute them in succession on the same resource without 
violating the timing constraints and data dependencies. Two 
dummy nodes namely source s and the sink t are added to V’, 
specifically for the network flow formulation. Let ce denote the 
cost of edge e as previously discussed in Section 3. The edge 
costs represent the switching activity of the corresponding 
operation pair in succession on the same resource. A min-cost 
flow solution, which covers all the nodes exactly once, is the 
optimal solution to the power driven binding problem. Chang et 
al. [1] present an in-depth discussion of this methodology for the 
low-power binding problem.  

This optimal algorithm minimizes the sum of the edge costs. 
Since the nodes represent the operations in the DFG, all the 
nodes have to be included in the solution.  Essentially R units of 
flow is sent from the source node s to the destination node t, 
where R signifies the number of available resources. Each unit of 
flow traces a path in the network flow graph; hence the final flow 
solution consists of R distinct paths. The nodes on the 
corresponding paths represent the operations executed on the 
same resource, and the sum of the edge costs along the path 
represent the power consumption of that particular resource. 

4.2   Metric Functions 
The proposed metric functions utilize the intuition provided by 
this min-cost flow formulation of the low-power binding 
problem. The following formulation is used to represent the 
metrics: Let v represent a node in the network flow graph 
representing an operation in the DFG; e is an edge connected to 
node v. 
 

vE : Set of all edges connected to node v.   
k
vE :  Set of edges with weights belonging to the minimum k% of    

         all edge weights connected to node v. 
k
vew : Weight of flow graph edge e ∈ k

vE    

 
vn  : Total number of edges connected to node v. 

Design space of the binder includes the edges in the network 
flow graph. Both the number and the weights of these edges are 
important for the quality of the min-cost flow solution. As the 
number of edges in the network flow graph increase the design 
space of the binder is enlarged, increasing the probability of 
having optimal solution in the design space. We employ metric 
m1 to account for this effect. Based on this intuitive idea metric 1 
is formulated as follows: 

∑
∀∈

=
nodesv

vnm1
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      Scheduling 

    Simulation of Scheduled DFG 

VSS + Synopsys D.C. 

Module Characterization 

Module Library 

            Metric Evaluation 

         Power Optimal Binding 

     Iterative Power Optimization 



Higher m1 is an indicator of an increased number of edges in the 
network flow graph; hence the design space is a less restricted 
one. Therefore the objective is to maximize m1 to reduce the 
power dissipation. As previously discussed, the flow algorithm 
identifies paths in the network flow graph and each path signifies 
a resource instance. An important point to note is that: for each 
node in the flow graph, the flow algorithm selects exactly one 
incoming and one outgoing edge in the solution. The basic idea 
remains the same when vertex duplication is applied as in [1]. In 
that case we consider the duplicated node pairs as single nodes. 
Furthermore, the algorithm tends to include the smallest edges in 
the solution, since the objective is minimization of the total cost. 
As a result, considering the average of the edge weights over all 
the edges may lead to an indicator for the quality of the final 
solution. Algorithm is provided with a set of edges that have 
favorable range of weight values. Moreover restricting the edges 
to those with weights that pertain to the minimum k % of all the 
edge weights on that particular node is possible as well.  

Metrics m2 and m3 are based on the sum of edge weights in the 
network flow graph. Metric m2 considers the sum of the edges 
with weight in the minimum k % of the edge weights range for 
that particular node. Since the flow algorithm tends to select 
edges with smaller weights, m2 provides an indicator for the 
quality of the input of the flow algorithm. Lower m2 values 
indicate a higher potential of yielding lower power binding 
solution. In m3 all the edges related to a node are considered (i.e. 
k: 100 %). Metrics m2 and m3 should be minimized for 
minimum power. These metrics can be formulated as follows: 

1
3,2 m

w

m nodes
k

v
v Ee

ve∑ ∑
∀∈ ∈=  

Changing variables like k might be performed for further tuning 
of the metrics. (k = 60 for m2 is chosen as a result of  
experiments. ) 

5.  RESCHEDULING - REBINDING 
A representative iterative rescheduling-rebinding algorithm is 
employed in the design flow. Resource constraints and the 
number of schedule steps are assumed to be predefined. As 
illustrated in Figure 1 this stage takes an already scheduled and 
binded DFG as its input.  

The set of all possible rescheduling-rebinding movements with 
possible power improvement are considered as long as resource 
and DFG data dependencies are satisfied. The movement with 
maximum switching power gain is executed; thus the algorithm 
performs the locally optimal move for each step. A representative 
algorithm that implements this idea, is the following: 
 

 

Input:   Network Flow Graph G:(V, E) of an already scheduled-      
              binded DFG. 
Output: Power improved Network Flow Graph G’:(V, E’) with   
              valid Scheduling and Binding. 

 
 
 

 
1. ∀  Node v∈  G, Repeat until Gain <0 

 
2. Consider all non occupied (si, ri) that node v can be scheduled 

to/binded, checking the validity of the moves in terms of DFG and 
resource constraints 

 
3. Take the move with maximum switching power gain.  

 
4. Perform the move (rescheduling-rebinding) to the position found 

in step3 
 

5. Remove invalid edges; add necessary new edges to make flow 
valid. 

 
6. Go back to step2 
 

 

One of the reasons for high computational  cost of iterative power 
improvement algorithms is the fact that the flow graph has to be 
refined at the end of each rescheduling step. By performing the 
valid moves only, while simultaneously rescheduling and 
rebinding, the algorithm eliminates the need to make the binding 
valid at the end of each iteration step. The binding is a valid one 
after each iteration step. As a result, the speed of the iterative 
power improvement process is enhanced. Running time of the 
above algorithm is: O(NRS) where N, R, S represent the number 
of operations, number of resources and number of clock steps in 
the scheduled DFG respectively. 

7.  EXPERIMENTAL RESULTS 
Experiments are performed on benchmarks selected from 
MediaBench Suite. Only the results for ADD operations are 
displayed and discussed in this section for the sake of brevity. 
However similar discussion is applicable to any other operation 
type. Figure 2 illustrates the variation in post binding power 
dissipation for different schedules of the same DFG, without 
rescheduling-rebinding along with the metrics m1, m2 and m3. 
The values on the y-axis are the curve fitted versions of the data 
in Table 1. The correlation between the metrics and the power 
dissipation and iterative power improvement can be observed 
from the plot.  

Table 1. Metric values, Post Binding power, Iterative Improvement 
(IPI), Power Dissipation after iterative power improvement of 16 

different schedules for fft2. 

m1 m2 m3 Power I.P.I. Overall 
214 0.187550 0.223500 23.5211 0.34946 23.17164 
210 0.195810 0.239660 26.1291 1.34500 24.78410 
212 0.192644 0.238629 24.80364 0.69710 24.10654 
222 0.182267 0.226375 24.17378 0.00000 24.17378 
222 0.182160 0.226040 23.40554 0.25882 23.14672 
198 0.208341 0.257466 29.73294 5.27448 24.45846 
210 0.197059 0.242000 27.79720 2.99328 24.80392 
220 0.185234 0.228337 24.60874 0.51598 24.09276 
214 0.194940 0.238080 25.97200 2.77344 23.19856 
212 0.192800 0.236100 24.33438 0.99670 23.33768 
216 0.187050 0.233300 24.00300 1.20460 22.79840 

224 0.182700 0.224200 23.48700 0.69706 22.78994 
214 0.188700 0.235100 24.01048 0.38038 23.63010 
216 0.190549 0.233409 25.89930 2.22700 23.67230 
208 0.196491 0.242120 25.17900 1.40520 23.77380 
212 0.192400 0.239200 25.88910 1.97850 23.91060 



The plot demonstrates the fact that the data points with high post 
binding power values have high iterative power improvement as 
well. Even without executing the rescheduling step, the 
schedules selected by the proposed metric evaluation technique 
have power dissipation comparable to the minimum power 
schedule among all the experimented DFGs after rescheduling 
(indicated by the highlighted row in Table 1). This implies that 
rescheduling algorithm can improve the overall power dissipation 
of the designs with reduced effort on rescheduling. Similar 
observations are valid for the entire set of experimented DFGs 
and will be discussed later in this section.  Results exhibit high 
correlation between the power dissipation values and the metrics. 
Tables 2 and 3 illustrate the correlation factors for post binding 
power dissipation and iterative rescheduling power improvement 
respectively. These values are computed only for the schedules 
with extreme metric values. 
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Figure 2. Curve fitted version for m1, m2, m3, power dissipation, 

iterative power improvement gain variations for fft2 
 
All the three metrics report high correlations with power and 
iterative power improvement (as high as 0.981) and with post 
binding power dissipation (as high as 0.949). Majority of the 
correlation values are higher than 0.75 for both cases. For the 
data points with high m2, m3 (low m1), post binding power 
dissipation and the iterative rescheduling improvement are high 
as well. (Similarly for iterative improvement as shown in Table 
3.) 

Table 2.  Correlation of Metrics with Power Dissipation 

 m1 m2 m3 
fft1 0.877 0.934 0.949 
fft2 0.872 0.940 0.946 
jctrans1 0.603 0.598 0.617 
jctrans2 0.722 0.890 0.728 
jdmerge1 0.769 0.870 0.724 
jdmerge2 0.888 0.849 0.934 
jdmerge3 0.869 0.804 0.728 
jdmerge4 0.646 0.788 0.760 
noise_est 0.258 0.014 0.103 
 

The correlation of the metrics with post binding power 
dissipation and iterative power improvement indicates another 
important point. The iterative power improvement gain is high 
for the schedules with high post binding values. This along with 
the high correlation factors for the metrics imply that we can 
exploit the metric functions to select the schedules that have 
lowest power dissipation in post-binding step. Power 
consumption values for these schedules are very close to the 
values of the other schedules after iterative power improvement 
step. Hence the metric functions can be utilized in evaluation of 
the initial schedules in terms of the aforementioned qualities. 
Table 5 tabulates the running time for metric evaluation with 
optimal binding and iterative power improvement. The ratios are 
as indicated in column 3. The results indicate that metric 
evaluation is on average 42.6 times faster than optimal binding 
and iterative improvement. 

Speed improvement ratios as high as 62 can be attained by 
applying metric evaluation technique and selecting accordingly 
early in the design cycle as opposed to going through binding and 
iterative improvement stages to evaluate the quality of the initial 
schedule. The speed of the metric evaluation is another reason 
that emphasizes possible utilization of the technique. 

Table 3.  Correlation of Metrics with Iterative Improvement Gain 

  m1 m2 m3 
fft1 0.510 0.617 0.946 
fft2  0.837 0.903 0.916 
jctrans1 0.800 0.799 0.818 
jctrans2 0.819 0.937 0.692 
jdmerge1 0.566 0.666 0.725 
jdmerge2 0.940 0.835 0.981 
jdmerge3 0.645 0.577 0.478 
jdmerge4 0.456 0.262 0.234 
noise_est 0.077 0.020 0.040 
 
Minimum power schedules after rescheduling and the power 
dissipation of schedules with the most favorable metric values 
without rescheduling are reported in Table 4. Columns 1, 2, 3 
correspond to the post resource binding power dissipation for 
schedules with most favorable metric values. Column 4 reports 
the minimum power dissipation among all the different 
experimented schedules. Optimizing according to the metrics 
leads to schedules with power values very close to column 4.  

Table 4.   P(mi): Minimum Power schedule selected by metric i,   
Min: Minimum power dissipation among all schedules. 

  P(m1) P(m2) P(m3) Min. 
fft1  87.594 88.6 87.594 87.27 
fft2 24.092 23.146 23.171 22.79 
jctrans1 100.991 100.9916 100.9916 98.842 
jctrans2 21.617 21.2882 21.2882 21.272 
jdmerge1 62.653 62.653 62.144 62.144 
jdmerge2 72.124 72.124 72.427 70.386 
jdmerge3 39.547 38.371 38.403 38.258 
jdmerge4 3.5740 3.5760 3.576 3.585 
noise_est 17.952 17.694 17.952 17.602 
 



Table 5. Running time of Metric evaluation (in msec), Iterative Power 
Improvement and Optimal Binding, ratio of the first 2 columns 

  Metric Iterative + Bind Ratio 
fft1 17.998 980.934 54.50239 
fft2 3.144 108.52 34.51654 
jctrans1 1.982 94.517 47.68769 
jctrans2 2.357 96.015 40.73611 
jdmerge1 3.742 152.237 40.68332 
jdmerge2 17.175 1069.455 62.26812 
jdmerge3 5.746 227.839 39.65176 
jdmerge4 4.610 141.918 30.78482 
noise_est 3.472 114.459 32.96630 

 
7.  CONCLUSIONS AND FUTURE WORK 
In this paper we investigated the effects of scheduling on power 
dissipation. We proposed metrics that exhibit high correlation 
with power dissipation and iterative rescheduling power 
improvement, which can be exploited for initial schedule 
selection. Experiments with the Media Bench Suite indicated 
that correlation factors are as high as 0.95 and higher than 0.75 
for most cases. Comparing the lowest power schedules after 
iterative improvement with schedules that were optimized for the 
proposed metrics exhibited close overall power dissipation.  

Metric evaluation enables power estimation at early stages of 
behavioral synthesis. This can be exploited in better power 
management and optimization. The results demonstrate that the 
design effort required in rescheduling can be reduced 
significantly with this method. Optimizing for the proposed 
metrics can reduce the need for an aggressive rescheduling. 
Furthermore metric evaluation is on average 42.6 times faster 
than optimal binding and iterative improvement. 

The immediate future work is to formulate scheduling algorithms 
that optimize these metrics. A study of the right tradeoff between 
post binding rescheduling and metric optimization is also 
imperative.  
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