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ABSTRACT
Many real-time systems employed in defense, space, and con-
sumer applications have power constraints and high reliabil-
ity requirements. In this paper, we focus on the relationship
between fault tolerance techniques and energy consumption.
In particular, we establish the energy efficiency of Applica-
tion Level Fault Tolerance (ALFT) over other software-based
fault tolerance methods. We then develop sensible energy-
aware heuristics for ALFT schemes. The heuristics yield up
to 40% energy savings.

1. INTRODUCTION
There is an increasing number of real-time applications

that require fault-tolerance. Traditionally, fault-tolerance
has been implemented using massive redundancy, by dupli-
cating or triplicating the hardware. Such an approach ob-
viously consumes huge amounts of energy. Recently, fault-
tolerance approaches have emerged, which are less energy-
intensive. One of these is Application Level Fault-Tolerance
(ALFT), where information available at the application level
is exploited to reduce the overhead imposed by fault-tolerance
[1, 2]. In this paper, we explore the energy costs of ALFT.

Real-time systems have two attributes that set them apart
from systems built for general purpose computing: (a) time-
liness and (b) fault-tolerance. Real-time applications are
time-constrained, i.e. the tasks have deadlines by which
they have to finish execution, this requires a deterministic
task response time. This is enforced through task scheduling
algorithms, developed specifically for real-time applications,
that guarantee timeliness. The other attribute of real-time
systems is fault-tolerance, i.e. a real-time system should
continue to operate correctly in the presence of faults. Fault-
tolerance could be achieved through replicated execution of
tasks. Power and energy analysis related to scheduling and
timeliness of real-time systems have been extensively inves-

∗Supported in part by NSF grant EIA-0102696.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’02, August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008 ...$5.00.

tigated, usually in the context of Dynamic Voltage Scaling
(DVS) [3, 4, 5, 6, 7, 8]. However, there is no previous at-
tempt at power and energy analysis of fault-tolerance mech-
anisms. To the best of our knowledge, this is the first re-
search effort in that direction.

This paper is organized as follows: In Section 2, we exam-
ine software-based fault tolerance. In Section 3, we intro-
duce our system and energy model. In Section 4, we discuss
our results and we present our conclusions in Section 5.

2. SOFTWARE BASED FAULT TOLERANCE
Real-time systems, by definition, have to be reliable. The

reliability of a system is linked directly to its ability to op-
erate correctly despite the presence of faults [9]. The objec-
tive of fault tolerance techniques is to minimize the effects
of faults on system operation. The additional overhead of
employing fault-tolerance has energy implications, and de-
pending on various system attributes, most notably power-
aware task scheduling heuristics, the amount of power saved
can be substantial, while preserving the fault-tolerance at-
tributes. Initially, passive hardware-based redundancy ap-
proaches, such as Triple Modular Redundancy were used to
ensure fault tolerance. More recently, software-based redun-
dancy methods became preferable due to their “lightweight”
characteristics. Here, we focus on such a fault tolerance
scheme, the Application-Level Fault Tolerance [1, 2] (ALFT),
which is an amalgam of time and software redundancy. ALFT
encompasses redundancy and recovery actions within the
application software. We adopt the approach taken by Haines
et al. [2], according to which the task set consists of primary
and secondary tasks. Secondary tasks may be identical to
the primary tasks or they can be a scaled down version of
them. Typically two techniques are widely used for sec-
ondary scaling: resolution reduction or precision reduction.
Resolution reduction is more suitable for such applications
as image processing or FFT, in which an iterative calcula-
tion can be scaled to 1/n of its size by computing every nth
point and interpolating the points in between. By contrast,
in precision reduction the scaling is achieved through ending
the iterative computation earlier than the primary version.
Precision reduction is more suitable for Increased Reward
with Increased Service (IRIS) type applications such as the
calculation of π or sinusoidal operations, in which the itera-
tive computation can be aborted at any point, with appro-
priately reduced precision. For reliability purposes, primary
and secondary tasks are assigned to run on different pro-
cessors. Upon the failure of a primary task, the output of



the secondary task is used. To save computing resources,
a secondary task can be aborted if the primary successfully
finishes its execution [10]. This can be achieved through two
different but functionally equivalent mechanisms. First, in
a message passing based (such as MPI) implementation of
ALFT, the secondary task can be aborted by sending an
abort message from the primary when it successfully fin-
ishes its execution. Second, an OS supplied abort software
interrupt can be sent to the secondary when the primary
finishes. In contrast, in a software-based task duplication
fault-tolerance scheme, no such mechanism exists, and the
secondary is executed to completion even if the correspond-
ing primary finishes. We will compare the energy-efficiency
of ALFT and task duplication in Section 4.

3. SYSTEM AND ENERGY MODEL
We consider distributed real-time systems: the processors

are loosely coupled, see Figure 1. Each node has its pri-
vate memory and each task has an associated worst-case
execution time and deadline. The system is a “hard” real-
time system, i.e., the missing of a task deadline due to a
fault can be catastrophic. We assume that the tasks are
independent of each other. The number of tasks, the fault-
tolerance mechanisms, the granularity of secondaries and
the task scheduling mechanism are some of the parameters
in our study. Task allocation heuristics are of secondary
importance for software-based fault tolerance and are not
considered here. We only need to make sure that primary
and secondary tasks are allocated to different processors.
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Figure 1: The System Model

As observed by Rotenberg [11], it is difficult to find stan-
dard real-time benchmarks. This difficulty is even more pro-
nounced for real-time benchmarks which consist of multiple
tasks, although most actual real-time applications consist of
multiple tasks [9]. We therefore use randomized task sets
averaged over multiple runs as well as available real-time
target tracking [12] and Asymmetric Digital Subscriber Line
(ADSL) [13] applications.

The distribution of energy consumption over the execu-
tion time of applications has been found to be independent
of circuit state and more or less uniform for general purpose
processors [14]. However, for other classes of processors,
such as DSP’s [15] the energy dissipation depends on the

circuit state and thus can vary significantly over the execu-
tion time. Since general purpose COTS processors are con-
sidered for software-based fault-tolerance, we assume that
the energy consumption is linearly proportional to the over-
all actual load, i.e., the more secondary tasks execute, the
greater the energy consumption. To save energy, we want
to refrain from executing the secondary tasks, but at the
same time we will preserve the fault tolerance attributes of
ALFT.

4. RESULTS
In this section, we study the energy implications of vari-

ous fault tolerance techniques. Our intuition is that not all
fault tolerance schemes have the same energy requirements.
We show that some schemes, such as the ALFT, consume
less energy than others. Specifically, we compare software-
based task duplication with application level fault-tolerance
to serve as a motivating example. We then introduce energy-
efficient scheduling heuristics for ALFT. Those heuristics
attempt to finish executing primaries as early as possible,
while delaying executing secondaries as much as possible.
This results in less secondaries having to run, thereby saving
energy. In Section 4.1, we provide a simple motivational ex-
ample. In Sections 4.2 and 4.3, we introduce suitable heuris-
tics and confirm their energy-efficiency through experiments
with random task sets as well as a multiprocessor Asymmet-
ric Digital Subscriber Line (ADSL) modem application. In
these sections, unless otherwise stated, each experiment is
replicated and results averaged for 60 feasible task sets with
random periods and for different system loads. For fault-
tolerance purposes we consider the worst case load, i.e. the
system load if all the secondaries were activated. For each
load, the task execution times are chosen accordingly. The
period of the system is the Least Common Multiple (LCM)
of the task periods.

4.1 Motivating Example
We assume failures are sufficiently infrequent and there-

fore the energy impact of fault detection is negligible. As
such, we are interested in the energy signature of the fault
tolerance method. We start with establishing the energy
efficiency of ALFT over a more traditional fault tolerance
scheme: task duplication. As our application we will con-
sider the Real-Time Multi-Hypothesis (RTHT) [12] bench-
mark from the DARPA Real-Time benchmark suite. This is
a general-purpose, parallel, target-tracking benchmark. The
task structure is simple, all tasks have the same deadline
and execution time. The ALFT approach has been applied
to this benchmark, and results indicate that all targets are
correctly tracked when the secondary duplicates only 15% of
the primary’s computation [10]. Therefore, the secondary
tasks’ contribution to system execution load is 15% of the
primary load in the worst case. As a comparison, we have
to execute the secondary copy of a task completely in task
duplication; this implies that secondary tasks contribute as
much as the primary tasks to the system load. This leads
to the conclusion that ALFT is 42.5% more energy efficient
than task duplication for this benchmark.

4.2 A Simple Heuristic: SEF
In our previous motivating example, we used the earliest-

deadline-first (EDF) scheduling algorithm. We now ask the
following question: “Is there a better scheduling algorithm



Step 1. Schedule all primaries and secondaries using EDF.

Step 2. Schedule just primaries on all processors to get Ωi,j .

Step 3. Set release time of secondary tasks at: Ri,j = min(Ωi,j , di,j − ei).

Step 4. Schedule all primaries and secondaries. If feasible stop.

Step 5. Schedule just primaries on all processors to get updated Ωi,j .

Step 6. Do a directed search to modify Ri,j . Go back to step 3.

Figure 2: The flow of the SETS algorithm. Here, each task i is iteratively executed and we denote by di,j the
deadline for the j’th iteration of task i, ei the worst case execution time of task i and Ωi,j is primary i’s j’th
iteration finish time.

for fault-tolerant energy efficient systems?” We know we
should execute the primaries as early as possible to be en-
ergy efficient. To this end, the shortest-execution-time-first
(SEF) seems to be a good candidate. In uniprocessors, SEF
is optimal in terms of minimizing response times [16]. It
is this property that lends itself to energy savings in our
primary/secondary task scheme, and therefore we expect
SEF to be a “good” power-aware heuristic for software-based
fault-tolerant systems. We next compare EDF against SEF
as well as ALFT against task duplication for a two-processor
system. We consider secondaries which are either 100% or
50% of the primaries and the results in Table 1 are aver-
aged for 44%, 66% and 88% system load. The energy results
in Table 1 are normalized with respect to task duplication
with EDF. Compared to EDF, in SEF, more primaries finish
earlier, eliminating the need to activate secondaries. Conse-
quently, SEF is up to 19% more energy efficient than EDF.

Power-Unaware Power-Aware(ALFT)
Task Duplication 100% 50%

EDF 100 96 77
SEF 83 77 61

Table 1: Relative energy consumption of power-
unaware task duplication vs. power-aware ALFT
fault tolerance policies.

4.3 An Advanced Heuristic: Secondary Exe-
cution Time Shifting (SETS)

In Section 4.2, our objective was to finish the execution
of primary tasks as soon as possible to save energy. One is-
sue with the previous heuristic is that a given task set that
is feasible with EDF might not be feasible with SEF. Here,
we develop a dual strategy that is more robust: we want to
delay execution of secondaries as much as possible to save
energy. We initially start with a feasible task set employ-
ing EDF and aggressively modify the release time of the
secondaries to lead to a more energy-efficient schedule. As
such, our approach is to search for a better static schedule.
We term this heuristic Secondary Execution Time Shifting
(SETS). We provide below a more formal discussion and ex-
planation of SETS.

The search for an energy-efficient schedule can be formu-
lated as an optimization problem. Let σi,j denote the start
time of iteration j of secondary i and let πi,j denote the fin-
ish time of iteration j of primary i. Note that we focus on
periodic real-time tasks with a new iteration being executed
before the task’s deadline in every period. The optimization
problem is:

Schedule the tasks to minimize
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subject to all deadlines (primary and secondary) being met,
where θi,j = πi,j − σi,j is the overlap between the execu-
tion of the primaries and their corresponding secondaries.
Minimizing the overlap will also minimize the energy con-
sumption.

This optimization problem is NP-complete for tasks with
arbitrarily chosen periods and execution times, so an effi-
cient heuristic is needed. We developed such a heuristic,
which delays the release time of the secondary task as much
as possible, thereby minimizing the overlap θ and making it
more likely for the secondary task not needing to be run and
save energy. SETS produces an energy-efficient static sched-
ule. See Figure 2 for the SETS algorithm. In the prepara-
tory steps that are also common to energy-unaware EDF
ALFT, we randomly select the period and execution time
of primaries and scale secondaries using either resolution or
precision reduction. We then randomly allocate primaries
and secondaries to processors. The primary and secondary
versions of a task are allocated to different processors for
fault tolerance. We iterate those preliminary steps until we
obtain, in Step 1, a feasible allocation of the task set with
all secondary task release times set at the beginning of their
respective periods. In step 3, the iterative SETS heuristic
starts by moving the secondary release times as close to the
secondary tasks’ deadline as possible. In step 4, the feasi-
bility of the modified schedule is checked. If infeasible, the
nearest idle cycle to deadline miss is recorded and the re-
lease time of the secondary task active is relaxed up to the
nearest idle cycle in step 6. This greedy process is repeated
until a feasible state is reached, i.e., one that does not have
any deadline misses. Note that this process is guaranteed
to converge to a feasible schedule since the initial schedule



is feasible. The output of SETS is the list of modified sec-
ondary task release times.

We first briefly examine a multiprocessor Asymmetric Dig-
ital Subscriber Line (ADSL) modem application. The appli-
cation consists of 14 tasks, for the sake of brevity, we refer
the reader to [13] for specific task deadlines and execution
times. This type of application lends itself well to secondary
scaling through resolution reduction. We therefore calculate
every other second or third point to scale down the sec-
ondary task size and interpolate the points in between. Cal-
culating every second or third point results in a secondary
size of 50% or 33% of the primary, respectively. The results,
in terms of percent of energy saved through SETS compared
to the baseline case of EDF with the same secondary size,
are shown in Table 2. Note that even for a simple applica-
tion such the ADSL, the energy savings are substantial.

Secondary Size(%) Energy Savings(%)
33 09.51
50 13.38
100 19.44

Table 2: Percent energy savings for the ADSL ap-
plication. The secondary size is expressed relative
to the primary task size.

In the detailed analysis we examine random task sets.
This time, we assume the task set to be composed of In-
creased Reward with Increased Service (IRIS) type tasks
[17]. This allows the use of the precision reduction tech-
nique for secondary scaling, therefore, the secondary calcu-
lation can be stopped at any point, with appropriately re-
duced precision. Secondary sizes of 60%, 80% and 100% are
assumed for this study. The baseline system has 20 tasks,
and six processors. The energy savings are with respect to
baseline energy-unaware ALFT using EDF. We first study
the impact of secondary task size on energy savings. The re-
sults are shown in Figure 3. Due to the efficiency of SETS,
the savings are substantial even for higher system-loads and
lower secondary sizes.
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Figure 3: Energy Savings for different secondary
sizes (20 tasks).

The energy savings are due to SETS’ ability to decrease
the overlaps. We have therefore analyzed the reduction in

primary and secondary overlap due to SETS. Figures 4 and
5 show this reduction for different secondary sizes and for
two task granularities (20 tasks in Figure 4 and 50 tasks in
Figure 5). The results indicate that the overlap reduction
due to SETS is quite high suggesting that near optimal be-
havior can be expected with SETS. We can also see that the
efficiency of SETS is almost independent of the secondary
size but is highly dependent on the task granularity. This
dependence is more pronounced at high system loads for
coarse task granularities. This is to be expected since there
is more task overlap, for the same load, for coarser tasks
which have comparatively longer execution times. At high
system loads, it also becomes more difficult to find idle cy-
cles in the tighter schedule to shift the secondary task release
times.
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Figure 4: Overlap reduction for different secondary
sizes (for 20 tasks).
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Figure 5: Overlap reduction for different secondary
sizes (for 50 tasks).

To further check the impact of task granularity on the ef-
fectiveness of SETS we have analyzed the resulting energy
savings when the workload is divided among 10 to 60 tasks.
Our results in Figure 6 indicate that tasks with finer gran-
ularity do better than tasks with coarser granularity. This
is to be expected, since the overhead can not be reduced by



SETS beyond a certain limit if tasks are of coarser granu-
larity, see Figure 7. Note that this would even be the case
for an optimal scheme.
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Figure 6: The effect of task granularity on energy
savings for 80% secondary size.
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Figure 7: The effect of task granularity on overlap
reduction for 80% secondary size.

5. CONCLUSION
We have examined, for the first time, the energy-signature

of various fault-tolerance techniques. We introduced energy-
aware fault-tolerance heuristics that lead to substantial en-
ergy savings: up to 40% depending on the configuration.
Energy awareness in fault-tolerant real-time systems is a
new research area; one possible future research direction in-
cludes examining energy-aware checkpointing schemes.

6. REFERENCES
[1] A. Beguelin, E. Seligman, and P. Stephan. Application

level fault tolerance in heterogeneous networks of
workstations. Journal of Parallel and Distributed
Computing, 43(2):147–155, June 1997.

[2] J. Haines, V. Lakamraju, I. Koren, and C.M. Krishna.
Application-level fault tolerance as a complement to

system-level fault tolerance. The Journal of
Supercomputing, 16:53–68, 2000.

[3] Trevor Pering and Robert Brodersen. Energy efficient
voltage scheduling for real-time operating systems. In
4th IEEE Real-Time Technology and Applications
Symposium RTAS’98, Work in Progress Session, June
1998.

[4] C.M. Krishna and Y.-H. Lee. Voltage-clock-scaling
techniques for low power in hard real-time systems. In
IEEE Real-Time Technology and Applications
Symposium, pages 156–165, May 2000.

[5] V. Swaminathan and K. Chakrabarty. Real-time task
scheduling for energy-aware embedded systems. In
IEEE Real-Time Systems Symposium, Work in
Progress Session, November 2000.

[6] F. Gruian. Hard real-time scheduling for low energy
using stochastic data and dvs processors. In
International Symposium on Low-Power Electronics
and Design ISLPED’01, August 2001.

[7] Padmanabhan Pillai and Kang G. Shin. Real-time
dynamic voltage scaling for low-power embedded
operating systems. In 18th ACM Symposium on
Operating Systems Principles, October 2001.

[8] H. Aydin, R. Melhem, D. Moss, and P.M. Alvarez.
Dynamic and aggressive scheduling techniques for
power-aware real-time systems. In Real-Time Systems
Symposium RTSS’01, December 2001.

[9] C.M. Krishna and K.G. Shin. Real Time Systems. Mc
Graw Hill, 1997.

[10] J. Haines, V. Lakamraju, I. Koren, and C.M. Krishna.
Development of application-level fault tolerance in a
real-time benchmark. In Proceedings of EFTS’98,
IEEE Workshop On Embedded Fault-Tolerant
Systems, pages 28–33, May 1998.

[11] Eric Rotenberg. Using variable-mhz microprocessors
to efficiently handle uncertainty in real-time systems.
In 34th Annual International Symposium on
Microarchitecture, Micro-34, pages 28–39, December
2001.

[12] D.A. Castanon and R. Jha. Multi-hypothesis tracking
(draft). DARPA Real-Time Benchmarks, Technical
Information Report (A006), 1997.

[13] P. Yang et al. Energy-aware runtime scheduling for
embedded-multiprocessor socs. IEEE Design and Test
of Computers, 18(5):46–58, September 2001.

[14] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of
embedded software: A first step towards software
power minimization. IEEE Transactions on Very
Large Scale Integration Systems, 2(4):437–445,
December 1994.

[15] M.T. Lee, V. Tiwari, S. Malik, and M. Fujita. Power
analysis and minimization techniques for embedded
dsp software. IEEE Transactions on Very Large Scale
Integration Systems, 5(1):123–133, March 1997.

[16] M. Newman. http://guir.cs.berkeley.edu/projects/
osprelims/summaries/concurrency.html.

[17] J.K. Dey, J.F. Kurose, D. Towsley, C.M. Krishna, and
M. Girkar. Efficient on-line processor scheduling for a
class of iris (increasing reward with increasing service)
real-time tasks. In ACM SIGMETRICS Conference,
pages 217–228, May 1993.


	Main
	ISLPED02
	Front Matter
	Table of Contents
	Author Index





