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Abstract

Dynamically recon�gurable FPGAs have the potential to
dramatically improve logic density by time-sharing a physi-
cal FPGA device. This paper presents a network-
ow based
partitioning algorithm for dynamically recon�gurable FP-
GAs based on the architecture in [2]. Experiments show
that our approach outperforms the enhanced force-directed
scheduling method in [2] in terms of communication cost.

1 Introduction

One of the major bene�ts provided by FPGAs is the ability
of run-time recon�guration. Currently there is a growing
interest in dynamically recon�gurable FPGAs (DRFPGA),
which have the potential to dramatically improve logic den-
sity by time-sharing logic.

Several di�erent architectures have been proposed for
dynamically recon�gurable FPGAs, such as Xilinx time-
multiplexed FPGA con�guration model [1], dynamically re-
con�gurable FPGA [2], Dharma [6], the Dynamically Pro-
grammable Gate Array [7,8] and the Virtual Element Gate
Array [9]. These dynamically recon�gurable FPGAs allow
the dynamically reuse of the logic blocks and wire segments
by having more than one on-chip SRAM bits controlling
them. Each on-chip con�guration is called a context, and
a device with more than one context is a multi-context de-
vice. A large logic design is partitioned into multiple stages
to share the same physical device in a time-multiplexed fash-
ion. This is analogous to the virtual memory system where
a program can be larger than the actual size of the phys-
ical memory, a dynamically recon�gurable FPGA allows a
virtually large logic design to be implemented on a smaller
physical device.

For a dynamically recon�gurable FPGA, a circuit is par-
titioned into k stages (or partitions), such that the logic in
di�erent stages temporally share the same physical FPGA
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device (Figure 1). Each stage is called a micro-cycle and
the k micro-cycles form one user cycle. Between the micro-
cycles, the logic blocks and interconnect in the FPGA are
recon�gured by a di�erent context. One user cycle should
produce the same results on the outputs as would be seen
by a non-time-multiplexed device.
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Figure 1: Temporal partitioning of a circuit for a dynami-
cally recon�gurable FPGA

The nodes (i.e LUTs) in a physical FPGA are called the
real nodes, while the nodes in any stage (micro-cycle) of the
partitioning solution are called the virtual nodes. To �t into
a physical device, the number of virtual nodes in any stage
should be less than or equal to the number of real nodes.

Because the logic blocks and interconnect needed for a
circuit is time-multiplexed on a DRFPGA, it is necessary to
have a good partitioning strategy to ensure the correctness
of the execution, as well as satisfy both the area and pin
constraints for a physical FPGA device. It is also crucial to
minimize the number of interconnections in order to reduce
the overhead for the placement and routing process.

The partitioning problem for dynamically recon�gurable
FPGAs was studied in [1, 2, 3, 16]. The traditional directed-
acyclic-graph (DAG) scheduling methods are applied, such
as list scheduling [1] and force-directed scheduling [2, 3].
Recently [16] proposed a network-
ow based approach for
multi-way precedence constrained partitioning based on the
Xilinx time-multiplexed FPGA architecture [1], and [16]
achieved better result than the list scheduling heuristic in [1]
in terms of minimizing the communication cost. However,
the network-
ow based approach in [16] can not be used
to solve the partitioning problem for [2], since the architec-
ture in [2] is di�erent from that of [1] and imposes di�erent
constraints on the partitioning problem.

In this paper, we focus on partitioning a large logic design
into dynamically recon�gurable FPGAs based on the archi-



tecture proposed in [2]. We present a network-
ow based
approach for multi-way partitioning. We show how to cor-
rectly model the nets in both combinational and sequential
circuits, so that by the max-
ow computation, the min-cut
corresponds to the number of communication required. An
�-bounded bipartitioning algorithm is presented and then
it is iteratively applied to partition a netlist into multiple
stages, so that each stage can temporally share the same
FPGA device. Experimental results show that our approach
outperforms the enhanced force-directed scheduling in [2] in
terms of communication cost.

The organization of the paper is as follows. In section
2, we give a brief summary of the time-multiplexed com-
municating logic model proposed in [2]. In section 3, we
introduce the problem formulation of the partitioning for
dynamically recon�gurable FPGAs. In section 4 we �rst
present the net modeling method for both combinational
and sequential circuits, then present a network-
ow based
approach for bipartitioning. Section 5 explains the multi-
way partitioning algorithm for dynamically recon�gurable
FPGAs. Experimental results are discussed in Section 6.

2 Model of Dynamically Recon�gurable FPGA

For dynamically recon�gurable FPGAs, the communication
cost, which is the storage needed for bu�ering a signal from
the time it is created to the time it is no longer needed,
creates a considerable overhead. Di�erent architectures have
been proposed for storing the communication values among
the micro-cycles [1, 2], and they impose di�erent constraints
on the partitioning problem. For Xilinx's architecture [1],
the signal from a cut net is stored in on-chip micro-registers,
and [1] requires that the precedence constraints be satis�ed
in order to guarantee the correctness.

In this paper, we especially examine the partitioning
problem for the dynamically recon�gurable FPGA architec-
ture proposed in [2].

ME

ME

ME

ME

ME

ME

ME

ME

PIs POs  PIs POs  PIs POs

Memory Elements

 C1 C2 C3

Figure 2: Model of time-multiplexed communicating logic.

[2] presented a gate-level model for DRFPGA com-
putation called the time-multiplexed communicating logic
(TMCL) model (Figure 2). This model consists of two parts.
First, there is a �nite set of combinational logic units (CLUs)
fC1; C2; :::; Ckg, where each Ci contains a set of logic blocks
(e.g. LUTs). Secondly, there is a �nite set of memory ele-
ments (MEs) fM1;M2; :::;Mmg, which can be used to store
values for communication between the CLUs. A circuit is

partitioned into (fC1; :::; Ckg, fM1; :::; Mmg), with the
execution sequence being C1, ..., Ck. Each Ci is a subcircuit
to be executed at a di�erent micro-cycle on the DRFPGA.
Each Ci plus the MEs needed for Ci will be called context i
since it corresponds to the i-th context on a DRFPGA. The
MEs needed for Ci are those that are pseudo primary inputs
or pseudo primary outputs of Ci.

One clock cycle of a context i proceeds as follows. First,
read the needed pseudo primary input signals from the mem-
ory for Ci, and read the primary input signals from input
pads. Second, propagate signal values through Ci. Third,
latch primary output signal into output pads, and store the
pseudo primary output signals for Ci into memory.

In this model, a circuit is represented by G =
(V; Nc; Nf ). Each node v 2 V is a gate. The nets are classi-
�ed into two types, Nc and Nf . A net n = fv1; :::; vpg 2 Nc

if v1 is the input to the other nodes in this net. A net
n = fv1; :::; vpg 2 Nf if there is a 
ip-
op (FF) between v1
and the rest of the nodes in net n, i.e. v1 is the input to an
FF and the FF is the input to the other nodes v2; :::; vp. Fig-
ure 3 shows a part of a sequential circuit and its conversion
to a net fv1; v2; v3g in Nf . If there are adjacent FFs in the
circuit, then dummy gates can be added between adjacent
FFs.
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Figure 3: Example of a net in Nf .

We de�ne s(v) to be the stage to which a node v is as-
signed in the partitioning solution.

In a combinational circuit or the combinational part of
a sequential circuit, the nodes in a net in Nc must follow
the precedence constraints, such that if node v is the input
of u, then v must be scheduled in a stage no later than u,
i.e. s(v) � s(u).

If a net n = (v1; :::; vp) 2 Nc is cut, such that 9vj 2 n,
s(v1) < s(vj), then a ME (memory element) is used to store
the value between v1 and vj (Figure 4). The output of v1
will be stored in the ME and be read by vj in a later micro-
cycle within the current user clock cycle. Thus this ME is
used for communication within a user cycle.
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Figure 4: For a net in Nc, if s(v1) < s(vj), one memory
element is used to store the communication value for a com-
binational net.

For sequential circuit, memory elements are used for



passing values to di�erent micro-cycles of the same user cy-
cle or to the next user cycle. The nodes in a net in Nf can
be in any order, but the di�erent ordering will result in dif-
ferent number of memory elements required. There are the
following two cases:

First, for a net n = (v1; :::; vp) 2 Nf , if s(v1) � s(vj)
(v1; vj 2 n), then a ME is inserted between v1 and vj (Figure
5). The signal from v1 is stored in the ME and will not be
used until the next user cycle. Thus this ME is used for
communication between user clock cycles.
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Figure 5: If s(v1) � s(vj), then one memory element is used
to store the communication value.
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Figure 6: If s(v1) < s(vj), then two memory elements are
used to store the communication value.

Secondly, for a net n 2 Nf , if s(v1) < s(vj) (v1; vj 2 n),
two MEs must be inserted between v1 and vj (Figure 6).
This is called a ME2 situation. Two MEs are needed because
the �rst ME acts as storage for communication within the
current user clock cycle. A second ME (labeled as ME2 in
Figure 6) is needed to store the value between user clock
cycles. The ME2 can be in any stage later than s(vj).

Here we further improved the model in [2]. While [2]
assumed each net is a two-terminal net, we consider the
more general case where a net can be both two-terminal
and multi-terminal net.

This TMCL model is di�erent from the Xilinx model [1].
In [1], no memory elements are needed to store the communi-
cation values, and micro-registers are used to save values to
be passed to a later micro-cycle or the next user-cycle. Each
cut net, including combinational and sequential net, must be
uni-directional to satisfy the precedence constraints in order
to guarantee the correct execution. However, in the model
of [2], the sequential nets do not need to be uni-directional,
but the di�erent ordering of the nodes will cause di�erent
communication cost. Therefore, the di�erent architectures
impose di�erent constraints on the partitioning process.

3 Problem Statement

A circuit can be represented by a hypergraph G = (V;N),
where V is a set of nodes, N is a set of nets where each
net is a subset of nodes which are interconnected, and N =
Nc [Nf . Each node v in V has an area w(v), and the area
of a subset X of V , denoted by w(X), is the total area of all
the nodes in X. For a net n = fv1; :::; vpg with p nodes, let
v1 be the input to vj (2 � j � p), and vj (2 � j � p) be the
output of v1. If a net only connects two nodes (i.e. p = 2),
then it is a two-terminal net, if it connects more than two
nodes (i.e. p > 2), then it is a multi-terminal net.

Based on the TMCL model, the partitioning problem
for dynamically recon�gurable FPGAs is to partition a cir-
cuit G = (V;N) into k non-overlapping subsets V1; V2; :::; Vk,
subject to:

1. V = [ki=1Vi;

2. Precedence constraints, i.e. for a net n = fv1; :::; vpg 2
Nc, s(v1) � s(vj) for 2 � j � p;

3. Timing constraint: the number of levels of nodes in
any stage is less than D.

The objective is to:

1. minimizing the maximum communication cost for any
stage;

2. minimizing the maximum area of any stage, i.e. min-
imizing maxfw(Vi)j1 � i � kg;

The precedence constraints guarantee the correctness of
the execution, and the timing constraint allows the design
to run as fast as possible.

The communication cost for a stage is the total number
of memory elements to be used by this stage. The commu-
nication cost cn of a net n is measured as follows.

For a net n = fv1; :::; vpg 2 Nc, if it is cut such that 9 vj ,
s(v1) < s(vj), then the communication cost is 1; otherwise,
if all the nodes in net n are in the same stage, then the com-
munication cost is 0. Notice that the precedence constraints
require that s(v1) � s(vj), v1; vj 2 n.

cn =

n
1; if 9vj such that s(v1) < s(vj)
0; if all the nodes are in the same stage

For a net n 2 Nf , the di�erent ordering of the nodes
will result in di�erent communication cost, as discussed in
Section 2.

cn =

n
1; if s(v1) � s(vj)
2; if s(v1) < s(vj)

For k-way partitioning, it is desirable to balance the to-
tal area among the stages so that the design can �t into
a smaller device, i.e. to have the area of each stage to

be close to the average
w(V )

k
. We de�ne �-bounded bi-

partitioning to be partitioning a set of nodes V into two
subsets (X;X) so that w(X) is as close to � as possible, i.e.
(1 � �)� � w(X) � (1 + �)�. � is the variation factor with
0 � � < 1, e.g. � = 0:05. The k-way partitioning problem
can be reduced to �nding k � 1 �-bounded bipartitioning.

4 Network-Flow Based Bipartitioning

Network-
ow technique is well known for �nding min-cut
due to the max-
ow min-cut theorem [5]. FBB [14] applied



repeated max-
ow min-cut computation to �nd min-net-cut
for balanced circuit bi-partitioning. But [14] did not con-
sider the ordering of the nodes. In our partitioning prob-
lem, the nodes in the same net are not symmetric. For a
combinational net in Nc, the nodes must satisfy the prece-
dence constraints. For a sequential net in Nf , the ordering
of nodes in
uences the number of memory elements used for
communication.

[16] applied network-
ow technique to multi-way parti-
tioning for time-multiplexed FPGAs based on the Xilinx
architecture [1]. A net modeling method is given in [16] to
build a network G0 from the netlist G, so that a min-cut
in G0 corresponds to a uni-directional net cut in G satisfy-
ing the precedence constraints. However, since the TMCL
model [2] used a di�erent architecture than [1] for storing
the communication, the net modeling for sequential circuit
in [16] can not be applied here.

In the following sections, we present net modeling for
two-terminal and multi-terminal nets in combinational and
sequential circuits based on the TMCL model. Then
we present a network 
ow based approach for �nding �-
bounded bipartitioning.

4.1 Net Modeling for Combinational Circuit

A proper net modeling for combinational circuits must meet
two requirements: (1) correctly models a net cut, so that a
net is counted exactly once if it is cut; (2) correctly models
the precedence constraints among the nodes, i.e. a net-cut
must be uni-directional. A uni-directional cut is a two-way
partitioning (X;X) such that for any net n = fv1; :::; vpg 2
Nc, either all the nodes in n are in the same subset, or v1 is
in X. If we let X be an earlier stage than X, then it is easy
to prove that a uni-directional cut satis�es the precedence
constraints.

We construct network G0 = (V 0; N 0) from G by the fol-
lowing net modeling of a net in Nc (Figure 7).
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two-terminal net

multi-terminal net
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v1 v2 v1 v2
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x

(a)
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Figure 7: Net modeling for a two-terminal net and a multi-
terminal net in Nc.

1. All the nodes in V are in V 0, i.e. V � V 0, and each
node in V 0 has the same area as in V .

2. For a two-terminal net v1 ! v2 in Nc, add a bridging
edge v1 ! v2 in G

0 with capacity 1, add an edge v2 !
v1 in G0 with capacity 1 (Figure 7(a)).

3. For a multi-terminal net n = fv1; :::; vpg with p > 2,
let v1 be the input to all other nodes in n. Add a node

x in G0 with w(x) = 0. Add a bridging edge from v1 to
x with capacity 1, add an edge from x to each node vj
(2 � j � p) with capacity 1. Add an edge from node
vj (2 � j � p) to v1 with capacity 1 (Figure 7(b)).

Here we distinguish the net modeling of a two-terminal
net and multi-terminal net, because for two-terminal nets,
we add fewer number of edges and nodes, which will reduce
the size of the network and speed up the max-
ow compu-
tation.

For each net, exactly one bridging edge v1 ! x with ca-
pacity 1 is added, and all the other edges have 1 capacity.
Notice that nodes in the same net are asymmetric, the bridg-
ing edge starts from v1 and there is an edge with1 capacity
from vj (2 � j � p) to v1. After the max-
ow computation

on the constructed network G0, for a min-cut (X;X), all the

forward edges from X to X must be saturated (i.e. 
ow

equals to the capacity) and all the backward edges from X
to X have zero amount of 
ow. If a net is cut, then only the
bridging edge v1 ! x will be the forward cut edge from X
to X, and therefore v1 must be in X, which preserves the
precedence constraints. Since the capacity on the bridging
edge v1 ! x is one, the cut net contributes exactly 1 to the
total cut size.

Figure 8 shows an example of how to get the correspond-
ing net cut in G from a cut in G0. Lemma 1 shows the
correctness of the above net modeling for combinational cir-
cuits.

Lemma 1: The min-cut size in G0 equals to the minimum
number of uni-directional cut-nets in G.
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Figure 8: A cut in G0 and the corresponding net-cut in G

4.2 Net Modeling for Sequential Circuits

In sequential circuits, for nets in Nc, we use the same net
modeling as introduced in section 4.1. For nets in Nf , the
ordering of the nodes in
uences the number of memory el-
ements, therefore the communication cost. If s(v1) � s(vj)
for v1; vj 2 n, then one memory element (ME) will be
needed. If s(v1) < s(vj), then two memory elements (MEs)
will be used. We want to �nd a min-cut which minimizes
the number of memory elements needed.

We introduce the following net modeling for nets in Nf

(Figure 9).

1. For a two-terminal net (v1; v2), add an edge from v2
to v1 with capacity 1, and add an edge from v1 to v2
with capacity 2 (Figure 9(a)).

2. For a multi-terminal net n = (v1; :::; vp), add two nodes
w1 and w2 with w(w1) = 0, w(w2) = 0. Add an edge
from v1 to w1 with capacity 2, and add an edge from
w2 to v1 with capacity 1. Add an edge from w1 to
each of the node vj (2 � j � p) with capacity1. Add
an edge from each node vj (2 � j � p) to w2 with
capacity 1 (Figure 9(b)).
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Figure 9: Net modeling for a two-terminal net and a multi-
terminal net in Nf .

For the above net modeling, the di�erent ordering of the
nodes will cause di�erent net-cut size, and the cut size re-

ects the communication cost. Lemma 2 shows the correct-
ness of the above net modeling for a net in Nf .

Lemma 2: For a net n = fv1; :::; vpg 2 Nf , if v1 2 X

and vj 2 X, then the cut-size is 1; if v1 2 X and vj 2 X,
then the cut size is 2.

Proof: For a two-terminal net, if v1 2 X and v2 2 X,
then edge v2 ! v1 will be the forward cut edge from X to X
with cut size 1, which is equal to the capacity on this edge.
If v1 2 X and v2 2 X, then v1 ! v2 will be the forward cut
edge with cut size 2. For a multi-terminal net n 2 Nf , if

v1 2 X and vj 2 X, then since only v1 ! w1 and w2 ! v1
have capacity less than1 in the net modeling, w2 ! v1 will
be the forward cut edge with w2 2 X. So the cut size is 1.
On the other hand, if v1 2 X and vj 2 X, then v1 ! w1 will

be the forward cut edge from X to X . Since the capacity
on edge v1 ! w1 is 2 and the edge is saturated after the
max-
ow computation, so the cut size is 2 in this case. ]

Figure 10 shows a cut in the constructed network G0 and
the corresponding net cutG. In the example of Figure 10(a),
if net n is cut and v1 2 X, then the bridging edge v1 ! w1

is cut and the cut size is 2 which equals to the capacity on
v1 ! w1. Figure 10(b) shows if v1 2 X, then the bridging
edge w2 ! v1 will be cut and contributes 1 to the cut size.
Figure 11 shows a netlist G and the corresponding network
G0 after net modeling of both nets in Nc and Nf . Notice
the net fa; b; cg is a multi-terminal net belonging to Nf .

4.3 �-bounded Bipartitioning

By the net modeling, we can build a network G0 from the
netlist G, then apply the repeated max-
ow min-cut strat-
egy similar to the algorithm in [16] to �nd an �-bounded
bipartitioning that minimizes the number of crossing nets.

First, a network G0 is constructed from G by the net
modeling discussed in sections 4.1 and 4.2. Next, a source s
and sink t is selected. Then by the max-
ow computation,
the maximum amount of 
ow is pushed from the source
to the sink, and a min-cut (X;X) is found in G0. If (1 �

�)� � w(X) � (1 + �)�, then return (X;X) as the result. If
w(X) < (1 � �)�, then nodes in X are collapsed to s and a

node v from X is collapsed to s, so that in the next iteration
more 
ows can be pushed through the network and explore a
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Figure 10: The corresponding cut in the network G0 and the
netlist G.
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Figure 11: Example of net-modeling.

di�erent net cut with a larger area in X. If w(X) > (1+�)�,

then all nodes in X are collapsed to t, and a node v from X
is collapsed to t. Then the max-
ow min-cut computation
repeats until the area w(X) for subset X is within range.

Incremental 
ow technique is employed for e�cient im-
plementation. It is not necessary to calculate the max-

ow from scratch in each iteration. Only additional 
ow
is added through the network from the source to the sink
to saturate the bridging edges during the max-
ow com-
putation. The time complexity for the repeated max-
ow
min-cut is asymptotically the same as one max-
ow compu-
tation, which is O(jV jjEj).

Figure 12 shows an example of �nding an �-bounded
bipartitioning with �=6. The edges with no markings have
capacity 1. In the �rst iteration, min-cut is 1 after the
max-
ow computation, and w(X)=1. Then node d 2 X is
collapsed to s (i.e. w(s)=2 now) so that more 
ow can be
pushed through the network in the next iteration. In the
second iteration, after pushing the max-
ow, the min-cut
size is still 1 and w(X) = 3. Another node c from X is
collapsed to X and w(X) = 4. In the third iteration, min-

cut is 1 and X is collapsed to t with w(X) = 3. In the next
iteration, after pushing more 
ow through the network, min-
cut is 2 and X reaches the area limit with w(X) = 5. So

(X;X) forms an �-bounded min-cut with cut size 2. We can
then �nd the corresponding net cut in the original netlist G.

5 Multi-way Partitioning

To partition a netlist into k (k > 2) stages for dynamically
recon�gurable FPGA, we repeatedly apply the network-
ow
based bipartitioning algorithm k � 1 times to partition the
netlist into k stages.

Since the length of the critical path is usually longer than
the number of stages, there will be more than one levels of
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Figure 12: Example of �-bounded bipartitioning.

nodes in one stage. Let depth be the number of levels of
nodes on the critical path in the netlist. When partition-
ing into k stages, the number of levels in one stage can be
D = d depth

k
e in order to make the design as fast as possi-

ble. If the timing constraint for each stage is known a priori,
then the maximum number of levels in one stage can be cal-
culated accordingly. Besides minimizing the communication
cost, our objective also includes minimizing the maximum
number of nodes in any stage in order to allow the design
to �t into a smaller physical FPGA. It is desirable to make

each stage have area as close to the average,
w(V )

k
, as possi-

ble (i.e. � =
w(V )

k
).

Our strategy is to �rst apply the As-Soon-As-Possible
(ASAP) and As-Late-As-Possible (ALAP) scheduling to as-
sign each node a range of feasible stages. Then the nodes
on the critical paths are �xed to certain stages, and those
nodes on the shorter paths have the 
exibility to be put in
more than one stage. Network 
ow based �-bounded bi-
partitioning is iteratively applied to partition these 
exible
nodes between stage i and i + 1 (1 � i < k), with the ob-
jective of minimizing the communication cost and balancing
the number of nodes in each stage as well. Due to the prece-
dence constraints, the �xed nodes will serve as source and
sink when partitioning the 
exible nodes.

The partitioning process of Algorithm 1 has four major
steps.

Step 1: perform As-Soon-As-Possible (ASAP) and As-
Late-As-Possible (ALAP) scheduling. In the ASAP schedul-
ing, each node is assigned to the earliest possible stage by
breadth search. In the ALAP scheduling, each node is as-
signed to the latest possible stage. Let AS(v), AL(v) be the
earliest and latest stage for node v. If AS(v) = AL(v) = j,
then v must be scheduled in stage j. We call v as a �xed
node. If AS(v) < AL(v), then v can be assigned to any
stage from AS(v) to AL(v). We call v as a 
exible node.

Step 2: let Pi be the subset of nodes �xed to stage i
(1 � i � k), i.e. Pi = fvjAS(v) = AL(v) = ig. Assign all
the nodes in Pi to stage i. The other unassigned nodes are

the 
exible nodes which can be put in more than one stage.
In our partitioning process, the goal is to assign a stage
for each of the 
exible node while balancing the number of
nodes in each stage and minimizing the net-cut size between
the stages.

Step 3: iteratively call the network-
ow based biparti-
tioning algorithm to partition the 
exible nodes between
stages i and i + 1 (1 � i < k). For the i-th iteration, the
details of the partitioning process are as follows.

Algorithm 1
Network-
ow based multi-way partitioning for DRFPGAs

begin
1. perform ASAP and ALAP scheduling;

for each node v,
let AS(v) be the earliest stage by the ASAP scheduling;
let AL(v) be the latest stage by the ALAP scheduling;

2. for i = 1 to k do
Pi = fvjAS(v) = AL(v) = ig;

for i = 1 to k do
assign all nodes in Pi to stage i;

3. for i = 1 to k � 1 do
begin

3.1. F = fvjAS(v) � i; and v is unassignedg;
3.2. source s = ([i�1j=1Vj) [ Pi, and w(s) = w(Pi);

sink node t = fvjAS(v) > ig, and w(t) = w(Pi+1);
3.3. construct network F 0 from F [ s [ t by net modeling;

3.4. �nd an �-bounded bipartitioning (X;X) in F 0;
3.5. assign nodes in X to stage i, let Vi = Pi [ (X � s);
3.6. for v 2 F with AL(v) = i+ 1, assign v to stage i+ 1;

end
4. Optimally determine the locations of the ME2's.
end

In step 3.1, all the 
exible nodes that can be put in stage
i form a subset F = fvjAS(v) � i; and v is unassignedg.
Notice that nodes in F can either be put in stage i or i+1.
This step guarantees that no node v is assigned to a stage
earlier than AS(v). In step 3.2, the source s and sink t of the
network are decided. The source is a subset of nodes with
s = ([i�1j=1Vj)[Pi and w(s) = w(Pi). The source s contains
all the nodes assigned to stages prior to i and the �xed nodes
in Pi. The sink t = fvjAS(v) > ig and w(t) = w(Pi+1). t
contains nodes which can only be put in a stage later than
i. In step 3.3, network F 0 is constructed from F [ s [ t by
the net modeling. In step 3.4, the �-bounded bipartitioning
algorithm is applied on F 0 to �nd a min-cut (X;X). Then
in step 3.5, the nodes in X are assigned to stage i, such that
Vi = Pi [ (X � s). Next in step 3.6. all the unassigned
nodes with AL(v) = i + 1 are assigned to stage i + 1, i.e.
Pi+1 = Pi+1 [ fvjAL(v) = i+ 1g. This step is to guarantee
that any node v should be assigned to a stage no later than
AL(v). Then i is incremented by 1 and control goes back
to step 3.1 to start the next iteration. Since the nodes on
the critical path are �xed to a stage before the partitioning
process, therefore Pi 6= �, and the source s and sink t are
known in each iteration. With �xed source and sink, the
network-
ow based approach is capable of �nding a good
min cut.

Step 4: after the k-way partitioning is done, the locations
of the ME2's (ME2 situation) are determined. The ME2's
are assigned to a stage which will minimally increase the
number of MEs needed. This can be optimally solved by
the max-
ow based algorithm [2].



By Lemma 1, it is easy to prove that the partitioning
solution of Algorithm 1 satis�es the precedence constraints
among all the nodes. The following Lemma 3 shows that
Algorithm 1 also satis�es the timing constraint. Given the
maximum number of levels in each stage, AS(v) and AL(v)
are the earliest and latest stage that node v can be assigned
in by the ASAP and ALAP scheduling. To satisfy the tim-
ing constraint, v must be in a stage within the range of
[AS(v); AL(v)].

Lemma 3: The partitioning solution of Algorithm 1
satis�es the timing constraint, such that for any node v,
AS(v) � s(v) � AL(v) .

Proof: In AS(v) = AL(v) = j, then v 2 Pj , v is �xed to
stage j and AS(v) = s(v) = AL(v). If AS(v) < AL(v), v is
a 
exible node, by the construction of F in step 3.3, v is in
F only in the i-th iteration when AS(v) � i, and v can only
be assigned to a stage either in step 3.5 or 3.6. If v 2 X,
then v is assigned to stage i in step 3.5, else v is assign to
stage AL(v) by step 3.6. In both cases, AS(v) � s(v). Step
3.6 guarantees that v is assigned to a stage no later than
AL(v), so s(v) � AL(v). Therefore, AS(v) � s(v) � AL(v).
]

The ASAP and ALAP scheduling in step 1 takes O(jV j)
time. Each iteration in step 3 takes O(jV jjEj) time, so the
time complexity for the k � 1 iterations is O(kjV jjEj). The
time complexity for Algorithm 1 is O(kjV jjEj).

Table 1: Characteristics of the netlists in our experiment

Circuit # LUT # DFF # Nets Depth

s5378 422 162 590 10
s9234 317 135 462 13
s13207 688 453 1121 14
s15850 1056 540 1570 23
s35932 2756 1728 4515 6
s38417 3458 1464 4894 18
s38584 3545 1294 4793 20

6 Experimental Results

We implemented algorithm 1 in C++ on Intel Pentium-
Pro of 200Mz with 32MB memory, and experimented on
the same netlists as in [2]. These netlists are derived
by technology-mapping the ISCAS'89 sequential benchmark
circuits into 4-LUTs. Table 1 shows the characteristic of
these netlists. Columns 2 to 4 show the number of LUTs,
FFs and nets in each netlist. In column 5, depth refers to
the number of levels of nodes on the critical path.

In the experiment, we perform multi-way partitioning
into 2, 4 and 8 stages. We �x the number of levels in each
stage to be d depth

k
e with k being the number of stages. In Ta-

ble 2, we compare the communication cost with traditional
force-directed scheduling (FDS) and enhanced force-directed
scheduling (eFDS) [2] when partitioning into 8 stages. TCM
is the maximum number of MEs required for any stage. No-
tice that in our algorithm, the LUTs are balanced among the
stages. Table 2 also shows the CPU time of Algorithm 1.
From the experiment, our network-
ow based method out-
performs both the FDS and enhanced FDS methods, with
an average improvement of 41.5% and 15% respectively.

Table 3 compares the communication cost of Algorithm
1 with the enhanced FDS method [2] while partitioning into
2, 4 and 8 stages. Our method consistently performs better,
with an average improvement of 14.0%, 10.5% and 15.4%
respectively. Since our net modeling does not favor the
ME2 situation, our experiments also show that the num-
ber of ME2's is relatively low and usually does not add to
the overall communication cost.

The experimental results show that with proper net mod-
eling, network-
ow based partitioning approach can handle
the scheduling tasks. The net modeling correctly models
the precedence constraints in combinational circuits, and
the cut-size re
ects the communication cost in both com-
binational and sequential circuits. The iterative max-
ow
min-cut computation balances the number of nodes in each
stage.

7 Conclusion

Dynamically recon�gurable FPGAs (DRFPGA) have the
potential to dramatically improve logic density by time-
sharing logic, and have become an active research for recon-
�gurable computing. The di�erent DRFPGA architectures
impose di�erent requirement on the partitioning problem.
We present a network-
ow based method for multi-way par-
titioning for dynamically recon�gurable FPGAs based on
the TMCL model in [2]. We �rst give a net modeling for
both combinational and sequential circuits so that by the
max-
ow computation on the constructed network, the min-
cut size re
ects the number of communication required. We
then present a repeated max-
ow min-cut based approach
to �nd an �-bounded bipartitioning. Algorithm 1 iteratively
applies the bipartitioning algorithm to �nd a multi-way
partitioning. The experiments show that the network-
ow
based algorithm outperforms the enhanced force-directed
scheduling method [2].
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