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ABSTRACT
Multi-FPGA systems are used as custom computing machines to
solve compute intensive problems and also in the verification
and prototyping of large circuits. In this paper, we address the
problem of routing multi-terminal nets in a multi-FPGA system
that uses partial crossbars as interconnect structures. First, we
model the multi-terminal routing problem as a partitioned bin
packing problem and formulate it as an integer linear
programming problem where the number of variables is
exponential. A fast heuristic is applied to compute an upper
bound on the routing solution. Then, a column generation
technique is used to solve the linear relaxation of the initial
master problem in order to obtain a lower bound on the routing
solution. This is followed by an iterative branch-and-price
procedure that attempts to find a routing solution somewhere
between the two established bounds. In this regard, the proposed
algorithm guarantees an exact routing solution by searching a
branch-and-price tree. Due to the tightness of the bounds, the
branch-and-price tree is small resulting in shorter execution
times. Experimental results are provided for different netlists
and board configurations in order to demonstrate the algorithm’s
performance. The obtained results show that the algorithm finds
an exact routing solution in a very short time.

Keywords
FPGA routing, FPGA architecture, layout synthesis,
interconnect optimization, branch-and-price, integer
programming.

1.   INTRODUCTION
Multi-FPGA systems play an important role in the verification
[5, 28] and the rapid prototyping of large circuits [7, 17, 24]. In
addition, they are often used as custom computing machines to
solve compute-intensive problems [3, 6, 12, 29]. A multi-FPGA
system consists of several FPGA chips placed on a board and
connected together through a routing structure. The routing
architectures influence the cost and the performance of the
emulated and prototyped circuits.

Routing architectures can be either direct or indirect. In the
former, the FPGA chips connect directly to each other through a
fixed set of wires [16, 29, 30], while in the latter some routing
chips are used to interconnect the FPGA chips on the board [7,
17, 28]. In direct routing architectures, the delay is not uniform
and routing completion can be difficult to achieve [5, 28].
Consequently, many FPGA chips may be used solely for
routing, which diminishes logic utilization [28]. These factors
tend to complicate the design of the placement and routing
software. On the other hand, indirect architectures rely on
special purpose chips used solely for routing. The first structure
proposed for these routing chips was the full crossbar [22].
Later, the folded-Clos structure was proposed to implement
these routing chips [7]. The full crossbar guarantees complete
routing and uniform delay. However, its area cost is very high
since it grows squarely with the total pin count. A better
alternative is to use partial crossbars as routing architectures [5,
28]. A set of small full crossbars makes a partial crossbar. A
partial crossbar size grows linearly with the total pin count and
provides uniform delay. In addition, hierarchical expansion is
possible by recursively interconnecting a set of partial crossbars
to build multiple board systems [28].

The organization of this paper is as follows: Section 2 describes
previously proposed approaches to solve this problem. A brief
description of the multi-FPGA system architecture used to solve
this problem is presented in Section 3. Section 4 introduces
several concepts used to model the problem as well as its
formulation. A detailed explanation of the proposed algorithm is
presented in Section 5. In Section 6, we describe some
implementation details and present the experiments. Finally,
conclusions are drawn in Section 7.



2.   RELATED WORK
In [8], the authors proposed a folded Clos network of
interconnections as a routing structure. This network consisted
of a set of small crossbars. In order to route all the nets, the Clos
networks had to be configured through a control algorithm. In
[28], a direct greedy heuristic, which does not reconfigure the
interconnect, was proposed to route the nets across a partial
crossbar interconnection structure. The heuristic routes most
nets but does not guarantee routing completion. Later, a routing
algorithm was proposed to route the nets across multiple small
crossbars [19, 20]. This algorithm runs in polynomial time for
two-terminal nets only. However, the authors proved that the
routing problem is NP-complete for multi-terminal nets [21].
Routing multi-terminal nets was achieved by decomposing these
nets into two-terminal nets and then applying the two-terminal
net routing algorithm [19, 20]. This approach routes most nets,
which may result in using more pins that necessary. In high
routing traffic, it is possible to exhaust all available pins, which
may results in incomplete routing.

In [18], the authors proposed two fast heuristic solutions and an
exact solution. The heuristics were based on the one proposed in
[28] but with an added feature that tries to balance the nets
across all the crossbars. Both heuristics select candidate nets for
routing by using a gain function.  This function is a linear
combination of two parameters where the first and the second
parameter represent the number of available pins in a crossbar
for a given logic chip and the total number of available pins in
the same crossbar across all the logic chips respectively. The
first and the second parameters are weighted by two adjustment
factors, α and β. However, there was no indication on how to set
these two parameters. The exact solution was based on a non-
linear programming formulation of the routing problem. Since
this solution is time expensive, it was applied only when the
heuristic solution failed to complete routing.

In this paper, we propose an exact solution based on an integer
linear programming formulation. Contrary to previously
proposed approaches, our approach provides theoretically
established bounds on the routing solution. The tightness of
these bounds is exploited to minimize the search space of the
algorithm. In addition, additional bounds are used to improve
the performance of the proposed algorithm. The algorithm
shows a fairly high degree of stability when tested on different
board configurations. The experimental results show that the
performance of our algorithm is better than previously published
approaches.

3.   PARTIAL CROSSBAR MODEL FOR
MULTI-FPGA SYSTEMS
In this section, we describe the architecture of partial crossbar-
based multi-FPGA systems. In a crossbar-based multi-FPGA
system, a set of FPGA chips called the logic chips is placed on a
board. These chips are configured to implement logic circuitry.
The IO signals between these logic chips are routed through
several interconnection chips called the routing chips. Each
routing chip is a full crossbar and is connected only to logic
chips. No routing chip is connected to another routing chip. The
IO pins of each logic chip are partitioned into subsets of pins.
Each subset of pins contains the same number of pins. The pins

on a routing chip are connected to the pins belonging to the
same pin subset on each logic chip. Thus, the number of routing
chips on the multi-FPGA system board is equal to the number of
pin subsets on each logic chip. The number of pins on a routing
chip is the number of pins over all the routing chips belonging to
the same pin subset. Figure 1 shows an example of a multi-
FPGA system with three logic chips and two routing chips. The
pins of each logic chip are divided into two subsets: A and B.
Each subset contains two pins. For instance, subset A contains
pins A1 and A2 in each logic chip. Every pin in the A subset on
each logic chip is connected to a pin on the first routing chip.
Similarly, every pin in the B subset on each logic chip is
connected to a pin on the second routing chip. Since there are
two pin subsets, there are two routing chips.

Figure 1 An example of a partial crossbar-based FPGA
system.

To map a large circuit on a FPGA based system for emulation or
prototyping, the circuit is partitioned such that each partition is
packed into a logic chip. After partitioning, the nets between the
logic chips must be routed through the routing chips in order to
make the circuit functional. As long as there are available pins
on a routing chip, the nets can be routed between the logic chips.

4.   PROBLEM SPECIFICATION AND
FORMULATION
In this section, we introduce some concepts related to the multi-
terminal net routing problem on partial crossbars. Then, we
describe the problem and model it as a partitioned bin packing
problem.

4.1   Problem Specification
We will refer to the chips that contain logic circuitry as the logic
chips while those that are used solely for routing as the routing
chips. Let C be the number of logic chips on a board. The pins
on each logic chip are divided into pin subsets. Let K and m be
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the number of pin subsets per logic chip and the number of pins
per subset respectively. A routing chip will have mC pins. There
will be K routing chips per board. A board configuration is
represented by B = (m, K, C). In Figure 1, m is 2, K is 2, and C is
3. Let N = {n1, n2, …  n|N|} be a netlist. A net n in N is
represented by a C-bit binary vector, (b1, b2, …  bC), where bj is 1
when n has a terminal on logic chip j and is 0 otherwise. The
multi-terminal net routing problem requires that the terminals of
a net must be assigned to pins belonging to the same pin subset.
In this case, the net will be routed only through one routing chip.
For example, a net n = (1, 1, 1) requires one terminal on each
logic chip. It can be assigned, for instance, to the pin subset A
on the board shown in Figure 1. This means that it can use any
pin from pin subset A on each logic chip and subsequently can
be routed through only one routing chip. Routing a given net
through one routing chip guarantees uniform delay for all
signals in the net. Let Si be a given pin subset on logic chip i and

S be the union of such pin subset over all logic chips, U
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Definition 1: An assignment of a net n =  (b1, b2, …  bC) to a pin
set S is called a legal assignment iff for each bj = 1 where 1 ≤ j ≤
C, there is an available pin in pin subset Sj.

Given a board configuration B = (m, K, C) and a netlist N, this
paper addresses the problem of how to find a legal assignment
of each net in N to some subset pin in B. We call this problem
the net routing problem for partial crossbar-based FPGA
systems.

4.2   Problem Formulation
In this section, we present the formulation of the routing
problem of multi-terminal nets in crossbar-based multi-FPGA
systems. As mentioned in Section 4.1, a net n is represented by a
C-bit vector, (b1, b2, …  bC), where bj is 1 when n has a terminal
on logic chip j and is 0 otherwise.

Definition 2: The weight of a net n = (b1, b2, …  bC) is
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    )(  where bi ∈  {0, 1}.

The nets can be either two-terminal or multi-terminal. A t-
terminal net has a weight equal to t.

Definition 3: The magnitude of a net n = (b1, b2, …  bC) is
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The magnitude of a net n is useful in distinguishing n from other
nets whose weights are equal to that of n. For example two nets
n1 = (1, 1, 0) and n2 = (1, 0, 1) have the same weight 2. But their
magnitudes are different, mag(n1) = 6 and mag(n2) = 10. It is
possible for a netlist to contain nets with identical weights but
whose magnitudes are different.

Definition 4: A net type Ti represents a set of nets in N whose
magnitudes are equal.

There will be many net types in a given netlist. Each possible
magnitude value determines a net type. Let T = {T1, T2, … , T|T|}
be the set of net types in N. It is obvious that |T| ≤ |N|. Let ti be
the number of times the net n occurs in N. We associate an
“object” Oi with each “net type” Ti, characterized by (b1, b2, … ,
bC), mag(Ti), weight(Ti) and ti. For clarity, the terms “object”
and “net type” will be used interchangeably in the rest of this
paper since they represent the same entity.

Let each pin set be represented by a bin. If a set U
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represented by a bin B, then B’s total capacity, denoted by
cap(B), is |S|. Since each set consists of several subsets, the bin
will be divided into partitions. Each pin subset Si is represented
by a partition Pi in B. A partition Pi will have as many empty
slots as pins in subset Si. For example, pin set A in Figure 1 can
be represented by a bin B. Since A consists of three subsets {A1,
A2, A3}, B will have three partitions {P1, P2, P3}. Each partition
Pi will have two available slots since each subset Ai has two pins
for 1 ≤ i ≤ 3.

Definition 5: A bin B = (|Pi|, C) = (|Si|, C) = (m, C) represents a
pin set S where C is the number of partitions in B and |Pi| is the
number of available slots in each partition, for 1 ≤ i ≤ C.

Note that (i) C is also the number of logic chips on the board and
(ii) every subset Si in S has the same cardinality m. The capacity
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mentioned in Section 4.1, the problem of routing the nets on a
board is equivalent to finding a legal assignment for each net to
a pin set. Since each pin set S can be represented by a bin B and
each net type Ti in T can be represented by an object Oi,
assigning a net type Ti to S is equivalent to packing the object Oi
into B. It is possible to pack more than one object into B if
cap(B) is large enough.

Definition 6: A legal packing of an object Oi = (b1, b2, … , bC)
into a bin B is the placement of a unit of weight 1 into an empty
slot of the partition Pj if bj = 1 for 1 ≤ j ≤ C.

Note that each partition in B has m slots. In order to pack more
than one object into a bin, each object must be placed through a
legal packing.

Definition 7: A bin B is feasible iff each object in B was placed
in B through a legal packing.

In a legal packing, the total weight of the objects packed in a bin
will always be less than or equal to the bin’s capacity. Given a
list of objects and a partitioned bin, the number of possible ways
in which any set of objects form the list of objects can be legally
packed into the bin is quite large. This means that the number of
feasible bins is very large. Let Ω  be the set of all possible
feasible bins. Given a board configuration B = (m, K, C) and a
net type set T, the problem of net routing for partial crossbar-
based FPGA systems is equivalent to packing the objects in T
subject to the following constraints: (i) each packing of an object
must be a legal packing, (ii) each bin must be a feasible bin, (iii)
each object type must occur at least ti times in the solution. Let
aij be the number of object of type Ti in feasible bin j and the



matrix A = [aij] for 1 ≤ i ≤ |T| and 1 ≤ j ≤ |Ω |. We can formulate
the Net Routing Problem for Partial Crossbar-Based FPGA
Systems as follows:
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subject to: aijxj ≥   ti , 1 ≤ i ≤ |T|, 1 ≤ j ≤ |Ω |.
 xj ≥ 0, xj integer.

The variable xj represents the number of times the feasible bin j
occurs in the solution. The |T| constraints guarantee that there
are at least ti objects of types Ti in the solution. This is the
Integer Programming (IP) formulation of this problem. It is
clear that |Ω | is an exponential function of |T|, which makes the
explicit generation of the columns of this IP impractical.
Gilmore & Gomory [14, 15] introduced this formulation to solve
the cutting stock problem, a well-known problem in the paper
industry, which is characterized by an exponentially large
number of columns.

5.   PROPOSED SOLUTION
In this section, we describe the approach used to solve the IP
formulation of the problem. We use a branch-and-price
approach to locate the routing solution in a large search space
represented by a binary tree. The routing solution is represented
by [xj], 1 ≤ j ≤ |T|, which is the number of times the feasible bin j
occurs in the solution. A routing solution is routable if
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chip. Our approach consists of four major parts. The first part
represents a procedure to compute an upper bound on the
routing solution. The second part represents a column generation
technique performed at each node of the branch-and-price tree.
The third part represents the branching rules used to add new
nodes to the tree. The fourth part represents the strategy used to
traverse the tree. We use the following notation to explain the
algorithm:
zLB = lower bound
zbest = best solution or upper bound
zffd  = First Fit Heuristic solution
zB = current solution at the current node of the branch-and-price
tree

The outline of our branch-and-price approach is as follows:

1) Let zLB = 0
2) Solve the problem instance using the First Fit Decreasing
3)   Heuristic
4) Update the upper bound: zbest = zffd
5) If zbest ≤ K then
6)         The problem instance is routable
7)         Stop
8) Endif
9) Solve the RMP at the current node using column generation
10) Update the lower bound zLB
11) If zLB > K then
12)         The problem instance is not routable
13)         Stop
14) Endif
15) If the solution is integral then

16)         If the current solution zB ≤ K then
17)                  The problem instance is routable
18)                  Stop
19)         Endif
20)         If zB < zbest then
21)                 Update zbest
22)         Endif
23)         Backtrack to another node
24)         If the node backtracked to is the root node then
25)                 The problem instance is not routable
26)                  Stop
27)         Endif
28)         Goto step 9
29) Else
30)          If zB < zbest –1 then
31)                  Find a maximal column Aj in the solution of the
32)                     current LP whose variable is fractional xj = α
33)                  Add a left node to the tree in which the RMP to
34)                      solve is the problem from the parent node with
35)                      the additional constraint xj ≤ α
36)                  Add a right node to the tree in which the RMP to
37)                     solve is the problem from the parent node with
38)                     an additional constraint xj ≥  α
39)                  Branch to the next node
40)                  Goto step 9
41)          Else
42)                  Backtrack to another node
43)                  If the node backtracked to is the root node then
44)                          The problem instance is not routable
45)                          Stop
46)                  Endif
47)                  Goto step 9
48)          Endif
49) Endif

In the following sections, we explain the important steps of the
algorithm.

5.1   Description of the First-Fit Decreasing
Heuristic
The second line in the pseudocode of the proposed approach
solves the multi-terminal nets routing problem, modeled as
partitioned bin packing problem, using the First-Fit Decreasing
heuristic [9]. The objects are first sorted in non-increasing order
of their weights before being packed in this order. An object is
packed into the current bin if room is available. Otherwise an
empty bin is added to the list of bins in which the current object
will be packed. This process is repeated until every object in the
list is packed in a bin. Every packing of an object in a
partitioned bin is performed by a legal packing as described in
Section 4.2. Initially, the number of bins obtained with this
heuristic, zffd, is an upper bound on the routing solution.

5.2   Column Generation at a Tree Node
In this section, we explain the general version of the column
generation performed at each node of the branch-and-price tree,
which is represented by line 9 in the pseudocode of the proposed
approach. We also formulate the pricing problem and explain
how it relates to our column generation technique.



5.2.1   General Version of Column Generation
In [14], the authors proposed a simplex algorithm to solve large-
scale IP problems by solving their linear programming
relaxations (LP) through the generation of a limited number of
columns. To circumvent the explicit generation of the columns,
the authors proposed a modified version of the simplex method
to implicitly generate a finite set of columns in order to improve
the objective function [14, 15]. The size of this finite set is at
most |T| columns, which is clearly linear in the size of N. Note
that a column from this set may occur more than once in the
solution. The column generation problem was defined as an
optimization problem whose solution is supposed to price out in
order to enter the basis at each iteration of the simplex
algorithm. The formulation of the column generation problem
depends on the application. The formulation of our column
generation problem is presented in Section 5.2.2. Column
generation stops when no more improvement of the objective
function can be obtained. We use the following notation to
explain this simplex algorithm:

B0 = Initial feasible basis (a |T| x |T| matrix)
B-1 = Inverse of current feasible basis (a |T| x |T| matrix)
cB = unit row |T|-vector of costs of the basic variables
t  = (t1 t2 …  t|T|)T = column |T|-vector of the occurrences of each
      object type Ti
b = B-1 x t = current basic solution
π = cB x B-1 = row |T|-vector of the simplex multipliers
As = (a1 a2 … a|T|)T = newly generated column |T|-vector

The outline of the algorithm is as follows:

1) Make B0 the initial feasible basis.
2) Compute the current solution b = B-1 x t
3) Compute the current simplex multipliers π = cB x B-1.
4) Find a column As, using some generating algorithm, by

maximizing the function f(As) = π x As.
5) If 1 - f(As) ≥  0 then stop: b is the optimal solution

Else compute B-1 x As.
6) If B-1 x As  ≤ 0 then stop: the optimum is unbounded

Else determine the pivot row, update the basis and goto
step 2.

In our formulation, B0 is the unit matrix whose diagonal entries
are equal to m. Note that all the coefficients in our IP
formulation are equal to 1. The IP formulation shown in Section
4.2 is called the Master Problem (MP). In each iteration, the
simplex algorithm keeps a subset of columns from all possible
columns. This is the Restricted Master Problem (RMP). In step
2 and 3, the current solution and the simplex multipliers are
computed. In step 4, a column must be generated by maximizing
its objective function. This optimization problem is called the
Pricing Problem (PP). The column prices out if its objective
function is greater than 1 in step 5. If the optimum is bounded in
step 6, a pivot row is determined by the Minimum Ratio Test
[14]. Then the basis is updated and the algorithm enters a new
iteration. The algorithm stops when no column can price out to
enter the pivot. At the end, we end up with only a subset of all
possible columns whose size is less or equal to |T| if an optimum
is found.

5.2.2   Formulation of the Pricing or the Column
Generation Problem

In our IP formulation, a column represents a feasible bin. Let As
= (a1 a2 … a|T|)T be a column whose components ai are unknown
variables. Note that each ai, 1 ≤ i ≤ |T|, represents the number of
objects of type Ti packed into a bin. When an object of type Ti is
packed into a bin, each bit whose value is equal to 1 in its bit
vector is assigned to an unoccupied slot in the partition Pj of the
bin. A partition can hold at most m bits whose respective values
is each equal to 1. This means that the number of bits from
different objects assigned to the slots of a given partition must
not exceed m. Let an object of type Ti = (bi1, bi2, … , biC) and bij
be the jth bit in the vector of this object of type Ti. Let π = (π1,
π2, …  π|T|) be the simplex multipliers as defined in Section 5.2.1.
The column generation problem, also known as the pricing
problem (PP), is defined as follows:

                                    ∑
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                  subject to:  bijai ≤  m, 1 ≤ i ≤ |T|, 1 ≤ j ≤ C.
                                     ai ≥  0, ai integer.

The constraints allow at most m bits in each bin partition where
each bit is equal to 1. The PP in our formulation is an integer
linear program. The solution of this problem corresponds to step
4 of the simplex algorithm described in Section 5.2.1. In this
formulation, f(a) represents f(As) in the simplex algorithm of
Section 5.2.1.

5.2.3   Solution of the Restricted Master Problem
At each node of the tree, a RMP is solved using column
generation as described in Section 5.2.1. At the root node, the
first RMP is optimized by relaxing it to an LP. It is not
necessary to solve the RMP linear relaxation to optimality to
obtain a lower bound [25]. Note that the column generation
approach described in Section 5.2.1 terminates when no more
columns can be generated, namely when the reduced cost of the
last generated column 1 – f(As) ≥ 0. Stopping the generation of
the columns in this fashion triggers a tailing-off effect, which is
characterized by a decrease in the optimization rate of the
objective function at the final iteration stages of the simplex
approach [4]. Hence, a large number of iterations are needed to
reach optimality. To minimize computational effort, one can opt
to abort the column generation process early and work with
bounds of the final objective function value of the LP. Let zIP,
zB, cmin be the IP objective function value, the optimal value of
the restricted master problem at the root node, and the reduced
cost of the column generated in the pricing problem
respectively.

Proposition 1: If zB = zB / (1 – cmin) , then zIP ≥  zB.

The proof of this proposition has been presented in [25, 26]. It is
a direct consequence of the bounds proposed in [13]. This
proposition is used to terminate the optimization of the LP at the
current node earlier. The equality of the if clause in proposition
1 is checked at every iteration of the simplex algorithm. The
simplex stops as soon as it becomes true. This test is performed



at each iteration of the simplex algorithm executed in line 9 of
the pseudocode of the proposed approach.

5.3   Description of the Branch-and-Price
Approach
In this section, we explain the contents of line 30 through 40 of
the pseudocode of the proposed approach. We also show how
the pricing problem is modified to account for the branching
rules.

5.3.1   Branch-and-Price Rules
The column generation technique used in [14] produces an
optimal solution to the LP relaxation of the RMP. However, the
solution is not necessarily integral. Note that a solution is
integral if every variable in the solution is integer. Recently,
many researchers addressed this issue by introducing branching
strategies similar to the ones used in branch-and-bound
approaches [2, 10, 11, 23, 25-27]. In the branch-and-price
approach, the RMP is solved using column generation at the root
node of a tree [4]. If the solution is not integral, specific rules
are used to bound a subset of the variables from below and
above in order to branch out to two new nodes. The left node
represents the RMP with an additional constraint, the upper
bound used for left branching. The right node is similar except
that the additional constraint is the lower bound used for right
branching.

After an LP is optimized at a node, branching takes place if zB ≤
(zbest – 1). This is shown in line 30 of the pseudocode listed in
Section 5. In [27] the authors proposed a branching rule in
which a maximal column, whose variable is fractional, is
selected for branching. Note that a variable is fractional if it is
both real and non-integer. A maximal column is a feasible bin
whose unfilled capacity is less than or equal to the smallest
weight of any object type in T. This rule guarantees the
elimination of a fractional variable if one exists in the LP
solution at a given node in the tree. Let Aj be a maximal column
whose variable xj = α is fractional. We branch (i) on the left by
adding the constraint xj ≤ α to the LP problem of the current
node and placing this new problem in the left node and, (ii) on
the right by adding the constraint xj ≥ α to the LP problem of
the current node and placing this new problem in the right node.
It is obvious that the number of constraints increases as we
descend the tree. This increase in the number of constraints
narrows the search space for the routing solution.

5.3.2   Modification of the Pricing Problem
A branching rule must not exacerbate the complexity of the PP.
In addition, the modification of the PP at each node by the
branching rule must not result in the generation of infeasible
columns [26]. Since each branching decision adds a constraint to
the newly created LP, the PP is slightly modified to reflect this
change in the LP. As mentioned in Section 5.3.1, each fractional
variable xj represents a maximal column. When solving the PP,
we must avoid the generation of a maximal column associated
with any left branch constraint. We call these columns forbidden
columns. This is equivalent to replacing each left branch
constraint xj ≤ α by xj = 0. The PP is not affected with regard
to the right branch constraints since the constraints are ≥
constraints in the original MP [26]. After solving a PP, we
compare the solution column to each forbidden column in the

column pool. Assume the object of type Ti is the smallest weight
object in the solution column. If a match is found between the
solution column and a forbidden column, then we modify the PP
by eliminating from it the variable ai and resolve it again. This
modification guarantees that the newly generated column is
optimal only with regard to the new PP. This process is repeated
until the solution column of the modified PP does not match any
forbidden column in the column pool. We found that the
probability of generating already existing forbidden columns
tend to increase slightly as the algorithm solves RMPs located
deeper in the branch-and-price tree.

5.4   Description of the Tree Traversal
Strategy
In this section, we explain the strategy adopted to traverse the
tree and how it relates to the process of updating the lower and
upper bounds of the routing solution. The efficiency of the
algorithm depends heavily on updating these two bounds, which
is performed at specific instants during the tree traversal.

5.4.1  Tree Traversal
When the algorithm is searching the solution space, it has to
traverse the tree in some fashion. Since the modifications
introduced in the formulation of the PP to avoid regenerating
forbidden columns affect primarily the left nodes in the tree, we
favor visiting the left nodes first as we descend the branch-and-
price tree. The closest strategy that mimics this scheme is to
traverse the tree in a depth-first manner. In [26], the authors
present evidence showing that this strategy is very suitable for
the branching rules used in the algorithm.

5.4.2   Updating the Lower Bound
Let zLB and zB be the IP lower bound and the objective function
of the LP at the current node respectively. If the current node is
the root node, then zLB = zB. Otherwise if zB >  zLB at every
active node of the tree, then zLB = zBmin where zBmin is the
smallest zB in the branch-and-price tree. An active node is a
node whose LP was already solved. At any time, there may be
tree nodes whose RMPs were already formulated but have not
yet been solved. Updating the lower bound in this manner brings
it closer to the upper bound.

5.4.3   Updating the Upper Bound
Let zbest be the best IP solution found so far. When a new integer
solution zB is found, zbest = zB if zB < zbest. Note that zbest = zffd
initially. As better integer solutions are found deeper in the tree,
zbest is updated accordingly to reflect how the upper bound
moves closer to the lower bound zLB.

6.   EXPERIMENTAL RESULTS
The algorithm was implemented in C++ on a Sun Ultra 1
workstation. The optimization software EXPRESS-MP was used
to solve the PP [1]. To solve each PP, the matrix of the PP was
constructed and packed in a format recognizable by XOSL,
which is the optimization library of EXPRESS-MP. Appropriate
library routines were called to solve the PP. When the solution is
returned by XOSL, it is passed back to our algorithm. Two files
are used as input to the algorithm: a board configuration file and
a netlist file. The algorithm produces an output file describing
the routing results.



Logic  Chips Crossbar Chips
Configuration Chips/board Pins/chip Pins/subset Chips/board Pins/chip

1 8 96 8 12 64
2 8 96 16 6 128
3 8 96 32 3 256

Table 1 Test Configurations

Config. Netlist Nets Types

Config.
Cross-
bars ZLB zbest

Routing
Ratio
(%)

Pin
Sat.
(%)

Solved
LPs

CPU
Time
(sec)

1 1 221 112 12 13 13 99 81.25 1 138
2 115 0 12 100 88.02 0 7
3 118 13 14 94 75.04 1 118
4 119 0 12 100 88.02 0 9
5 121 0 12 100 88.02 0 14

2 6 221 115 6 0 6 100 88.02 0 9
7 118 0 6 100 88.02 0 8
8 119 7 7 99 75.44 1 484
9 119 0 6 100 88.02 0 8
10 121 0 6 100 88.02 0 11

3 11 221 111 3 4 4 98 66.01 1 450
12 115 0 3 100 88.02 0 9
13 120 0 3 100 88.02 0 11
14 120 4 4 99 66.01 1 220
15 128 0 4 100 88.02 0 15

Table 2 Experimental Results

Table 1 shows the configurations used to test the algorithms.
The parameters used in the test configurations fall within the
range of the present technology. Five netlists of different sizes
were generated to test the algorithm on each configuration. As in
[5, 18, 20], each netlist contains 33% 2-terminal, 38% 3-
terminal, 19% 4-terminal and 10% 5-terminal nets.

Table 2 shows the results of the experiments. The first column
shows the configuration used for routing. Column 2, 3, and 4
show the netlist, the number of nets in the list, and the number
of net types in that list. Column 5 shows the number of routing
chips or crossbars in the configuration, while columns 6 and 7
show the lower and the upper bounds as defined in Section 5.4.
Column 8 shows the routing ratio, which is the number of routed
nets over the total nets in a given netlist. Column 9 shows the
average pin saturation of all routing chips. Pin saturation is
defined as the ratio of pins used for routing in a routing chip
over all the available pins in that routing chip. In our
formulation, this is equivalent to the ratio of the number of full
slots in a feasible bin over all the available slots in a bin.
Column 10 and 11 show the number of linear programs (LPs)
solved to reach the solution and the CPU time in seconds.

It is clear that as the size of the netlists increases, it becomes
difficult to route each net in the list. The sizes of the netlists
used in the experiments were chosen to cover the two
possibilities where the algorithm may or may not route the nets.
We want to show how the algorithm determines routing success
or failure for a given netlist. As the packing density of the
feasible bins increases, so does the pin saturation. This in turn

allows the routing of larger netlists. Eventually, the size of a
netlist will reach a given size for which the number of needed
feasible bins to pack each net exceeds the number of routing
chips in the configuration. At this point, some nets will fail to
route. It is obvious, from the experimental results shown in
Table 2, that the branch-and-price tree is very small consisting
of only one node. This is due to the tightness of the lower and
the upper bounds. The CPU time is very small when a routing
solution is found by the heuristic step in the algorithm. However
it tends to increase, within reasonable limits, when the algorithm
tries to solve an LP. It takes 2|T| to 3|T| iterations on the average
to solve an LP in a given node where |T| is the cardinality of the
type set T.

When compared to our algorithm, previously proposed
heuristics for this problem do not offer any a priori known
bounds on their routing solutions [5, 18, 20]. This uncertainty
can be exacerbated by the use of weight coefficients in
optimized functions, which can be very sensitive to a variety of
inputs. The weight coefficients have to be periodically adjusted
to fine-tune the performance of the heuristics. The results of
those heuristics can be explained only after extensive
experimentation on large sets of data. The bounds of our
approach are significant in the sense that they are very tight.
This tightness minimizes the search space of the algorithm,
which is represented by a branch-and-price tree. Hence, the
short execution times of the algorithm. The only proposed exact
solution can be very time consuming and is applied only when
the heuristic failed to route the nets [18]. Although the
formulation in [18] is polynomial in the size of the board



configuration, it turns out to be so large that commercial
software was inadequate for its implementation. The authors
opted to build a tailored solution. Our approach manipulates a
|T| x |T| matrix, which is linear in the size of the netlist,
regardless of the board configuration size.

In addition, the previously proposed heuristics tend to be
sensitive to the architectural parameter m. The  quality of their
routing solutions improves as m increases. In [18], m was
suspected to have an impact on the performance of the proposed
routing algorithms. Our algorithm display a good stability in the
face of a wide rang of values for m. However, the performance
of our algorithm may worsen somewhat if m is set to an
extremal value such as m = 1. When m = 1, the ratio ρ =
max{weight(Ti): Ti ∈  T} / mC = 5 / mC increases. This is
equivalent to increasing the weights of the objects with regard to
the bin capacity. It is well documented in the literature that when
the object weights increase to half or more the bin capacity, the
solution quality in the general version of the bin packing
problem produced by both the First-Fit and Best-Fit Decreasing
heuristics deteriorates [9]. Since C = 8 in our experiments, ρ = 5
/ 8, which is greater than 0.5. In this case, |zLB – zffd| will be
somewhat larger, which in turn increases the size of the branch-
and-price tree. A simple, yet effective way, to remedy this
ensuing abnormal behavior of the algorithm is to merge several
pin subsets and consider them as one pin subset. This has the
effect of increasing the value of m. The modeling of the problem
will not be affected in any way. Once m > 1, the algorithm
resumes its fast execution. This extreme case is only of
theoretical interest. Most practical architectures use values of m
that are much higher than 1. Our algorithm shows a consistent
behavior regardless of the configuration. This makes it a suitable
experimental tool for the synthesis of architecturally efficient
board configurations.

7.   CONCLUSION
In this paper, we examined the multi-terminal net routing
problem of crossbar-based multi-FPGA systems. We proposed
an efficient exact algorithm to solve this problem. This
algorithm guarantees bounded routing solutions. The bounds
used allow this algorithm to handle comfortably problems of
reasonable size within acceptable CPU times. In addition, it
produces consistent results without being excessively sensitive
to the architectural parameter m. This algorithm can be
integrated as a tool with other layout tools targeted towards the
partial crossbar architecture where it can be used as a fast router
to estimate the routability of a design. It can also be coupled
with a global placement and partitioning tool to guide the
partitioning tool such that the partitioned circuit is routable.
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