
1. ABSTRACT
Boolean-based routing transforms the geometric
FPGA routing task into a single, large Boolean
equation with the property that any assignment of
input variables that “satisfies” the equation (that
renders equation identically “1”) specifies a valid
routing. The formulation has the virtue that it con-
siders all nets simultaneously, and the absence of a
satisfying assignment implies that the layout is
unroutable. Initial Boolean-based approaches to
routing used Binary Decision Diagrams (BDDs) to
represent and solve the layout problem. BDDs,
however, limit the size and complexity of the
FPGAs that can be routed, leading these
approaches to concentrate only on individual
FPGA channels. In this paper, we present a new
search-based Satisfiability (SAT) formulation that
can handle entire FPGAs, routing all nets concur-
rently. The approach relies on a recently devel-
oped SAT engine (GRASP) that uses systematic
search with conflict-directed non-chronological
backtracking, capable of handling very large SAT
instances. We present the first comparisons of
search-based SAT routing results to other routers,
and offer the first evidence that SAT methods can
actually demonstrate the unroutability of a layout.
Preliminary experimental results suggest that this
approach to FPGA routing is more viable than ear-

lier BDD-based methods.

1.1 Keywords
Boolean satisfiability, FPGA routing, conflict-directed
search.

2. INTRODUCTION
Field-Programmable Gate Arrays (FPGAs) have adopted
and successfully adapted a variety of ASIC layout tech-
niques. Iterative improvement placers [4], maze-style [19]
and channel-style routers [16] are extremely common here.
But the discrete nature of FPGA logic blocks and routing
fabrics also admits unique layout strategies that each strives
to leverage the limited palette of geometric alternatives to
prune the space of viable layouts. Search-based global and
detailed routers [3][5], channel routers [15], and simulta-
neous placer/routers [22][28] are a few examples of such
attacks that actually exploit the rigid limitations on FPGA
layout geometries. Unfortunately, these geometric limita-
tions still render the problem of predicting whether a given
netlist can fit on a specific FPGA architecture--in particular,
whether it can route successfully after placement--very diffi-
cult. Improvements in routability estimators [6], statistical
estimators [10], simultaneous placer/routers [22], and rout-
ing tactics that can heuristically abandon the layout when
unroutability appears inevitable [27] are all viable responses
to this critical problem. Nevertheless, it remains a practical
impossibility to answer exactly this simple question for most
FPGA placements: is this layout routable?

In [29][30] we suggested a radical transformation of the
routing problem to address this question. Rather than deal
with the layout as a geometric problem, we deal with it as a
Boolean problem. We render the routing constraints as a sin-
gle, large Boolean equation which is satisfiable (has an
assignment of input variables such that the equation evalu-
ates to “1”) if and only if the layout is routable. The idea is
essentially a variant of pattern routing, which has long been

Satisfiability-Based Layout Revisited:
Detailed Routing of Complex FPGAs

Via Search-Based Boolean SAT

Gi-Joon Nam
Department of EECS

University of Michigan
Ann Arbor, MI 48109-2122

Phone: (734) 936-2828

criteria@eecs.umich.edu

Karem A. Sakallah
Department of EECS

University of Michigan
Ann Arbor, MI 48109-2122

Phone: (734) 936-1350

karem@eecs.umich.edu

Rob A. Rutenbar
Department of ECE

Carnegie Mellon University
Pittsburgh, PA 15213

Phone: (412) 268-3334

rutenbar@ece.cmu.edu

used in both board and chip-level routing. Each 2-pin con-
nection may be assigned to a numerable set of possible
paths through the FPGA routing fabric. Each alternative is
encoded with a unique binary vector; these variable values
determine the exact final routing. Since path patterns can
quickly become complex and their number unmanageable,
we enumerate patterns only through small regions of the
fabric, and “assemble” patterns together to complete nets.
Other Boolean equations serve to constrain this “assembly”
process: connectivity constraints ensure that path patterns
connect legally to make full net routes; exclusivity con-
straints ensure that two electrically different nets do not
occupy the same routing resource at the same time. A par-
ticular virtue of this formulation, which we refer to as Bool-
ean-based routing, is that much of the geometric complexity
of the interaction among patterns is hidden, and rendered
implicitly in the Boolean constraint formulas. Also, all paths
for all nets are considered simultaneously. In [29][30], we
solved the resulting Boolean problem by creating a Binary
Decision Diagram (BDD, [7][8]) to represent the routing
constraint formulas. The BDD-based approach has a variety
of useful properties, e.g., all possible routing solutions are
captured as traversals of the BDD from its root to the distin-
guished “1” leaf node, and the layout is unroutable if the
BDD degenerates to the function that is indentically “0”.
Unfortunately, BDDs are also difficult to construct for large
routing problems. Variable orderings are difficult to derive,
and the BDD graph itself can become unmanageably large
during intermediate computations. To overcome this, in
[29][30] we decomposed our FPGA layouts into channel-
wise slices, and used BDD-based routing only on each
channel.

Obviously, a more desirable approach would be to model
the entire FPGA routing problem by a single Boolean func-
tion, but this appears to be impractical for large designs
using BDDs as the solution engine. A BDD-based approach
essentially “solves” the function yielding all satisfying
assignments. If we are merely interested in finding a single
satisfying assignment we can, instead, employ an implicit
systematic search in the n-dimensional Boolean space of the
input variables to locate such an assignment, or to prove that
it does not exist. Such search-based apporaches are com-
monly referred to as satisfiability (SAT, for short) algo-
rithms.

The SAT community today is surprisingly large and vigor-
ous [12], due to the broad range of problems which can be
modeled as instances of SAT. Today, search-based SAT
solvers appear to have the edge in robustness and scalability.
Many search-style solutions have been proposed for SAT,

the most well known being variations of the Davis-Putnam
procedure [11]. The best known version is based on a back-
tracking search algorithm that, at each node in the search
tree, elects an assignment and prunes subsequent search by
iteratively applying the unit clause and the pure literal rules
[33]. Iterated application of the unit clause rule is com-
monly referred to as Boolean Constraint Propagation
(BCP) or as derivation of implications in the VLSI CAD lit-
erature [1]. Interest in the direct application of SAT algo-
rithms to EDA problems has been on the rise recently [9]
[18][21][26]. In addition, improvements to the traditional
structural (path sensitization) algorithms for some EDA
problems, such as ATPG, include search-pruning techniques
that are also applicable to SAT algorithms in general
[14][17][24].

In this paper we revisit the Boolean-based routing ideas
from [29][30], and generalize them to more complex FPGA
routing tasks. In particular, we show the first results from
routing entire FPGAs--all nets embedded simultaneously--
using a new SAT-based formulation. We also show the first
comparisons of SAT-based routing quality to other pub-
lished FPGA routers, and, to the best of our knowledge, the
first conclusions of unroutability for a placement given a
specified global routing and track counts. Our results are
made possible through the use a recently developed search-
based SAT engine called GRASP [25], developed at the
University of Michigan. It is the ability of GRASP to handle
much larger Boolean functions than our former BDD meth-
ods that has allowed us to attack more complex FPGAs. The
rest of paper is organized as follows. Section 3 reviews the
typical island-style FPGA model that we employ. Section 4
develops our new SAT-based detailed FPGA routing algo-
rithm, called SDR (“Satisfiability-based Detailed Router”).
Section 5 describes the GRASP search-based SAT
approach. Section 6 presents extensive experimental results
showing the comparative performance of SDR on standard
benchmarks. Finally, Section 7 offers some concluding
remarks.

3. Target FPGA Architecture Model and Ter-
minology
We based our modeling on a standard island-style FPGA
architecture (e.g., Xilinx 4000 type [32]). This is one of the
most commonly used layout models in FPGA applications,
and is depicted in Fig. 1(a). An island-style FPGA is com-
prised of a two-dimensional array of Configurable logic
blocks (CLBs), Connection blocks (C-blocks) and Switching
blocks (S-blocks). Each CLB (marked “L” in Fig. 1) con-
tains the combinational and sequential logic that imple-
ments the functionality of a circuit. C- and S-blocks contain

programmable switches and form the routing resources. C-
blocks connect CLB pins to channels via programmable
switches. S-blocks are surrounded by C-blocks and allow
signals to either pass through or make 90-degree turns. Per-
sonalization of routing resources is achieved through proper
programming of the routing switches. IO cells reside on the
boundary of the array.

A net is a set of CLB pins that must be electrically con-
nected and can be decomposed into one or more horizontal
and/or vertical net-segments, each of which is an alternating
sequence of C- and S-blocks that forms an uninterrupted
path. A detailed route of a net is a set of wire segments and
routing switches, within the restricted routing area set by the
global router. For each net-segment, a detailed router
assigns wire segments and routing switches following the
topology specified by the global router such that no overlap-
ping among detailed routes of different nets occurs. Our
focus for SAT routing is detailed routing in this scenario,
i.e., given a placement and a global routing, find a legal

detailed routing, or demonstrate that no such detailed rout-
ing exists.

The routing capacity of a given FPGA architecture is conve-
niently expressed by 3 parameters, [6]. The
channel width is the number of tracks in a vertical or
horizontal channel. The C-block flexibility is defined to
be the number of tracks that each logic pin can connect to.
The S-block flexibility denotes the number of other
tracks that each wire segment entering an S-block can con-
nect to. In the sequel, we assume that all the vertical and
horizontal channels have the same number of tracks. In
Fig. 1(b), each wire segment entering this S-block can con-
nect to one track on each of the other three sides; hence

. In (c), each logic pin can be connected up to any 2
tracks in the C-block; thus .

4. SDR: A Satisfiability-Based Detailed FPGA
Router
SDR (Satisfiability-based Detailed Router) is a newly devel-
oped detailed FPGA routing program that relies on the
GRASP [25] SAT solver. SDR casts a detailed FPGA rout-
ing problem as a CNF (Conjunctive Normal Form) satisfi-
ability problem that can be input to a Boolean SAT solver.
The basic idea is that we construct a set of CNF clauses rep-
resenting routing constraints over the entire FPGA assum-
ing particular values for the routing flexibility parameters

. Then, satisfying assignments can be found by
efficient backtracking search of the Boolean space using
GRASP. A satisfiable CNF clause problem instance implies
that the circuit is routable on the given FPGA architecture,
and any satisfying assignment of Boolean values to vari-
ables corresponds to a specific detailed routing solution.
SDR considers horizontal and vertical channels simulta-
neously, thereby removing the artificial boundary conditions
inherent in the vertical-channel-only approach of [29]. As
our experiments demonstrate, the CNF-based SAT formula-
tion adds more modeling flexibility and enables the solution
of problems that are too large to be handled by BDD-based
methods.

To route simultaneously through both horizontal and verti-
cal channels we generate a routing function where
is a suitable vector of binary variables that encode the hori-
zontal and vertical track numbers. This function can be
expressed as the conjunction
where:

• model net connectivity constraints that insure
the existence of a conductive path for each 2-pin net
through the sequence of C- and S-blocks specified by the
global router. These constraints basically model the rout-

S C S C S C S

S C S C S C S

S C S C S C S

S C S C S C S

C L C L C L C

C L C L C L C

C L C L C L C

I/O Cell

Horizontal
Channel

Vertical
Channel

Channel
Segment

0 1 2 3

3
2
1
0

0 1 2 3

3
2
1
0

0 1 2 3

0 1 2 3

L L

(a) Island-style FPGA model

Figure 1. Assumed FPGA Architecture Model. [20]

(c) Connection Block, Fc= 2(b) Switching Block, Fs = 3

W Fc Fs, ,
W

Fc

Fs

Fs 3=
Fc 2=

W Fc Fs, ,

R X() X

R X() C X() E X()=

C X()

ing flexibility available in the C- and S-blocks. Any rea-
sonable routing architecture can be accommodated via
proper Boolean function manipulations.

• model net exclusivity constraints to insure that
electrically distinct nets with overlapping vertical or hor-
izontal spans in the same channel are assigned to differ-
ent tracks.

The construction of the connectivity constraints is illus-
trated in Fig. 2 (a) and (b) for a net N whose global route
specification is (pin 0 of CLB SRC, C-block a, S-block b, C-
block c, S-block d, C-block e, pin 0 of CLB DST). Assuming
a s imple rou t ing fab r i c wi th rou t ing fl ex ib i l i ty

 and , net N can be modeled by

three 2-bit vectors: , and which encode the net’s

track assignment in vertical channels i and k, and which

represents the net’s track assignment in horizontal channel j.
The connectivity constraints can now be conveniently
expressed as shown in Fig. 2 (b). For example, a C-block

constraint, such as expresses the fact that, given

, net N can be assigned to any of the three tracks in

vertical channel i. Similarly, an S-block constraint, such as

, expresses the fact that a net entering on track i from the

top must exit on track i on the right.

Fig. 2 (c) illustrates the construction of exclusivity con-
straints. Since the horizontal span of net A in channel m
intersects those of nets B and C, net A should be assigned to
a different track from the others. However, net B and C can
share the same track in a legal routing solution because their
horizontal spans do not overlap.

The overall flow diagram of the SDR algorithm is shown in
Fig. 3. In the diagram, a rectangle indicates a procedure and
an oval denotes an object generated by the preceding proce-
dure. The remainder of this section describes each proce-
dure of the algorithm in detail.

1. Global Routing: Given a placement, SDR invokes a
global router to assign each net to a sequence of atomic
routing regions consisting of C- and S-blocks. The glo-
bal router does not choose or fix any specific detailed
routing resources. SDR accepts global route information
either as a set of 2-pin connections or as a set of more
general multi-pin connections.

2. Net Distribution: SDR’s net-distribute procedure
divides each net into several horizontal and vertical net
segments, then sorts them in each channel. After this
procedure, we have a set of net segments per channel,
regardless of the channel type (horizontal or vertical).

E X()

Fc W 3= = Fs 1 3=

V i Vk

H j

Ca

Fc 3=

Sb

C

C C

C

Vertical
Channel i

H
or

iz
on

ta
l

C
ha

nn
el

j

0

0

Cc H j 0() H j 1() H j 2()[]=

Sd H j 0() Vk 0()[]=

V i 1() H j 1()[]
V i 2() H j 2()[]

H j 1() Vk 1()[]
H j 2() V j 2()[]

Ce Vk 0() Vk 1() Vk 2()[]=

Sb V i 0() H j 0()[]=

Ca V i 0() V i 1() V i 2()[]=

S S

Vertical
Channel k

SRC

DST

a

b c d

e

(a) Global route specification for net N
(shaded boxes are CLBs)

(b) Connectivity constraints for net X.
C formulas model C-blocks; S
formulas model S-blocks.

0 1 2 0 1 2

0
1
2

Figure 2. Generation of Connectivity and Exclusivity Con-
straints in SDR.

H
or

iz
on

ta
l

C
ha

nn
el

 m

CLB

CLB

(c) Exclusivity constraint in horizontal channel m

CLBCLB

CLBCLB

Net A

Net B

Net C

Em A B() A C()[]=

3. Track Count Estimation: If the target FPGA architec-
ture is not provided by the user, SDR determines a chan-
nel width by applying a left-edge channel routing
algorithm [16]. Assuming each channel is fully seg-
mented, the left-edge algorithm produces the lower
bound on the number of tracks needed to route a
given circuit, and sets . The size of the
Boolean vectors necessary to encode track number
assignments for each net segment is also set to

.

4. Constraint Generation: Connectivity and exclusivity
constraints are generated, as described above, to yield
the routing constraint function in conjunctive nor-
mal form. will be referred to as the “CNF clause
database.”

5. Constraint Evaluation: The GRASP solver is invoked
to find a satisfying assignment for or to show that

 is identically “0”.

The above steps comprise the basic overall flow for SAT
routing. However, there is one additional subtlety that must
be addressed to achieve practical routing solutions. We
address this next.

The formulation procedure described above might allow
“pin doglegs” whenever necessary. Pin doglegs allow us to
route a net using more than one egress track per logic pin, as
illustrated in Fig. 4. However, [3] and [34] point out that in
commercial FPGAs, the logic pin is connected to routing
wire segments via a multiplexer rather than a set of indepen-
dent pass transistors, so that pin doglegs are not possible.
Pin doglegs are easily prevented by adding an extra Boolean
constraint, as illustrated in Fig. 4 (c). Suppose a net has two
segments starting from the same logic pin, but exiting

in different directions. If pin doglegs are allowed, and
can be placed on different tracks in this channel. If pin dog-
legs are not allowed, we simply formulate a new Boolean
function to force net segments and to be assigned the
same track in a channel if they are from the same net. In the
figure, we show the formula assuming are each 2-bit
vectors. In short, pin doglegs are easily controlled using
Boolean function manipulation and show how SAT-based
methods allow considerable flexibility in modeling low-
level geometric constraints.

5. GRASP: A Conflict-Based Search Engine
for Large SAT Problems
We solve the SAT instances created from our FPGA routing
formulation using GRASP (Generic seaRch Algorithm for
the Satisfiability Problem), an integrated algorithmic frame-
work for SAT. Due to space constraints, we give only a brief
overview of the technique; details appear in [25]. GRASP is
premised on the inevitability of conflicts during search and
its most distinguishing feature is the augmentation of basic
backtracking search with a powerful conflict analysis proce-
dure. Analyzing conflicts to determine their causes enables
GRASP to backtrack non-chronologically to earlier levels in
the search tree, potentially pruning large portions of the
search space. In addition, by “recording” the causes of con-
flicts, GRASP can recognize and preempt the occurrence of
similar conflicts later on in the search. Finally, straightfor-
ward bookkeeping of the causality chains leading up to con-
flicts allows GRASP to identify assignments that are
necessary for a solution to be found. Experimental results
obtained from a large number of benchmarks, both CAD-
related and otherwise, indicate that application of the pro-

2. Net-Distributor

Placement and Pin
connection Info

1. Global Router

Path Information
for all the nets

3. Left-Edge
Channel Router

Routing constraint
Boolean formula R

Vertical
segments

Horizontal
segments

Minimum number
of tracks needed

4. Connectivity and
Exclusivity Constraint

Generator

5. Satisfiability Solver(a) (b)

Figure 3. Flow Diagram of SDR

(a) (b)

W

Wmin
W Wmin=

log2 W()

R X()
R X()

R X()
R X()

A B,

CLB

Segment A

Segment B

CLB

Segment ASegment B

(a) Routing architecture required
for pin doglegs (unrealistic)

(b) More realistic architecture

A B=()

A 0[] B 0[]=() A 1[] B 1[]=()

(c) Boolean function preventing pin doglegs

Figure 4. Pin Doglegs example [3], [34] and how to prevent
doglegs using Boolean functions.

A B

A B

A B,

posed conflict analysis techniques to SAT algorithms can be
extremely effective.

It is also worth noting the operational differences between
BDD and search-based SAT attacks. BDDs explicitly repre-
sent all possible satisfying assignments as paths through the
BDD DAG. A BDD is unsatisfiable if and only if it is the
trivial “0” BDD. In contrast, search-based solvers search to
find just one satisfying assignment, and must search more
exhaustively to conclude that no satisfying assignments
exist. For us, the trade-off of more search-time for manage-
able memory size makes search-based SAT viable for FPGA
routing.

6. Experimental Results
SDR can be employed in two different scenarios.

• When a placed and globally routed circuit as well as a
target FPGA architecture are given, SDR is able to deter-
mine whether the circuit is routable in the given FPGA
architecture. If routable, it provides the detailed net-to-
track assignments for every net. Otherwise, it proves the
unroutability which means there is no routing solution.

• When only a placed and globally routed circuit is given,
SDR finds the “smallest” FPGA architecture, i.e. the
architecture that has the minimum values of the

 parameters, to render the given circuit

routable.

All experiments were conducted on a SUN Ultra Sparc-2
running SunOS with 1 Gb of physical memory. Fig. 5 shows
the experimental plan we employed. We assume no target
FPGA is provided, but set the S-block flexibility at the min-
imum value and make the C-block flexibility
equal to the number of available tracks in each channel, i.e.
set . These settings reflect the Xilinx 4000 series

architecture model [32]. Following the second scenario, the
primary goal of the experiments was to find the minimum
value of which renders a given circuit routable. This was
done by attempting the routing for increasing values of
starting from the lower-bound found by the left-edge
channel routing algorithm. The track width is incremented
when GRASP determines that the routability function is
unsatisfiable or when it is aborted after running for 24
hours. The procedure terminates when GRASP concludes
that is satisfiable, and returns the corresponding track
count and detailed net-to-track assignments of the satis-
fying solution.

Table 1 shows SDR routing results for the geometrically
simpler case when input pin doglegs are allowed. The cir-
cuit benchmarks are from [35], and range in size from 22 x
22 CLBs with 79 multi-pin Steiner nets for 9symml to 48 x
48 CLBs with 404 multi-pin nets for k2. The benchmarks
were placed by Altor [23] and globally routed using VPR
[3]. The global routing data is provided in terms of 2-pin
connections that were obtained by decomposing the multi-
pin global routes generated by VPR.

The six columns under the SDR heading give the track
count, size of the clause database, and CPU time obtained
by SDR for the last unsatisfiable and first satisfiable
instances of the routing function (see Fig. 5). In other
words, column 2 gives the largest value of for which a
benchmark was proved unroutable, whereas column 5 gives
the smallest value of for which routing succeeded. We
note that in two cases (k2 and vda), GRASP was aborted
inconclusively leaving open the possibility that these two
circuits could be routed with 9 and 7 tracks, respectively.

The most meaningful comparison in this table is between
SDR and SEGA because they differ only in how detailed
routing was done. Clearly, SDR is able to obtain signifi-
cantly better results, achieving routability with on average
3.6 fewer required tracks per channel. The FPR and CGE
results, which on these benchmarks are worse than SEGA’s,
are provided for reference.

SDR also compares surprisingly well with VPR achieving
routability with the same number of tracks in all but the two
cases highlighted in the table: apex7 and k2. We conjecture
that this is due to the use of different placements by the two
programs.

We can observe immediately that typical solution times are
low--less than 3 minutes in these cases. The times for show-
ing unroutability are typically, but not always, longer. This
is hardly surprising; in search-based SAT, we stop whenever

W Fc Fs, ,

Circuit

Perform detailed routing

R = 1? No

Yes

Successful Routing

Figure 5. Experimental Testbench

Determine Wmin

Set W =Wmin

Set Fs = 1 x 3

Set Fc = W

W = W + 1

Fs 1 3=

Fc W=

W
W

Wmin

R

R
W

R
W

W

we find a satisfying assignment, but we must search more
exhaustively to deduce that no such assignment can exist. In
two cases here (circuits k2 and vda) we were unable to
search to completion on our proposed unroutable case. We
also note that the number of clauses in the final CNF data-
base for the routing turns out to be only a weak predictor of
runtime; very large clause sets are likely to take longer, but
it is the really the structural complexity of the route embed-
ding itself that determines the runtime. For example, circuit
too_large has 32K clauses, versus circuit vda’s 67K, yet
runs twice as long to find a satisfying assignment.

In Table 2 we compare performance of the various algo-
rithms in the case where input pin doglegs are disallowed.
The table shows the number of tracks required to success-
fully route each benchmark circuit using the indicated com-
bination of programs for placement, global routing, and
detailed routing. In this set of experiments, the most mean-
ingful comparison is between columns 2 and 3 which differ
only in the detailed router used. Unlike the results shown in
Table 1, SDR’s performance in this case are significantly
worse than VPR’s, on average requiring two more tracks per
channel. This discrepancy, it turn outs, is due to an inadver-
ent routing restriction in SDR that disallows output pin dog-
legs in addition to disallowing input pin doglegs. The effect
of placement on solution quality can also be clearly seen by

comparing the second and third columns: using Altor for
global placement requires, on average, 3 more tracks than
using VPR.

Overall, we regard these as very satisfactory initial results
for our preliminary implementation. Specifically, the
search-based SAT approach seems more capable of han-
dling complete FPGA routing tasks than our earlier BDD-
based attack. Also, the preliminary evidence we have that
we can determine unroutability--or, at least, near-
unroutability, in the sense that we can find the track counts
where SDR is able to demonstrate concretely the absence of
any satisfying assignment--leads to some interesting possi-
bilities. For example, it has long been known that “well
behaved” placements have the property that a large fraction
of their nets can be embedded with simple pattern routes;
indeed, this is the basis for many board and IC routing strat-
egies which begin with fast, simple pattern routes, and then
move on to maze-routing only for clean-up, e.g., see [13] for
an early discussion of the idea. With SDR we have the inter-
esting possibility of determining exactly if a layout is
routable with only a limited set of patterns. The open ques-
tion is whether we can infer practical routability from this.
For example, in our experiments, if SDR fails at T tracks/
channel, VPR succeeds at T or T-1 tracks. We are intrigued
at the possibility that this sort of analysis may be able to

Circuit

SDR

W
from

SEGA
[20]

W
from
VPR
[3]

W
from
FPR
[2]

W
from
CGE

[5]

Proving Unroutability Routable case

W #Clauses
CPU
(sec) W #Clauses

CPU
(sec)

9symml 4 4932 4.89 5 10601 0.40 7 5 9 9

alu2 5 28675 1442.3 6 28751 2.65 8 6 10 12

apex7 4 5652 1.16 5 12191 0.48 10 4 9 13

example2 4 7308 2.30 5 15847 0.83 10 5 13 18

k2 9 226041 N.C. 10 227318 32.21 14 9 17 19

term1 4 5032 0.93 5 10804 0.44 8 5 8 10

too_large 5 32166 52.383 6 32375 134.50 10 6 11 13

vda 7 66194 N.C. 8 66608 74.44 12 8 13 14

Total W * * * 50 * * 79 48 90 108

Table 1: Performance comparison between SDR and other routers with input pin doglegs allowed

predict the onset of “difficulty” in routing, the point at
which many routes must deviate from simple patterns to
embed.

7. Conclusion and Future Work
In this paper, we described a new strategy for SAT-based
detailed FPGA routing. By moving from BDD-based tech-
niques to search-based techniques, we have been able to
solve much larger SAT instances, which has allowed us for
the first time to formulate the entire routing problem,
embedding all nets simultaneously, as a single SAT
instance. Preliminary result are encouraging: we have been
able to completely route a variety of FPGA benchmarks,
and also demonstrate unroutability for some cases. As we
noted earlier, the technique at its core is a variant of pattern
routing, so that our routing and proofs of unroutability are
always with respect to some finite (albeit very large) set of
pattern constraints for the nets. We think that search-based
SAT is a viable vehicle for further work on SAT-based
FPGA layout.

Two areas stand out for further work. One is simply to
increase the amount of pattern flexibility for each net in our
formulation, and explore how this impacts SAT-solve time
versus layout quality. The other is to provide more feedback
in the case where routing fails. Note that in a SAT formula-
tion, a “no route” determination embeds no nets at all,
unlike a typical net-at-a-time router which simply fails on
the “difficult” nets. We believe it should by possible to add a
set of auxiliary, “dummy” variables that allow each net to
select to “opt out” of routing instead of embedding. By

allowing some small, finite fraction (e.g., 1%) of nets to
simply choose not to embed, we think it possible that we
can offer more feedback to the designer when 100% com-
pletions proves to be impossible.

8. ACKNOWLEDGMENTS
We are grateful to Vaughn Betz and Guy Lemieux of the
University of Toronto for providing valuable advice and
benchmark circuits for our experiments. We are grateful to
Texas Instruments for grants of the Sun workstations used
for our experiments. This research was supported in part by
NSF under grant 9404632.

9. REFERENCES
[1] M. Abramovici, M.A. Breuer and A.D. Friedman, Digi-

tal Systems Testing and Testable Design, Computer Sci-
ence Press, 1990.

[2] M.J. Alexander, J.P. Cohoon, J.L. Ganley, and G. Rob-
ins, “Performance-Oriented Placement and Routing for
Field-Programmable Gate Arrays,” Proc. European
Design Auto. Conf., pp. 259-264, Sept. 1995.

[3] V. Betz and J. Rose, “VPR: A New Packing, Placement
and Routing Tool for FPGA Research,” the Seventh
Annual Workshop on Field Programmable Logic and
Applications, pp.213-222, 1997.

[4] M. A. Breuer, “A Class of Min-cut Placement Algo-
rithms,” Proceedings of 14th Design Automation Con-
ference, pp.284-290, October 1997.

[5] S. Brown, J. Rose, and Z.G. Vranesic, “A Detailed
Router for Field Programmable Gate Arrays,” IEEE
Trans. CAD, pp. 620-628, vol. 11, no. 5, May 1992.

[6] S.D. Brown, R.J. Francis, J. Rose, and Z.G.Vranesic,
Field Programmable Gate Arrays, Boston, Kluwer
Acad. Publishers, 1992.

[7] R.E. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation,” IEEE Trans. Computers, pp.
677-691, 1986.

[8] R.E. Bryant, “Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams,” ACM Computing
Surveys, vol. 24, no. 3, pp. 293-318, Sept. 1992.

[9] S. T. Chakradhar, V. D. Agrawal and S. G. Rothweiler,
“A Transitive Closure Algorithm for Test Generation,”
IEEE Transactions on Computer-Aided Design, vol. 12,
no. 7, pp.1015-1028, July 1993.

[10]P. K. Chan et.al., “On Routability Prediction for Field
Programmable Gate Arrays,” Proc. IEEE DAC, June
1993.

[11]M. Davis and H. Putnam, “A Computing Procedure for
Quantification Theory,” Journal of the Association for
Computing Machinery, vol. 7, pp. 201-215, 1960.

[12]DIMACS http://DIMACS.Rutgers.EDU.

[13] J. Dion, “Fast Printed Circuit Board Routing,” 24th
ACM/IEEE Design Automation Conf., June 1988.

[14] J. Giraldi and M. L. Bushnell, “Search State Equiva-

Placer VPR VPR Altor SPLACE

Global Router VPR VPR VPR SROUTE

Detailed Router SDR VPR VPR SROUTE

C
ir

cu
it

s

9symml 7 5 6 7

alu2 8 6 8 8

apex7 6 4 9 6

example2 7 5 10 7

k2 11 9 14 11

term1 6 4 7 5

too_large 9 7 9 8

vda 10 8 10 10

Total W 64 48 73 62

Table 2: Track number comparison when input pin doglegs
are disallowed

lence for Redundancy Identification and Test Genera-
tion,” in Proceedings of the International Test
Conference, pp. 184-193, 1991.

[15] J. Greene, V. Roychowdhury, S. Kaptanoglu, and A. El
Gamal, “Segmented Channel Routing,” Proc. ACM/
IEEE DAC, pp. 567-572, 1990.

[16]A. Hashimoto, and J. Stevens, “Wire Routing by Opti-
mizing Channel Assignment within Large Apertures,”
Proceedings of 8th Design Automation Conference,
pp.155-169, 1971.

[17]W. Kunz and D. K. Pradhan, “Recursive Learning: An
Attractive Alternative to the Decision Tree for Test
Generation in Digital Circuits,” in Proceedings of the
International Test Conference, pp. 816-825, 1992.

[18]T. Larrabee, Efficient Generation of Test Patterns Using
Boolean Satisfiability, Ph.D Dissertation, Department
of Computer Science, Stanford University, STAN-CS-
90-1302, February 1990.

[19]C. Y. Lee, “An Algorithm for Path Connections and its
applications,” IRE Transactions on Electronic Comput-
ers, 1961.

[20]G. Lemieux, S. Brown, and D. Vranesic, “On Two-Step
Routing for FPGAs,” International Symposium on
Physical Design, pp.60-66, April 1997.

[21]P. C. McGeer, A. Saldanha, P. R. Stephan, R. K. Bray-
ton and A. L. Sangiovanni-Vincentelli, “Timing Analy-
sis and Delay-Fault Test Generation Using Path
Recursive Functions,” in Proceedings of the Interna-
tional Conference on Computer-Aided Design, pp. 180-
183, 1991

[22]S. K. Nag and R. A. Rutenbar, “Performance-Driven
Simultaneous Placement and Routing for FPGA’s,”
IEEE Transactions on CAD, pp. 499-518, June 1998.

[23] J. S. Rose, W. M. Snelgrove, Z. G. Vranesic, “ALTOR:
An Automatic Standard Cell Layout Program,” Cana-
dian Conf. on VLSI, pp. 169-173, 1985.

[24] J. P. M. Silva and K. A. Sakallah, “Dynamic Search-
Space Pruning Techniques in Path Sensitization,” in
Proc. IEEE/ACM Design Automaton Conference

(DAC), pp. 705-711, June 1994.

[25] J. P. M. Silva and K.A. Sakallah, “GRASP--A New
Search Algorithm for Satisfiability,” Proc. ACM/IEEE
ICCAD, Nov. 1997.

[26]P. R. Stephan, R. K. Brayton and A. L. Sangiovanni-
Vincentelli, “Combinational Test Generation Using
Satisfiability,” Memorandum no. UCB/ERL M92/112,
Department of Electrical Engineering and Computer
Science, University of California at Berkeley, October
1992.

[27] J. S. Swartz, V. Betz, and J. Rose, “A Fast Routability
Driven Router for FPGAs,” Proc. ACM Intl. Symp.
FPGAs, Feb 1998.

[28]N. Togawa, M. Yanagisawa, and T. Ohtsuki, “Maple-
opt: A Performance-Oriented Simultaneous Technol-
ogy Mapping, Placement, and Global Routing Algo-
rithm for FPGA’s,” IEEE Transactions on CAD, pp.
803-815, Sept. 1998.

[29]R.G. Wood and R.A. Rutenbar, “FPGA Routing and
Routability Estimation Via Boolean Satisfiability,”
Proc. ACM International Symposium on FPGAs, Feb.
1997.

[30]R. G. Wood and R. A. Rutenbar, “FPGA Routing and
Routability Estimation Via Boolean Satisfiability,”
IEEE Transactions on VLSI Systems, pp. 222 - 231,
June 1998.

[31]S. Wilton, “Architectures and Algorithms for Field-Pro-
grammable Gate Arrays with Embedded Memories,”
Ph.D Dissertation, University of Toronto, 1997.

[32]XILINX, The Programmable Gate Array Data Book,
Xilinx, Inc., San Jose, California, 1993

[33]R. Zabih and D. A. McAllester, “A Rearrangement
Search Strategy for Determining Propositional Satisfi-
ability,” in Proceedings of the National Conference on
Artificial Intelligence, pp. 155-160, 1988.

[34]http://www.eecg.toronto.edu/~vaughn/challenge/chal-
lenge.html

[35]http://www.eecg.toronto.edu/~lemieux/sega/sega.html

	Main Page
	FPGA'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

