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Abstract (approximately 100,000ages) circuit requires almost 1.2 hours for
placement and routing using the Xilinx Mle¢gion 4.12) tools on a
300 MHz Sun UltraS&RC [Swar98b]. Wth million-gate capacity
FPGAs on the horizon, these prohilady long compile times may
nullify the time-to-markt adantage of FPGAs. &/ contend that
there is a subset of designers who are willing to trade quality for
speed of compilation.

The demand for high-speed FPGA compilation tools has aedturr
for three easons: fist, as FPGA dédce capacity has gmwn, the
computation time deted to placement anduting has gown
more dramatically than the compute power of the available com
puters. Second, therexists a subset of usewho ae willing to
accept a eduction in the qualifyof result in echange for a high-
speed compilation. Thdr high-speed compile has been a long-
standing des& of uses of FPGA-based custom computing
madines, since their compile timequirrments a ideally closer

to those ofegular computes.

In this paper we focus on the placement phase of the FPGA
compile process, and present an ulastplacement tool that aims
to minimize area. Although a timing-ten placement tool is &y
also important, we bele that area-based minimization is a
prudent first step.

This paper focuses on the placement phase of the compdesst
and pesents an ula-fast placement algorithm tgeted to FPGAs.
The algorithm is based on a combination of multipleelebottom-
up clustering and hierchical simulated annealinglt provides
superior aea results @er a known high-quality placement tool on a
set of lage benbmark cicuits, when both arrestricted to a short
run time For example it can gneate a placement for a 100,000-
gate cicuit in 10 seconds on a 300 MHz Sun &BFPARC worksta-
tion that is only 33% wae than a high-quality placement that

takes 524 seconds using a pwsimulated annealing implementa- an area-compile time tradefoturve, and selects the point

tion. In addition, opeating in its fastest modéhis tool can povide approoriate to his goals. In this case there must lizieat space
an accuate estimate of the veilength ahievable with good quality inp&eﬁ)ZILGA. S 9 ' ! ! ! P

placement. This can be used, in conjunction withudimg pedic-
tor, to very quikly determine theautability of a given ciuit on a
given FPGA deice

It is instructize to describe the scenario in whielstfcompile wuld

be used: a user has designed a circuit and chosegeaR®GA of a
specific size. If the usexglicitly states a compile time restriction,
then the tool prades a prediction as to whether the circuit will
successfully route or not in thevgh time. Swartz et al. [S\ar98a]
provide a method for making the “fit/no-fit” prediction,vgn a
placement and the total wirelength. Owsriv provides both adst
way of obtaining the placement and ery fast way of measuring
the wirelength. A dierent scenario is that the user is supplied with

Those users willing to sacrifice area of the circuit mapped to the
FPGA for compile time (and can do so via a tunable “knob” on the
. CAD tools), can accommodate the increased areaviraenays

1. Introduction depending upon the field of application: haadev designers can
One of the reasons the use of FPGAs and CPLDs has riséﬁduce tflu_a lcompknty of a single dIeS|gn by partltlon_lﬂg the C'rclu't.
dramatically is because theprovide quick manudcturing onto mu_f_lrr])e FPG?S’ OI': can se ect a}nhFP(_BA .W'kt) grgatgr Or?'c
turnaround times [Bw92]. This adantage has been reduced, capacity They can also eliminate part of the circuit by reducing the

however, as the capacities of the programmableiadss grov, amount of parallelism in the harave.
because the compilation times fordarcircuits is graing more
rapidly than the ailable computer pmer. This adersely impacts 1.1 Background
FPGA hardvare designers (who mustaiv longer), emulation There aists a great deal of priwus work on VLSI placement
system users (who must comp_ile hundre_ds of FPGAs at a time), aathorithms that can be applied to FPGAs [Hana72] [Duni85]
FPGA-based custom computing machine users, who realtt W [Sech88] [Sun95] [Klei91] [Shah91]. These algorithms endea
compilation times similar to those of a microprocessor to minimize the wiring area occupied by a circuit, and succeed to
o ) varying dgrees. Hwever, few of these algorithms ka as their
The placement and routing times forgai=PGAs (those with more  primary goal the minimization of run time. Gehring and Ludwig
than 5000 LUT/flip-flop pairs) can last mahours of a day with no - [Gehr98] describe aaft placement tool for the Xilinx XC6200
guarantee of successful completiorr xample, an 8383 LUT  FPGA architecture that ceerts an HDL specification into an
FPGA programming bitstream. Their construeti placement
algorithm operates only on a hierarchical description of a circuit
with regular sub-circuits. It tads usesspecified position hints and
proceeds in a bottom-upghion to place the innanost subcircuits,
and then recurgely places the lger structures andxpression

1 We define quality as the wiring area required by the circuit or the
speed at which the circuit can operate when mapped to the FPGA.
Greater wirelength willequire the use of a lger FPGA or the use
of more resources on avgh FPGA than is otherwise necessary



trees. The placement algorithm is of linear comipfeand is fst - 2. Ultra-Fast Placement A|gorithm

a circuit of 11,748 CLBs ®s placed in 33.5 seconds on a 166 MHz

Pentium, with the Xilinx XC6264 as the gat deice. In this section, we describe the ultesf placement algorithm and
the parameters that allous to &change wirelength for compile

Callahan et al. [Call98] combineadt placement with module time. We then describe mowe determined a stable set of these

mapping for datapath circuits by treating the problems jointly as aparameters that @ us the best quality-time tradd-oMore

tree cwering problem. Datafls graph representations of circuits ~elaborate details of the algorithm and parameters may be found in

are split into trees, and a lingéme implementation of dynamic ~ [Sank99].

programming is used to perform the simultaneous module

mapping and relate module placement, with a greedy heuristic 2.1 Overview of Approach

being emplged to do global placement of the trees. yTbbtain

good results when tgeting the Xilinx XC4000 andxglore the

trade-of between optimizing for area and delay

The placement problem for FPGAsges with a technology-
mapped netlist of logic blocks /O pads, and their
interconnections. The output is an assignment of the blocks and
pads to specific pisical locations of the FPGAoTachiee ultra-
high-speed placement for FPGAs, walth upon the clustering and
hierarchical simulated annealing algorithm described in [Sun95]
and the adapte annealing schedule of [Betz97] [Betz98] and
integrate it into the infrastructure prded by VPR (the ¥frsatile
yPIace and Route tool presented in [Betz97]).

[Sun95] and [Betz97] &fr methods to speed up simulated-
annealing-based placement algorithms, some of which we gmplo
in our tool. The hierarchical clustering and placement algorithm
proposed in [Sun95] first performs awevels of clustering to
condense a netlist by collapsing as gnarets as possible into
clusters. A three-stage annealing schedule is subsequentl
employed to place the dirent levels of clustered netlists. This
entails first performing a high temperature anneal on the highest
level clusters. Then, the xtelower level of clusters are annealed
across the cluster boundaries set by thevipus stage of

Figurel shavs the framwork for our ultra-st placement
algorithm. The first stage is a multivid, bottom-up clustering of
the logic blocks based on their conneityi (Note that we do not
annealing. Finallya lov-temperature anneal is conducted using incorporate 1/O pads into the clusters of logic blocks, sincg the

the original flat netlist. This hierarchical clustering and simulated N@€ special restrictions upon where ythean be placed on the
annealing-based placement  technique is used  in physical FPGA.) The bottom-up clustering is parameterized as

TimberWbIfSCv7.0, a placement tool for standard-cells. follows: a total of L c_iifferent levels of clustering Wi!l be
performed. At each Vel i, 5 blocks (or clusters) at the pieus
In [Betz97], a nwel, dynamic, adapte annealing schedule is level are grouped into a clustef a circuit contains a total df
described for the simulated annealing-based placement algorithn{ogic blocks, after a single Vel of clustering (leel 1), there are
within the placement tool named VPR. The annealing parametersN/s;[iclusters. These clusters can be groupeainatp create a
are adjusted automatically depending upon the size of the circuit.second leel of clustering, withs, first-level clusters in each
A bounding box wirelength cost function is used, with correction second-leel cluster giving [IN/s;0/ s,0clusters at the top Vel
factors for multi-terminal nets. The initial temperature is computed (jeve| 2), and so on.
as being proportional to the standardidgon in cost after a set of
N pairwise s\aps are made, wheleis the total number of logic  once all the required clustering is done, placement must be
blocks and 1/O pads in the circuit. At each temperaturgl 18 performed at each Vel of the hierarch We emply a two-step

moves are attempted, by deft, and the temperature is reduced in approach at eachvel: an initial constructie placement follwed

such a ey as to maintain a constant, useful acceptance rate. by an iteratre improrement step using simulated annealing. The
parameters of the anneal are tuned to acquire a good quality-time

The application of clustering and simulated annealing to the trade-of, as described belo Figure2 illustrates an abstract we
partitioning of FPGA circuits is described in [f@8], with of multi-level clustering and placement.. Our goal is to achie
emphasis on both wirelength ansleeution time. In [€ss98], high-speed placement by quickly making good aast flobal
compile-time dicient placement for FPGAs is approached using decisions at the highervels of the hierargh and follwing this
ASIC floorplanning techniques. By considering portions of the With iteratve local impreement at the diérent levels of
circuit being mapped to the FPGA as pre-placed and pre-routeddranularity Our choices of algorithms are guided by the ity
macrocells, the compile times for ger designs can be decreased objectie: reduce the complity of large placement problems by
from an hour to mere minutes, although there is botlversarea  dividing them into manageable portions, and then eynlimwn
and circuit speed penaltixs the other portion of theaBt Compile ~ heuristics that are simpleasit, and ééctive on each portion.
Project at the Unwersity of Toronto, [Svar98a] addresses the . .

routing phase of the FPGA compile. 2.2 Multiple-Level Clustering

. The first step of the ultra$t placement algorithm is a multi<g

1.2 Paper Organization bottom-up clustering of logic blocks based on their convigcti
This paper is @anized as follws: Sectior? describes the ultra- ~ The input to the clustering step is a netlisfofogic blocks and
fast placement algorithm and the features that enable the area-tim@€ir interconnections, the number of clusteringle L, and the
trade-ofs. Sectior8 describes the tget FPGA architecture and ~ cluster size at eachvel, s, s,, ... . We restrict the cluster sizes
the suite of test circuits, and compares the run time and quality of(s) to be perfect squares (4, 16, 25, 64...) in order to simplify the
our fast placement tool to those of VPR [Betz97] [Betz98]. It also grid resizing operations at thanous leels. The task is to crealte
demonstrates the accuyaof our tool as a high-speed wirelength separate netlists of clusters of logic blocks and their
predictor Sectior4 concludes and fars direction for future ark.

1 For this paper, a logic block is one 4-input lookup table (4-LUT)
and one D flip-flop.
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Figure 1. High-level view of fast placement algorithm.
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Figure 2. Abstract view of multi-level clustering and
placement.

interconnections where each block omwérlevel cluster is
assigned to a unique higHewel cluster gactly once, and each
cluster ¢ (the kth cluster at teel i) has at moss blocks or

clusters from the préous level.

The clustering algorithm lgins by randomly choosing a logic
block as a seed, and assigning it to the first slot in a cliEeh

for each candidate blodkhas tvo components: (1) the number of
connections between the candidate and the cluster being
constructed, with each connection weighted by #rft of the

net on which it lies, as in [Sun95], and (2) the number of nets that
would be completely absorbed if this candidate were added to the
current clusterWe say that a net mbsorbedby a cluster if all the
blocks on that net are contained within that single clutitave
denoted to represent the set of nets shared between the candidate
blockb and the cluster under construction?j as the set of pins on
netj 0 J, andAy. as the set of nets absorbed by adding candidate
blockb to clusterc, then the score can bepeessed as

1
w, = = +|A (1)
b ng|Pj|_l | bc'

With this function, blocks on l@-fanout nets and on nets that are
about to be absorbed are preferred whaldimg the clusters. The
candidate block with the highest score is added to thé ne
available cluster slot, and if the cluster is full, avnene is started
with a nav randomly selected seed block. This process is repeated
until all the blocks are clustered. The result is a netlist of clusters
with absorbed nets remed. We proceed in a similar manner to
create further Mels in the clustering hierargh

The number of clusteringVels, L, and the size of the cluster at
each leel, 5, can be gried to allev the trade-dfof compile time

and quality As the size of the clusters increases, the placement
problems become simpler because more is hiddgrihbre is less

unclustered block connected to that seed is assigned a score thakcurate representation of the netlist and therefaverlguality

rates hav much the block belongs to this clust€his scorew,

may result.



2.2.1 Compleity of Clustering
The score assigned toyacandidate block changes only when a net

2.3.2Simulated-Annealing-Based l&ive
Improvement of Placement

is first connected to a cluster or when a net is about to be absorbegy|owing the constructie placement of clusters and pads at an

(i.e. all hut blockb of the pins on negtare contained in clustey

and the cluster has amailable slot). V@ can maintain a list of the
best scores and associated candidates irckebdata structure in
order to performdst updates. Theubket structure only needs to

be flushed when a cluster is full. LEtbe the number of logic  ihe

blocks, K be the number of nets on each logic bldgl,, be the

maximum fnout of a net in the circuit arelbe the size of the
cluster The complgity of the algorithm can be desd by

level in the hierarchy we imprave its quality using simulated
annealing-based [Kirk83] [Sech85] itexatiimpro/ement. Vé will

assume that the reader ianfiliar with the basic simulated
annealing method as it is applied to placemerd.N&fe adapted
annealing
[Betz97][Betz98].

implementation in VPR described in

One important issue is whether or not to restrict the motion of

observing that when generating the clusters, the algorithm mustplocks to remain within the cluster boundaries of the most recent

examine each of thH blocks once, each of thenets connected to

cluster leel. We hare experimentally determined that it is much

the block, and each of the other pins on those nets. Thispetter to allav the blocks being placed toove acpssthe cluster
examination occurs either upon adding a block to a cluster or whenboundaries. This still means that the coarse placement from the

a net is about to be absorbed. The comipleof the clustering
algorithm is thus QK[},,.. If we clip the alue of f5 by
restricting the clustering algorithm fronxamining nets abe a
certain inout threshold, this is a linetame algorithm. This bound
is satisfied at higherVels of clustering as well, sind¢is scaled
down by a fctor of the cluster sizg K is scaled up by at most a
factor of s (and is often less than that), afig,y is likely to
decrease. Practicallyhe clustering is ery fast: a 20,000 LUT
circuit can be grouped into clusters of size 64 in 2.1 seconds on a
300 MHz Sun UltraS®RRC.

2.3 Placement of Clustersat Each Level

Once we hee constructed the hierarchof clusters, placement
must occur at eachJel. The placement algorithm consists obtw
steps: construate placement follwed by annealing-based
iterative improvzement.

2.3.1 Constructive Placement of Cluster

Given a netlist of clusters and their interconnections, we first
perform a random placement of all the 1/0 pads in the circuit at the
highest leel of the hierarch This pravides anchor points for the
clusters. Note that subsequent optimization steps will change the
pad placement.

The constructie placement determines positions for three separate
groups of clusters: (1) those connected to output pads, (2) those
connected to input pads, and (3) those connected to other logic
clusters. It computes, for each cluster in each group in succession,
the arithmetic mean position of all the clusters and pads it is
connected to that ke already been placed. The cluster is placed as
close to this “center of gvty” as possible. The initial placement

of the pads pnades the initial guidance for this constructione W
have found that this method prides a superior starting point for

the subsequent iterati improvement step than a simple random
placement. Experiments also shthat this placement results in a
slightly better time/quality trade-othan a random placement.

At lower levels in the hierargh the same construet approach is
used, with threexeeptions: (1) there is no initial pad placement -
pads are placed in the samaywogic clusters are; (2) if a block
has not yet been placed and its position is needed for the mean
calculation, the center of the higHevel cluster it is contained

1.

previous level is useful; if the boundaries are enforcedyéewer,
then quality suers.

The lkey parameters that control the quality-time tradefof
simulated annealing are:

The starting temperatur&y. This is a crucial parameter
because if the temperature is too high, the annealing will
destry the placement structure \adgoped at pndous
levels in the hierarch If it is too low, then insufcient
optimization will be done. W emply three diferent
mechanisms for determininify. The first is to emplp

the temperature “measurement” mechanism suggested in
[Rose90] - here the temperature is determined by finding
the temperature at which the placement appears to be at
equilibrium (simulated thermometer). The second is to
do a simple quench, and the third is to set the starting
temperature to a fed walue. In the ne section, we
explore which of these approaches is most appropriate
for different time-quality trade-bpoints.

The number of “mwees” per temperature, called
“InnerNunmt” The basic annealing algorithm of VPR

[Betz97] males InnerNum ONpjocra’® moves at each
temperature, wherl,,cksis the number of blocks and

pads. The parameténnerNum determines h@ much
work is done per temperature.

The temperature updatactor a. The laver a is, the
faster the anneal,ub the worse the quality VPR
[Betz97] automatically adjusts as described in the
introduction; we hee found that squaring the automatic
o increases speed with little reduction in quality

The «it criterion - what causes the annealing to stop - is
either a specified temperature at which the annealing
terminates Tgp) or when either of the foliing two
conditions are met: (i) the temperature is less than 1% of
the average cost per net or (ii) theesiage costwer the

last three temperatures remains unchanged.

In summarywe hae identified 3 types of schedules that permit us

within is used as the position; (3) each of the cluster contents ist0 &plore the quality-time space thoroughly: (1) an aggvessi

placed as close to its calculated “center ofvitya while
remaining within the prescribed cluster boundaries.

dynamic adaptie schedule with automatic calculations Tey T,
and a; (2) a quench (all temperature O ves), where no hill-

climbing is permitted; (3) a manually-specified schedule where the
values ofTg, T; anda are fixed. Schedule (1) is an anneal tailored



to the current placement of the circuit, whate its level of

[Betz97]) \ersus the mean run time, across a set of 20 benchmark

granularity schedule (2) is a greedy heuristic, and schedule (3) is acircuits. In that figure, the clustering sigewas set to 64.

short, fibed anneal. In all three cases, we can trade quality for
compile time by arying thelnnerNumparameter

2.3.3 RAnout

Another enhancement that we implement to speed up the
placement is to ignore nets with dar fanout. This is useful
because a highahout net will lilely corer much of the FPGA and

so it is harder to reduce that area. By ignoring netseahaertain
fanout threshold, we makthe placement problem simpléfrwe

set the threshold too W howvever, we may lack enough
information to create a good placement. Note that both the
clustering and placement steps ignore the netgeathe threshold.

2.3.4 Compleity of Placement

At ary level in the hierarchy our initial constructie placement
algorithm has wrst-case time comptiy O(Np;og<BE a0, With
Nplocks l0gic blocks and pad¥ pins per block, and a maximum
fanout off,,, for ary net in the circuit. Just as with the clustering
algorithm, this is because we mugamine each block or cluster
exactly once, each net connected to that block or clumtereery
other block or cluster connected by that net. Furthermore, by
examining only those nets bela certain &nout threshold, we can
ensure that it remains a linegéme algorithm. Assume there axe
logic blocks andRI1+PO) pads in the circuit, and that we choose a
uniform cluster size of at each lIeel of the hierarch For the
follow-up simulated annealing algorithm, wepbore at each el

i (i =0..L) at mostinnerNumC{(N/s)+PI+P0)*3 configurations
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@ lev0 auto, inum=0.1, flat therm, inum=0.001-1
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Legend: lev0: annealing schedule for top level clusters; flat: follow-
up annealing schedule at flat level; therm : automatic anneal using
simulated thermometer; inum: range of InnerNum values at each
level; auto: automatic anneal; quenc h: zero temperature anneal;
TO: manual anneal with specific starting temperature.

Figure 3. Placement quality-time plot (20 circuit aver age)
for ultra-fast placement tool using different combinations

per temperature, and our starting temperature calculation and ©f annealing scheduleson 1-level, size-64 clustered circuits.

aggressie adaptre annealing schedule typically ensure that we do
not search through mgpriemperatures pervel in the clustering
hierarcly. This means that the annealing algorithmbrst-case

time compleity is bounded by 04b|0d(s4/3) and is typically less
than that.

2.4 Determination of the Quality-Time Envelope
Parameters

In this section, we describe theperiments used to identify the set
of parameters for the ultradt placement tool and choose those
parameters. There aredwets of parameters: those that control the
clustering, and those that control the iteatimprosement of the
placement. Our goal is to determine the parameters that lead to th
best quality-time trade-ffwhich we call theervelopeparameters.
Please note that the details of the actual FPGA architecture and th
other parts of the CAD fle are gven in Sectior8.1 and
Section3.2.

2.4.1 Cluster Brameter Experiments

The ley parameters of the multiplevel clustering approach are
the number of clusteringVels () and the cluster sizes at each
level (s; ...s.). We first explored a single kel of clustering £ = 1.

To determine the cluster sizalue §;) that prwides the best
quality-time trade-df we ran the tool on a set of benchmark
circuits and aried the cluster size from 4 to 4096 bywess of 4.
For the subsequent iteredi improvement placement, mgn

We performed similarx@eriments and generated the same eurv
for values ofs; = 4, 16, 64, 256, 1024 and 4096, and determined

that the alues of 64 and 16 resulted in the besiv@st) quality-
time trade-df curve. Figure4 shavs the comparison of the time-
quality cunes for each alue ofs;, and we chose to use 64 as our

1-level cluster size in the placement parametgreeiments that
follow. This results in feer clusters that are F&r in size,
compared to a 1-del cluster size of 16.

We performed similar studies far= 2 and 3 leels of clustering.

These studies are problematic as there areymaome parameters
and combinations of annealing schedulesxplae: forL = 2,
there is the setting @ andsy; for L = 3, there is the setting 6f,
andsz. The eperiments shw that forL = 2, the alues ofs; =

4 ands, = 4 were found to be best, and in & feases, the quality-

run time trade-dfwas superior to the best of the= 1 ewelope.

For L = 3, the walues for §;,5),s3) of (64,4,4), (64,16,4) and
(256,4,4) were all found to belmabout the sameuball of these
settings yielded results that were no better than those obtained
acrossL = 1 and 2. This may be due to the sizes of thgelar
circuits in our benchmark suite; after Z/dés of clustering, the
circuits hae already been transformed into avfeery lage
clusters (tens of clusters with 256 total flat logic blocks in each).
So, an additional el of clustering does little to further simplify
the placement problem, and maxee cost both time (because of
the etra processing atvel 3) and area (an additionalé of grid

different annealing schedules were run in order to determine theresizing must be performed, which may exbely afect the grid

complete quality-time tradefof possibilities. Br example,
Figure3 is a plot of the mean normalized placement wirelength
(with respect to the best possible placement obtained by VPR

size at the flat eel).
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Figure 4. Placement quality-time curves (20 circuit aver age)
for ultra-fast placement tool using a sample of annealing
parameters and varying 1-level cluster sizesfrom 4 to 4096.

2.4.2 PlacementdPameter Experiments
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Legend: maxfan : fanout threshold; lev0: annealing schedule for top
level clusters; flat: follow-up annealing schedule for flat level netlist;
therm: automatic anneal using simulated thermometer; inum:
range of InnerNum values at each level.

Figure5. Placement quality-time plot (20 circuit average) for
ultra-fast placement tool using different fanout thresholds

The net set of parameters to tune is the set of simulated annealing o 5ve which nets areignored on circuits with 3 sets of fixed

parameters described in Sect®.2. Recall that we settled on the
set of 3 types of schedules described in Se&idr2: (1) an
automatic anneal that uses a simulated thermometer to cofgpute

dynamically calculated alues for T; and a, and \ariable

InnerNum (2) a quench withariablelnnerNum (3) a fixed anneal
with Tg = 0.1, T; = 0.01,a = 0.8, and a ariableInnerNum We

explored the combinations of these schedules at the clustered an
flat levels of the hierarah for circuits clustered with = 1 ands; =

64 blocks per clusterThe scatter plot of geometric mean
normalized placement cost vs. geometric mean run timges @i
Figure3, and note the compligy of the \arious combinations of
schedules. & short run times, the eelope is comprised of a
guench (schedule 2) at the topdewith InnerNum= 10, and the
short, fi>ed annealing schedule (schedule 3) witerNumof 0.1

to 0.5. for longer run times, the e@lope consists of the automatic
anneal (schedule 1) at the topdkwith InnerNum= 1 and the
automatic anneal at the flat/& with InnerNumfrom 0.2 to 1. In
each case, though, it igsident that there are alternatischedules
that come reasonably close to yiding the same quality-time
trade-of as the emelope. Similar combinations of schedules were
attempted for 2 and 3\el clustered circuits.

In order to determine the besdlue of the &nout threshold (the
value of finout abwe which the nets are ignored), we performed
an «periment withL = 1 ands; = 64, and aried the &nout

threshold. Figur® is a scatter plot of qualityevsus run time for
various \alues of &nout threshold and annealing schedules. The
circular dots represent the quality when no nets are ignored, an
the other points shwo the quality when more nets are ignored -
from fanout thresholds ranging from 1000 to 1. Itv&ent that
excessvely low fanout thresholds eliminatearf too much
placement information from the circuit, hence the aregatfation

is huge. Havever, when nets witha&hout wer 100 are ignored, we
save a fev seconds of placement time with almost ngreddation

in quality.

cluster and placement parameters.

3. Experimental Results

In this section, we compare thewndast placement tool to an
isting and knwn high-quality placement tool, VPR [Betz97].
e first describe the FPGA architecture used in ¥permental

comparisons, and theverall CAD flow.

3.1 Target FPGA Architecture

We use an island-style FPGA with a logic block that contains a
single 4-LUT and a single D flip-flop. Each block has 6 pins: 4
inputs, 1 output, and 1 clock. 8Mwvill assume the FPGA has
dedicated resources for routing the clock, reset, and other global
nets. Vi assume an 1/O pad pitch-to-logic block ratio of 2.

3.2 Benchmark Circuitsand CAD Flow

We have collected 20 circuits from aaxiety of sources: 14 of the
largest circuits from the MCNC suite §¥ig91], one comes from
the RAN suite [Babb97], one is a synthetic circuit generated by
GEN [Hutt97], and the remaining four are designs created for the
Transmogrifier2 rapid prototyping system [ke97] at the
University of Toronto [¥e98] [Hame98] [Lee98]. Each circuit
was optimized using SIS [Sent92], and technology mapped into 4-
LUTs using Flevmap and Flapack [Cong94]. VRCK [Betz97]

as used to pack the netlists of 4-LUTs and flip-flops into logic

locks. The sizes of the 20 benchmark circuits range from 3000 to
20,000 logic blocks.

We hae implemented our abt placement tool within the
framavork of VPR. W use the bounding box wirelength of all
nets in the circuit to compare the quality of placement of each
circuit from each tool. & measure only the time used to perform
clustering and placement, and do not include the initial input file
reading time and parsing (this is no more than 5 seconds for the



largest circuit). All e&periments are run on a 300 MHz Sun 7.0

UltraSFARC workstation. »

1%}

8601 :
3.3 Basisof Comparison : o PRI,
We use the pure simulated annealing-based VPR as the basis for g 50 ¢ T mmeo 1
comparison to our me placement algorithm. In order to compare =
the quality-time trade-6fcurve for VPR, we needed taary the E 40 [ ]
schedule parameters for VPR itself, in a similar manner to that ‘E
described abee for our tool. 5 0L ]

c
To obtain the erelope of the quality-time cuevfor VPR, we g
varied each of thedy simulated annealing parameters - initial e 20y ]
temperatureTp), exit temperatureTf), temperature update factor g
(a), and scaling dctor for the number of mes to attempt per g L0 ]
temperature InerNun). We used the three types of schedules ©
described in SectioR.3.2: (1) an automatic annealing schedule 0.0 . s s
(To. T;, anda calculated dynamically and adjusted depending upon 01 0 100 100.0 1000.0
the quality of the placement) with varialtgerNum (2) a quench Geomefric mear fun time (seconds)
(greedy heuristic) with variabllanerNum (3) a fixed annealing Legend: auto: automatic annealing schedule; quench: zero
schedule, where we either swekyp keepingT;, a, andinnerNum temperature anneal; TO: manual anneal with starting temperature
constant, or sweep, keepingTy, T, andinnerNumconstant. =1 inum: range of InnerNum values.

) ) o Figure6. VPR placement quality-time trade-off (20 circuit
We ran each unique annealing schedule on all 20 circuits, recorded gyer age) using only those annealing schedules that form the
the run time and wirelength, and normalized the wirelength for envelope.

each run on a gen circuit to that achied by VPR when run
under its “-Bst” option on that same circuit. This specific VPR
option is §imilar to its delult parameters that are tuned to generate annealing parameters. It wisothat the ultradst placement
hlgh_-quallt_y placements, xeept that one-tenth of _the tool has a clear adntage for both short run times (10 seconds or
configurations arexplored at each temperatureypically, this less) and medium run times (from 10 to 100 seconds). In 10
Increases thg placement cost by at mQ.St.lQ%Whh a hctor .Of seconds, our placement tool requires only 30% more wirelength on
10 speedup in placement time. Essentiatlis a \ery high quality  ayerage (than the best possible placement), while VPR requires at
placement that is obtained in a reasonable amount of time. It iSgast 80% more wirelength owezage. Furthermore, while VPR
from these eperiments that we determined thevelope of the can achiee an @erage area penalty of 10% imes 100 seconds,
best VPR annealer parameters to specify across all 20 circuits. g, placement tool can attain thisvéé in approximately 30

- . seconds. If we allsed our placement tool to run without a compile
The envelo_pe containing the ann_eallng schedules that produced thg;me restriction, it wuld produce placements thabwid be ery
best quality-time trade-bfconsisted of parts of 3 types of nearly what VPR can achve, since both tools are based on similar
schedules withariablelnnerNum a quench, an anneal willy = implementations of simulated annealing. This is apparent from the
1, T = 0.01, anda = 0.8, and an automatic anneal with piot: within 60 seconds orverage, the ultraast placement tool
dynamically-updatedTy, T, and a. Figure6 illustrates the yields an merage wirelength that is within 5% of VRRhigh-
geometric mean normalized placement cost (bounding-box quality anneal. Figuré also demonstrates that by manipulating the
wirelength) \ersus geometric mean run time across all 20 of our fast placement tool parameters, we can realize a smooth tfade-of
benchmark circuits for the 3 schedules that form the quality-time between placement quality anxkeution time.
ervelope for VPR.

on the &st placement erlope refers to a unique set of clustering

Tablel provides a comparison between VPR and the ulga-f
There is not much dérence in wirelength and run time among the Placement tool with one particular set of parametsr< levels of
schedules fondremely short run times (< 3 sec)eWbsere that, clustering with cluster sizeg = 64 ands, = 4, with the top-leel
for run times in the 10 to 100 second range, there is ample roomand lael-1 annealing schedules being a querichegfNum= 10),
for improvement; an eerage of 80-100% x¢ra wiring area is a flat anneal withTo = 1 (nnerNum= 0.5), and nets alie
likely unacceptable to a circuit designeerm within 10 seconds of  fan0ut=100 ignored. The geometric mean run time across all

placement time. circuits for this set of parameters is 11.37 seconds, and the
. . geometric mean area penalty is 22%. It ifidift to find directly
3.4 Comparisons Between New Algorithm and comparable run times between theottools; we then select a
VPR schedule from the VPR eelope that is as close as possible. The

) first column of Bblel gives the circuit name, its size in number of
A head-to-head comparison between the ulisd-placement tool  |ogic blocks, the run time and normalized placement cost obtained
and VPR is possible by running each set of placement parametergsing our &st tool, and the comparable data using VPR. vsho
that lies on the exelope of the respegt tool on eery circuit in that the ultradist placement algorithm wins in a comparison with
the benchmark suite, normalizing the placement quality results toypR for every circuit in our suite, posting a superior wirelength in
those obtained by running VPR under itsasf option, and 3 significantly shorter run time. Note that for this particular set of
calculating the geometric mean placement cost and run time.yjtra-fast placement parameters, the reduction in wirelength

Figure7 is a plot of both the best VPR quality-timeselope and compared to VPR ranges from 13% to 50%.
the nev ultra-fast placement tool quality-timeeriope. Each point



4.0
. Y Ultra-Fast VPR
g \ Placement
€ ‘2 . . # LOgIC
% N & - -4 VPR Envelope Circuit Blocks Run Norm. Run Norm.
g 30 - \\ ¢ Ultra—Fast Placement Envelope Time Place Time Place
T (9 Cost @) Cost
E ‘\ clma 8383 21.71 1.20 29.79 1.83
8 20 spla 3690 6.37 1.22 7.26 1.63
e[ A i
% e By s38584.1 6447 14.55 1.29 1835 | 2.33
£ ‘e "
§ v L. N s38417 6406 13.33 1.22 16.88 1.87
.000.. \“\‘\\
1.0 ] . e ke, frisc 3556 6.15 1.21 7.04 1.63
1 10 100 1000
Geometric mean run time (seconds) pdC 4575 8.43 1.20 10.35 1.52
Flgure7 Placement quallty-tlmeeanOpeCUrVeS(zo circuit ex1010 4598 7.69 1.23 10.53 1.67
average) for VPR and new ultra-fast placement tool.
elliptic 3604 6.05 1.15 7.16 1.60
The true measure of quality of avgh placement is whether or not
it can be successfully routed on thegarFPGA. Although we beast20k | 19600 | 108.34| 1.16 | 128.10| 1.34
have not attempted to route yarof the ultra-&st placements,
[Swar98b] has shen that wirelength and routability correlate | bubble sort| 12293 | 41.08 1.29 53.65 | 2.14
extremely well. Therefore, we are satisfied that our ubisi-f -
placements are superior to those produced by VPR, based solely  firl6 6975 | 1631 | 132 | 20.86 | 2.19
on wirelength for the range of compile times of interest. -
iirlé 3739 6.93 1.15 7.57 2.16
3.5 Wirdength Estimation and Accuracy macea 4307 8.94 119 | 1019 | 169
One vay to use adst placement tool,ven if the user is not -
interested in sacrificing gnfinal circuit quality is to use it as a ochip64 4083 6.85 113 | 1063 | 2.30
routability estimator for a gen netlist. Swrtz et al. [Swar98a]
shaw how to predict if a circuit will route on aggn FPGA, gien ralu32 3662 | 596 | 125 | 6.69 | 1.66
the wirelength of the placement of a circuit and the number of
tracks per channel in the ¢mt FPGA. The dmaback of their spsdes 3363 522 | 121 | 647 | 170
approach is that the placement must bewkndeforehand. &/
propose that ourat placement algorithm be used to obtanyv des_fm athiss 29 1.34 i .
fast and accurate estimates of the fbedtplacement wirelength. des sis 5351 11.12 1.4 14.14 167
The idea is that we can run thesf placement tool in one of its - ) ) ' )
very fastest modes, measure the wirelength of that placement, anfl 554 7432 17.54 1.24 2215 2.00
then decrease the wirelength by the typical amount thataite f
mode is usually arse than the best mode. The quality of the result marb 5535 11.61 1.26 13.72 | 2.15
depends on the consistgraf difference in wirelength between the
fast mode and the best mode. This can be measured by determini'g Geometric Aerage 11.37 1.22 14.17 | 1.82
how much the normalized placement cost for each circuit, in the

fast mode, aries from the mean normalized placement cost across Table 1: Comparison between ultra-fast placement tool and
VPR for 20 circuits. One set of placement parameterswas

all circuits.

Figure8 is a plot of the \erage diference of each circu#t’
normalized wirelength from the mearven all circuits ersus
different run times of the ultra$t placement tool obtained from
the quality-time evelope parameters. ¢Tobtain this graph, we
calculate the absolute tBfence between the geometric mean

employed for each tool such that their run timeswere close and
they formed the quality-time envelope for their respective tools.

Figure8 shavs that, as we wuld epect, longer compile times
produce more accurate wirelength estimates. Immegsieven
short run times result in accurate estimates - f@mple, an

normalized placement cost and the actual normalized placementverage run time of justver 10 seconds results in a mean absolute

cost for each of the 20 circuits for each particular setasf f
placement parameters.éVfhen compute the arithmetic mean of
these diferences (and call it mean absolute error) and plergus
the geometric mean run time thabsvobtained for the set of
circuits for this set of parameters.)

error of less than 5%.

We can therefore use thast-placement run time as an accurate
estimator of the final best wirelengthable2 illustrates an
example of &st wirelength estimation for each of the circuits in our
benchmark suite. ¥ used the same set of ultessf placement
parameters as that used to generate the dataabieI and



Ultra- Pred. VPR
Run Fast High- High- %
* Circuit Time . Quality | Quality
Wire- . . Error
0.15 | 1 (9 lenath Wire- Wire-
5 ‘. g length length
() [}
% ¢ clma 21.71 1786 1514 1491 +1.55
8 010 . .
E . spla 6.37 763 646 625 +3.37
[
= . . $38584.1| 1455 | 901 763 696 | +9.70
0.05 I . . .
*® egee? . e s38417 | 13.33 883 748 726 +3.12
e’
frisc 6.15 685 580 566 +2.58
0.00 :
1 10 100 pdc 8.43 1096 929 917 +1.35

Geometric mean run time (seconds)

. . o 101 7. 4 71 +3.84
Figure 8. Mean absolute differencein wirelength (between ex1010 69 843 . 688 3.8
mean wirelength and individual circuit results) vs. mean run elliptic 6.05 588 499 513 2.75

timefor parametersforming ultra-fast placement tool envelope

beast20k| 108.34 | 7522 6374 6485 -1.71
recorded both the run times andvnairelength result in each case.

From the ewelope cure in Figure7, we knev the mean bubble
normalized wirelength for this set of parameters across all circuits sort
to be 1.22, or 22% lger than the highest-quality wirelength

41.08 | 1632 1383 1262 +9.57

attainable by VPR. The mean run time is 11.37 seconds. Rgure firlé 16.31 | 1108 939 841 +11.62
indicates that the mean absolute error for that set of parameters -
0.044 (4.4%). Our pessimistic prediction of high quality iirlé 6.93 464 393 404 -2.63
wirelength can be written as:
mac64 8.94 660 560 555 +0.89
Wirelengtty o yioioq= B LWirelength o ey ochipe4 | 6.85 | 350 | 297 309 | -3.93
@)
— : ralu32 5.96 506 429 405 +5.85
where B =1/ (W'relengﬂhormalized'Absomte Error)
spsdes | 5.22 527 447 434 +2.88
The predicted high-quality wirelength for aven circuit is
expressed as being proportional to the wirelength obtained from des_fm 9.25 857 27 639 +13.75
the ultra-ist placement tool. The scaliracfor (3, is composed of .
the diference between the normalized wirelength for the specific des_sis | 11.12 826 700 665 +5.33
set of ultra-&st plgacernent parameters chosen (geometrically wood 1754 | 1085 920 873 +531
averaged wer all circuits) and the pvusly described mean
absolute error (arithmetioserage wer all circuits of the absolute marb 1161 | 617 523 492 +6.39
differences between the mean normalized wirelength and thd
actual normalized wirelengths) for the same set of placemen Arithmetic Average absolute error 4.91

parameters. The scalingdtor denotes by what fraction thest

mode wirelength should be reduced to obtain a pessimisticTable2: Exampleof quality of wirelength prediction capability
estimate of the best mode wirelength. of ultra-fast placement tool.

So for the case in able2, the formula reduces to :
Wirelengthyedictea= Wrelengthyia.fast/ (1.22-0.044). W emply 4. Conclusions and Future Work

this to compute a wirelength estimate for each circuit based on theWe hare demonstrated that an ulti@st placement algorithm based
fast placement wirelength result, and compare it to thevkno on multiple-leel clustering, construste placement, and
high-quality wirelength for each circuit from VPRoiF16 of the simulated-annealing-based refinemeiwirksg \ery well in relation
circuits, our pessimistic estimate is between 0.89% and 13.75%to an «&isting high-quality pure simulated annealing placement
higher than the actual high-quality wirelength, and in onlg tw tool. It provides superior area results across an entire setgs lar
cases is the error greater than 10%. In four cases, the estimator w circuits compared to VPR when both tools are instructed ® tak
not pessimistic enough, predicting a wirelength thas Wwetween approximately the same amount of time to formulate a placement.
1.71% and 3.93% less than the actual high-quality wirelength. For example, in 10 seconds on a 300 MHz Sun Ult/sfS®, our
Overall, the serage absolute error of the wirelength estimatas w  ultra-fast tool can achie an aerage area penalty of 30%, while
under 5% for the set of placement parameters that yielded a mealvPR can manage no better than 80%. The algorithm usesabe
run time of just @er 11 seconds. key clustering and placement parameters to permit the user to



smoothly trade quality of placement for compile time &plored

the \ast space a@red by these parameters to find tast tools
best quality-time erelope and shmed that its evelope is
significantly better than that possible with the pure simulated
annealing formulation of VPR.

If we hare no compile-time restrictions, then our algorithm

[Hame98]l. Hamer “Implementation of DES onransmogrifier
2a’ Personal Communicatiqrii998.

[Hana72]M. Hanan and J. M. #rtzbeg, “Placement &chniques,
in Design Aitomation of Digital SystemspMme 1: Theory
and edniques M. A. Breuer Ed., Prentice-Hall, 1972, pp.
213-281.

produces placements that approach the same quality as WR. W[Hutt97] M. Hutton, J. Rose, and D. Corneil, “Generation of Syn-

also shwed that the dst placement tool can be used asst f
estimator of high-quality wirelength, with a mean absolute error of
less than 5%, in arvarage run time of less than 11.5 seconds.

In the future, it wuld be useful to »plore a &st quadratic-

programming-based placement algorithm or one based on top-

down mincut partitioning, and determine their quality-time trade-
off relationships. Another interesting area to pursue is the
refinement and inggation of the dist wirelength estimator with the
difficulty predictor preided by an gisting fast router [Swar98b].
Finally, a timing-drren fast placement tool should also be
developed.
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