
Procedural Texture Mapping on FPGAs

Andy G. Ye and David M. Lewis �

Department of Electrical and Computer Engineering
University of Toronto

fyeandy, lewisg@eecg.utoronto.ca

Abstract

Procedural textures can be effectively used to enhance the visual re-
alism of computer rendered images. Procedural textures can pro-
vide higher realism for 3-D objects than traditional hardware texture
mapping methods which use memory to store 2-D texture images.
This paper proposes a new method of hardware texture mapping in
which texture images are synthesized using FPGAs. This method is
very efficient for texture mapping procedural textures of more than
two input variables. By synthesizing these textures on the fly, the
large amount of memory required to store their multidimensional
texture images is eliminated, making texture mapping of 3-D tex-
tures and parameterized textures feasible in hardware. This paper
shows that using FPGAs, procedural textures can be synthesized at
high speed, with a small hardware cost. Data on the performance
and the hardware cost of synthesizing procedural textures in FPGAs
are presented. This paper also presents, the FPGA implementations
of two Perlin noise based 3-D procedural textures.

1 Introduction

In many computer graphic applications, polygon meshes are used to
model geometrical surfaces. Texture mapping increases the level
of surface detail of polygon meshes by mapping two-dimensional
texture images on to the meshes. In common graphic cards, the 2-
D texture images are pre-computed and stored in memory on the
cards. Procedural texture mapping extends the concept of texture
mapping by determining the surface coloring of polygon meshes us-
ing computer algorithms. These procedural texture algorithms typi-
cally model the structures of materials like concrete, wood and mar-
ble. They can be defined in 3-D space and be parameterized using
input variables defining additional attributes other than the texture
coordinates.

Procedural texture mapping has become an important method of
generating visually realistic images in many graphic applications.
The computation, however, is often time-consuming. Procedural
texture algorithms, when executed in software, often cannot achieve
the real time performance demanded by many computer animation

�This research was supported by Micronet, Altera Corporation, Cypress Semicon-
ductor, I-Cube, NSERC, and ATI Technologies.

applications. While 2-D textures can be stored in RAM, 3-D tex-
tures require excessive memory. There are no efficient methods of
performing texture mapping using three-dimensional or parameter-
ized procedural textures using fixed hardware. The primary reason
for this is the variety of procedural textures, which makes it difficult
to design a single, efficient hardwired implementation for synthe-
sizing all textures. Other reasons include the complexity of many
procedural texture algorithms, and the ongoing development of new
algorithms. A hardwired accelerator not only would be difficult to
design to support all the exiting procedural texture algorithms, but
also difficult to modify to support new algorithms in the future.

This paper describes a new approach to synthesizing procedu-
ral textures in hardware in which FPGA hardware is used to pro-
vide high performance implementations of procedural texture algo-
rithms. The primary technique used is to compile the procedural
algorithms into hardware structures that can be programmed into
FPGAs. This approach is more memory efficient than storing pre-
generated textures in memory, since only the algorithms are stored.
The use of FPGAs also results in the ability to exploit the paral-
lelism presented in each individual algorithm.

A procedural texture generator was designed using FPGAs. It is
flexible enough to synthesize a variety of procedural textures in high
speed, and is small enough to be implemented on one modern FPGA
chip. The procedural texture generator was implemented using the
Transmogrifier-2 (TM-2) rapid prototype system [11], as a part of
a 3-D computer graphic rendering system design. The performance
and hardware cost of synthesizing procedural textures in FPGAs are
estimated using the data collected on the TM-2 system.

2 3-D Rendering System

A 3-D computer graphic rendering system was designed to eval-
uate the implementation issues of synthesizing procedural textures
in FPGA hardware. The architecture of this rendering system is
briefly described here. The input to the rendering system is a list of
triangles. Each vertex of these triangles is specified by two triplets.
The first triple, (x; y; z), specifies the position of the vertex in a 3-D
world space. The second triple, (u; v;w), specifies the position of
the vertex in a 3-D texture space. The rendering system performs
four major operations on each triangle. First, the system transforms
the 3-D world coordinates of the vertices into the 2-D screen coordi-
nates. Second, all pixels inside the triangle are determined using the
2-D screen coordinates of the vertices. The texture coordinates of
these pixels are then calculated. Third, the system uses the texture
coordinates to calculate the color of each pixel. Finally the image
is stored in a frame buffer and displayed on a screen.

Figure 1 shows the overall architecture of the rendering system.
It consists of four major components:

Frame Buffer

World to Screen
Space

Transformation

Screen to Texture
Space

Transformation

Procedural
Texture

Generator

Figure 1: 3-D Rendering System Using Procedural Textures

Local Area
Network

Workstation

House
Keeping
FPGA

House
Keeping
FPGAParallel

Port

Altera
10K50-3

Altera
10K50-3

ICUBE

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

VGA Interface Card

Monitor

Host
Workstation

4

4

B
ac

kp
la

ne
 I

nt
er

co
nn

ec
tio

n

Figure 2: Experimental Setup

1. a world to screen space transformation (WSST) unit

2. a screen to texture space transformation (STST) unit

3. a procedural texture generator

4. a frame buffer

Each component performs one of the operations listed in the previ-
ous paragraph. Conventionally, WSST functions are usually imple-
mented in software; STST and the frame buffer are implemented in
hardware; and textures are implemented using a RAM. We propose
to implement textures in FPGAs as a procedural texture generator.
A set of textures can be implemented by loading their algorithms
into the FPGA based procedural texture generator. Although STST
and the frame buffer should ideally be implemented in ASIC, we
also constructed them in FPGAs on our prototype.

The 3-D rendering system is implemented on the TM-2. As shown
in Figure 2, the TM-2 consists of two boards. Each board contains
two Altera 10K50 FPGAs and four banks of 64-bit wide SRAM.
The TM-2 system can be connected to a local area network through
a host workstation. Using the host, any workstation on the network
can communicate with the TM-2.

The resources used in the implementation include one worksta-
tion, all four FPGAs on the TM-2, one bank of TM-2 SRAM, a VGA
card, and a monitor. The workstation is connected to the TM-2 via
the local area network. The partitioning of the rendering system
among all hardware resources is shown in detail in Figure 3. Since
there are only four FPGAs available, the entire rendering system
cannot be implemented on the TM-2 system. The WSST calcula-
tions are performed once per triangle, while other units perform cal-
culations once per pixel. Therefore, the WSST unit is implemented

on the workstation, as commonly done in many graphic cards. Two
FPGAs are allocated to the STST unit. One and half FPGAs are al-
located for the procedural texture generator. The frame buffer is im-
plemented using the remaining resources. It uses one bank of TM-2
SRAM as a double frame buffer. It also controls the VGA card and
the monitor.

All software is written in the C programming language. All hard-
ware designs are done in the Altera Hardware Description Language
(AHDL). The rendering system uses a screen space resolution of
512�512. The texture space resolution is 512�512�512. Colors
are eight bits.

3 FPGA Implementations of Procedural Texture Algo-
rithms

Six procedural texture algorithms have been implemented in FP-
GAs. Each of these algorithms takes three inputs, u, v, w. These
three inputs specify a set of coordinates in a 3-D texture space. The
substances that these textures model can be classified into two cat-
egories, solid and gaseous. Three textures model the coloring of
solids including marble, brick, and wood. Another three model the
coloring of gaseous substances including fog, fire, and cloud. De-
spite the difference in appearances, all six textures are fractal in na-
ture — they all use the Perlin noise function to create fractal ef-
fects. In software, these algorithms are implemented in IEEE float-
ing point arithmetic. Floating point hardware, however, is expen-
sive to implement in FPGAs. Fixed point hardware is used, instead,
for minimum precision implementations. Extensive pipelining is
used to maximize the throughput of the algorithms.

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

Workstation

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

FPGA #1

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

FPGA #2

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

FPGA #3 Memory MonitorVGA Card

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

WSST

STST

Procedural Texture Generator

Display Hardware

FPGA #4

Figure 3: Partition of the Hardware Resources

+ =>

Fractal Function

Base Function at 8 times frequency

Base Function at 4 times frequency

Base Function at 2 times frequency

Base Function

x 1.000

x 0.500

x 0.250

x 0.125

...

Figure 4: One Dimensional Fractal Function

3.1 Fractals and the Perlin Noise Function

This section describes the FPGA implementations of fractals and
the Perlin noise function.

3.1.1 Fractals

In computer graphics, fractal functions are often implemented
by summing several versions of a base function at different scales
and frequencies. Figure 4 shows this process in one dimension. There
are a series of functions at the left side of the figure. They are de-
rived from the same base function by varying the frequency and the
amplitude. More formally, if the base function is represented by the
equation y = P (u), then the base function atm times the frequency
can be represented by the equation y = P (m� u). To create the
fractal function, each version of the base function is scaled inversely
proportional to its frequency; then all versions are summed together.
Therefore, the fractal function becomes:

y = P (u) +
1

2
� P (2� u) + : : :+

1

m
� P (m� u)

*2 *2 *2

mux mux mux

wvu

mux

+

fractal

*2

Perlin Noise

abs

Figure 5: Fractal Function Hardware

For every new version of the base function created, the frequency
is usually doubled and the scale factor is usually halved from the
previous version. m is usually set to be between eight and sixty-
four. A 3-D fractal function uses a base function of three variables,
P (u; v;w). All input variables of the 3-D base function are scaled.

Figure 5 shows the architecture of the fractal function in detail.
In the figure, blocksu, v, w, and fractal are all registers. The mul-
tiplexers and the registers are controlled by a control unit not shown
in the figure. The hardware is used to implement two fractal func-
tions, turbulence and fractalsum. These functions are defined by the
following formula:

turbulence =
P3

i=0
2�iP (2iu; 2iv; 2iw)

fractalsum =
P3

i=0

�
�2�iP (2iu; 2iv; 2iw)

�
�

where the function P (u; v;w) represents the Perlin noise function,
the actual 3-D base function used. The hardware implements the
above two equations by scaling and accumulating either the value
of the Perlin noise function or the absolute value of the Perlin noise
function into the register labeled fractal. When the absolute value

Linear
Interpolation

sm sm sm
+ + +

Linear
Interpolation

Linear
Interpolation

Linear
Interpolation

Linear
Interpolation

Linear
Interpolation

Linear
Interpolation

random
number

random
number

random
number

random
number

random
number

random
number

random
number

random
number

wfracvfracufrac
uint vint wint

u v w

1 1 1

uint+1 vint+1 wint+1
vfracs wfracsufracs

ufracs ufracs

vfracs vfracs

wfracs

ufracs ufracs

wint

uint+1
vint

uint
vint vint+1

uint

wintwint
vint+1

uint+1

wint

uint
vint

wint+1

uint+1
vint

wint+1

uint
vint+1

wint+1

uint+1
vint+1

wint+1

Figure 6: Perlin Noise Function Hardware

is used, the resulting fractal value is the turbulence. As the name
implies, the turbulence function simulates the turbulence character-
istics found in many fluids and solidified solids [6]. When the value
of the Perlin noise function is directly used, the resulting function is
the fractalsum function, which is often used to simulate gas forma-
tions [6]. In both cases, four cycles are needed to create one fractal
value.

3.1.2 Perlin Noise Function

The Perlin noise function is one of the most computationally effi-
cient base functions. In our applications, we use a Perlin noise func-
tion of three-dimensional space. It can be implemented using the
following equation:

P (u; v;w) =
I(R(buc; bvc; bwc);R(buc; bvc; dwe);
R(buc; dve; bwc);R(buc; dve; dwe);
R(due; bvc; bwc);R(due; bvc; dwe);
R(due; dve; bwc);R(due; dve; dwe);
(u� buc); (v� bvc); (w� bwc))

where R(x1; x2; x3) is a pseudo random function of its inputs; and
I(x000; x001; : : : ; x111; xu; xv; xw) is an interpolation function in
three dimensions. This calculates the function value on the 8 cor-
ners of a grid cell, and performs interpolation based on the associ-
ated values of the eight and the distance between the point in ques-
tion and each of these grid points [13].

The original Perlin noise function, as actually proposed by Ken
Perlin, implements the function, R(x1; x2; x3), as three tables of
256 pre-generated pseudo random numbers stored in memory and
two adders [6]. This method can consume quite large amounts of
memory, since multiple copies ofR(x1; x2; x3) are needed to fully
exploit the parallelism available. A more efficient hardware method
of generating pseudo random function values using xor tables [15]

is used in this study. This method provides significant saving in
hardware.

The second improvement that we made to the original Perlin
noise function for hardware implementation is to the interpolation
method, I(x000; x001; : : : ; x111; xu; xv; xw). The original function
uses an computationally expensive wavelet interpolation method [6].
This method has some superior statistical properties than the ordi-
nary 3-D linear interpolation method; however, it is much more com-
putationally expensive. In this study, we use a smoothing function,
sm(x) = 3x2 � 2x3 , to remove any second order discontinuities
that might result from the linear interpolation process. The interpo-
lation function I(x000; x001; : : : ; x111; xu; xv; xw) becomes
L(x000; x001; : : : ; x111; sm(xu); sm(xv); sm(xw)), whereL(: : :)
is the linear interpolation function. By adding this smoothing func-
tion, the image quality of the 3-D linear interpolation is much im-
proved. The hardware consumption is still much lower than the wavelet
method.

Figure 6 shows the Perlin noise hardware. The inputs are u,
v, w. The fraction, floor and ceiling values of each input are first
calculated and are denoted by ufrac, vfrac, wfrac, uint, vint,
wint, uint + 1, vint + 1, wint + 1, respectively. The function,
R(x1; x2; x3), is implemented by blocks, labeled randomnumber.
The function,
I(x000; x001; : : : ; x111; xu; xv; xw), is implemented by blocks, la-
beled sm and Linear Interpolation. ufrac, vfrac, and wfrac
are processed by the smoothing function, sm. The smoothing func-
tion implements the equation sm(x) = 3x2 � 2x3 in 10K50 EAB
memory blocks [1]. The outputs of the smoothing function are de-
noted by ufracs, vfracs, and wfracs.

The internal structure of theLinear Interpolation units is shown
in Figure 7. Each unit implements the function f(a; b; c) = a +
c� (b�a). This is a special case of the general linear interpolation
formula, g(x) = g(x0) +

g(x1)�g(x0)

x1�x0
(x� x0), where g(x0) = a,

g(x1) = b, x1 � x0 = 1, and x� x0 = c. The input, c, must be a
positive fraction value between 0 and 1. a and b are real numbers.

Linear
Interpolation

a b

c

output

-

b a

*

+

c

output

Figure 7: Linear Interpolation Unit

random
number

a b c

output

xor table

+

xor table

+

xor table

a
b

c

output

Figure 8: Random Number Generator

The internal structure of the random number unit is shown in
Figure 8. For a given set of inputs, the unit outputs a corresponding
pseudo random number. The xor tables shown in Figure 8 execute
the function:

y0 = (x0 and r00) xor : : : xor (xn and r0n)
y1 = (x0 and r10) xor : : : xor (xn and r1n)

: : :
yn = (x0 and rn0) xor : : : xor (xn and rnn)

where (yn; yn�1; : : : ; y0) is the output bit vector,
(xn; xn�1; : : : ; x0) is the input bit vector and

(r00; r01; : : : ; r0n)
(r10; r11; : : : ; r1n)

: : :

(rn0; rn1; : : : ; rnn)

is a set of pre-generated constant bit vectors [15]. Since rij is static,
the entire xor table can be implemented in around 8 LUTs. This is
much less expensive than 256 � 8 RAM. The xor table is used to
scramble its input bits into a random value. This scrambling process
is repeated three times to produce a random value for any point in
space.

3.2 Perlin Noise Based 3-D Procedural Textures

This section discusses the implementation of marble and wood tex-
tures. Both use the turbulence fractal function.

3.2.1 Marble

The marble algorithm models the internal coloring of marble.
As illustrated in Figure 9, marble is formed by layers of colored rock

layersv

u

w

Figure 9: Marble Internal Structure

+

turbulence

u v w

color table

marble color

Figure 10: Procedural Texture Generator Configuration for the Mar-
ble Texture

deposits. Over time, different colored layers start to intermix with
each other because of the extremely high pressure and the geologi-
cal movements. This process generates the unique vein-like color-
ing inside the marble. This phenomenon is modeled by the function:

M (u; v;w) = (turbulence(u; v;w) + v)mod 128

M(u; v;w) is used to index into a color table of 128 entries. The
color table is configured to store the color of the various rock lay-
ers. Each color table entry represents the color of one layer; and
the address of the entry corresponds to the layer position. When the
color table is accessed according to v, the resulting 3-D texture im-
age corresponds to the unmixed layers of marble. To simulate the
intermixing of layers over time, the turbulence value is added to v.

The hardware for generating the marble texture is shown in Fig-
ure 10. The final marble texture mapped onto a cube is shown in
Figure 11.

3.2.2 Wood

As illustrated by Figure 12, the internal structure of wood can
be approximated by a series of cones that are have random pertur-
bations. A tree grows one layer every year. The color within each
layer varies with the seasons. The range of color within each layer
is roughly the same from one layer to another.

Wood is modeled by the following function:

W (u; v;w) = ((u2 + v2 + �w)+
turbulence(u; v; w))mod 128

W (u; v;w) is used to index into a color table of 128 entries. The
range of color within a single layer is stored in the color table. The
basic shape of each cone is modeled by function u2 + v2 + �w,
which is a hyperbolic function of u and v. The exact equation for
cones is

p
u2 + v2 + �w. The hyperbolic function is less expen-

sive to compute, and also models the non-uniform growth of trees,

Figure 11: Marble Texture Mapped Cube

w

u

v

Figure 12: Wood Internal Structure

+

color table

wood color

+

+

** turbulence

u v w

w

u v

Figure 13: Procedural Texture Generator configuration for the
Wood Texture

Figure 14: Wood Texture Mapped Cube

where young trees grow much faster than older ones. The mod op-
eration creates the layering effect of cones. Adding turbulence to
W (u; v;w) simulates the irregularity of tree growth.

The hardware for calculating the wood texture is shown in Fig-
ure 13. A wood texture mapped cube is shown in Figure 14. Notice
that the pattern is realistic and consistent across all faces of the cube.
This is more clearly shown in full color prints.

4 Performance and Hardware Cost

4.1 Performance

The portion of the rendering system implemented on the TM-2 uses
two clock signals. The frame buffer uses a clock frequency of 25.0
MHz. This speed is mandated by the VGA monitor that the frame
buffer controls. The rest of the system uses a clock frequency of
12.5 MHz. Under the 12.5 MHz clock, the system is able to pro-
duce one pixel for every four clock cycles. The WSST software is
executed on a 296MHz UltraSPARC-II CPU. The software is able
to keep up with the performance of the hardware.

The performance bottleneck for the rendering system is the STST
unit. When implemented on its own, the procedural texture gener-
ator can be clocked at a much higher clock frequency. When mea-
sured in isolation from the rest of the system, the execution speed
of all six textures is determined by the fractal function unit. On the
TM-2, the generator can run at a maximum clock frequency of 28

Textures Look-Up Memory Area Area as % of
Tables 1 Gb of DRAM Area

Marble 2839 1152 bits 47mm2 4.1%
Wood 3428 1152 bits 57mm2 5.0%
Brick 2870 1152 bits 47mm2 4.1%
Fog 2700 1152 bits 45mm2 3.9%
Cloud 3006 1152 bits 50mm2 4.4%
Fire 3152 5760 bits 52mm2 4.5%

Table 1: Area Cost of Implementing Procedural Texture Generator

MHz for all six textures, limited to 12.5 MHz by rest of the system.
As designed, it can produce one pixel of texture for every four clock
cycles. This performance is equivalent to 7 Million Pixels Per Sec-
ond (MPPS). The system can fill 230K pixels per frame at 30 Hz
frame rate.

4.2 Hardware Cost in Comparison to Memory Based Tex-
ture Mapping

In memory based texture mapping, large amounts of memory are re-
quired to store three-dimensional texture images. In this study, 3-D
procedural textures are synthesized with a resolution of 512�512�
512. Eight bits are used to represent the color of each pixel. Since
textures are accessed randomly by rendering engines, their can not
be compressed by conventional compression techniques. Without
any form of compression, each of these three-dimensional images
requires 1 Gbit of storage memory. On the other hand, less than
one and half 10K50 FPGAs are required to implement each texture.
This section compares these two approaches to procedural texture
mapping using silicon area as a yard stick.

Current state of the art technologies can package 256 Mbits of
DRAM onto a 286mm2 die area using a 0:25�m process [17]. Us-
ing the same DRAM technologies, 1 Gbit of memory would require
1144mm2 of die. Altera 10K100 FPGAs are the latest implementa-
tion of the 10K50 architecture. Scaled to the same 0:25�m process,
each logic array block of the 10K100 FPGAs consumes 132; 000�m2

of silicon [3]. This area not only includes the area consumed by
the look-up tables, but also the associated routing resources for each
logic array block. Since each logic array block contains eight look-
up tables, each look-up table consumes approximately 16; 000�m2

of silicon. Besides logic array blocks, embedded memory blocks
are also used in texture synthesis. Each embedded memory block
contains 2048 memory bits; and one embedded memory block is
approximately the same size as one logic array block.

The amount of FPGA resource consumed by each procedural
texture is shown in column two and column three of Table 1. Two
types of resources are consumed, the look-up tables and the embed-
ded memory blocks. The total silicon areas consumed by these pro-
grammable logic resources are shown in column four. The fifth col-
umn of Table 1 shows the programmable logic area as a percentage
of the area consumed by 1 Gbit of DRAM. For the texture algo-
rithms investigated, the programmable logic implementations use
3.9% to 5.0% of the area required by the texture memory storing un-
compressed textures of the same resolution. The FPGAs can achieve
even higher area efficiency for algorithms with more input variables
and larger texture spaces.

4.3 Single-Chip Graphic Accelerator with On-Chip Sup-
port for Perlin Noise based Procedural Texture Map-
ping

The experimental data and the wide spread use of Perlin noise

ASIC
graphic
pipeline

core
FPGA

ASIC
Perlin
noise

(u,v,w)

color

...

...

Figure 15: ASIC+FPGA Procedural Texture Mapping Organization

function also suggest the possibility of synthesizing procedural tex-
tures in a mixture of ASIC and FPGA hardware. The combined
ASIC+FPGA approach have the potential of synthesizing Perlin noise
based textures at higher speed and with smaller silicon area cost.
The ASIC+FPGA procedural texture generator might be small enough
to fit on a single chip with the rest of the graphic accelerator. The
possible floor plan for such an single-chip design is shown in Fig-
ure 15.

The difference between this approach and the pure FPGA ap-
proach is that the Perlin noise would be directly implemented in ASIC
hardware, which has higher performance and higher logic density.
Some other commonly used procedural texture functions might also
be directly implemented in ASIC along with the Perlin noise. Only
the remaining functions in procedural texture algorithms are required
to be implemented in FPGAs. Table 2 shows the possible perfor-
mance figure for the ASIC+FPGA implementation for six textures
investigated. Table 3 shows the possible area consumption by the
six textures. These data are measured by removing the Perlin noise
function from these six textures and measuring the speed and hard-
ware costs of the remaining FPGA circuits. It is assumed that the
ASIC implementation of the Perlin noise function is able to keep
up with the performance of the FPGA circuits.

5 Conclusions and Future Work

This paper has presented the architecture of a 3-D computer graphic
rendering system which synthesizes 3-D procedural textures in FPGA
hardware. The rendering system is implemented on the TM-2 dig-
ital prototype system. The prototype system executes at a speed of
12.5 MHz and can produce pixels at a rate of 3.125 MPPS. On the
TM-2 system, only 3.9% to 5.0% of the silicon area that would be
consumed by the texture memory is consumed by FPGAs imple-
menting the procedural texture generator. The implementation also
shown that the procedural texture generator can achieve high per-
formance required by the animation applications.

Textures Max. Clock Freq. MPPS Frames Per Second
Marble 125 MHz 125 476
Wood 74 MHz 74 282
Brick 47 MHz 47 179
Fog wiring delay Limited by ASIC Limited by ASIC
Cloud 43 MHz 43 164
Fire 50 MHz 50 190

Table 2: ASIC+FPGA Performance

Textures Look-Up Memory FPGA Area
Tables

Marble 147 0 bits 2:4mm2

Wood 736 0 bits 13mm2

Brick 178 0 bits 2:9mm2

Fog 29 0 bits 0:47mm2

Cloud 335 0 bits 5:5mm2

Fire 481 4608 bits 8:2mm2

Table 3: Area cost of FPGA Hardware in ASIC+FPGA Approach

There are three main areas of future work. First, it is a time-
consuming job to manually translate procedural texture algorithms
into hardware, especially when fixed point representation is used.
CAD tools need to be developed to automate most of this translation
process. Second, procedural texture algorithms contain many arith-
metic computations. New programmable logic architectures can be
developed to target at arithmetic applications, so procedural texture
algorithms can be implemented in smaller and faster programmable
hardware. Third, to make the concept of synthesizing procedural
texture in FPGA hardware practical, more procedural texture algo-
rithms need to be developed. More importantly these algorithms
need to be efficiently implemented in programmable logic.

6 Acknowledgment

We would like to thank Dave Galloway for laying the ground work
by designing a 2-D texture mapping system on the TM-2. We also
like to thank him for all the TM-2 software and hardware support
that he has provided.

We would also like to thank Marcus van Ierssel for designing the
VGA interface card and maintaining and constantly improving the
TM-2 hardware, Jonathan Rose for his technical input, and Vaughn
Betz for providing area estimate on Altera 10K series FPGAs.

References

[1] ALTERA. Altera 10k FPGA Databook.

[2] BERTIN, P., RONCIN, D., AND VUILLEMIN, J. Introduction
to Programmable Active Memories. Tech. rep., Digital Equip-
ment Corporation, June 1989.

[3] BETZ, V. Architecture and CAD for Speed and Area Opti-
mization of FPGAs. PhD thesis, University of Toronto, 1998.

[4] BUELL, D. A., ARNOLD, J. M., AND WATER, J. Splash 2:
FPGAs in a custom computing machine. IEEE Computer So-
ciety Press, Los Alamos, CA, 1996.

[5] CHEREPACHA, D., AND LEWIS, D. DP-FPGA: An FPGA
Architecture Optimized for Datapaths. Tech. rep., University
of Toronto, 1994.

[6] EBERT, DAVID S.AND MUSGRAVE, F. K., PEACHEY, D.,
PERLIN, K., AND STEVEN, W. Texturing and Modeling: A
Procedural Approach. AP Professional, Boston, 1994.

[7] FOLEY, J. D., HUGHES, J., VAN DAM, FEINER, AND
HUGHS. Computer Graphics: Principles and Practice, sec-
ond ed. Addison-Wesley, Reading, Mass, 1990.

[8] GALLOWAY, D. 2-D Texture Mapping on TM-2. Tech. rep.,
University of Toronto, 1996.

[9] GLEICK, J. Chaos: Making a New Science. Penguin Books,
New York, 1987.

[10] KATZ, R. H. Contemporary Logic Design. Addison-Wesley
Pub Co, 1990.

[11] LEWIS, D. M., GALLOWAY, D. R., IERSSEL, M. V., ROSE,
J., AND CHOW, P. The Transmogrifier-2: A 1 Million Gate
Rapid Prototyping System. Transactions on VLSI (1997).

[12] PEACHEY, D. Solid Texturing of Complex Surfaces. Com-
puter Graphics (SIGGRAPH ’85 Proceedings) (1985), 279–
286.

[13] PERLIN, K. An Image Synthesizer. Computer Graphics (SIG-
GRAPH ’85 Proceedings) 19 (July 1985), 287–296.

[14] RAJAMANI, S., AND VISWANATH, P. V. Accelerating the
RISC processor using Programmable Logic. Tech. rep., Uni-
versity of Berkely, 1992.

[15] RAU, B. R. Pseudo-Randomly Interleaved Memory. ACM
(1991).

[16] RAZDAN, R. PRISC: Programmable Reduced Instruction Set
Computers. PhD thesis, Harvard University, May 1994.

[17] WATANABE, Y., WONG, H., KIRIHATA, T., KATO, D., DE-
BROSSE, J. K., HARA, T., YOSHIDA, M., MUKAI, H.,
QUADER, K. N., NAGAI, T., POECHMUELLER, P., PFEF-
FERL, P., WORDEMAN, M. R., AND FUJII, S. A 286mm2

256Mb DRAM with x 32 Both-Ends DQ. IEEE Journal of
Solid-State Circuits 31 (April 1996).

[18] WITTING, R. D. OneChip: an FPGA Processor with Recon-
figurable Logic. Master’s thesis, University of Toronto, 1995.

	Main Page
	FPGA'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

