Procedural Texture Mapping on FPGAS

Andy G. Yeand David M. Lewis*

Department of Electrical and Computer Engineering
Univergity of Toronto
{yeandy, lewis}@eecg.utoronto.ca

Abstract

Procedural textures can be effectively used to enhancethevisua re-
alism of computer rendered images. Procedura textures can pro-
videhigher realismfor 3-D objectsthantraditiona hardwaretexture
mapping methods which use memory to store 2-D texture images.
This paper proposes a new method of hardware texture mapping in
which textureimages are synthesized using FPGAs. Thismethod is
very efficient for texture mapping procedural textures of more than
two input variables. By synthesizing these textures on the fly, the
large amount of memory required to store their multidimensional
texture images is eliminated, making texture mapping of 3-D tex-
tures and parameterized textures feasible in hardware. This paper
shows that using FPGAS, procedural textures can be synthesized at
high speed, with a small hardware cost. Data on the performance
and the hardware cost of synthesizing procedural texturesin FPGAs
are presented. This paper a so presents, the FPGA implementations
of two Perlin noise based 3-D procedural textures.

1 Introduction

In many computer graphic applications, polygon meshesare usedto
model geometrical surfaces. Texture mapping increases the level
of surface detail of polygon meshes by mapping two-dimensional
texture images on to the meshes. In common graphic cards, the 2-
D texture images are pre-computed and stored in memory on the
cards. Procedura texture mapping extends the concept of texture
mapping by determining the surface col oring of polygon meshesus-
ing computer algorithms. These procedura texture a gorithmstypi-
cally model thestructures of materia slike concrete, wood and mar-
ble. They can be defined in 3-D space and be parameterized using
input variables defining additional attributes other than the texture
coordinates.

Procedural texture mapping has become animportant method of
generating visualy redistic images in many graphic applications.
The computation, however, is often time-consuming. Procedural
texture algorithms, when executed in software, often cannot achieve
thereal time performance demanded by many computer animation

* This research was supported by Micronet, Altera Corporation, Cypress Semicon-
ductor, I-Cube, NSERC, and AT| Technologies.

applications. While 2-D textures can be stored in RAM, 3-D tex-
tures require excessive memory. There are no efficient methods of
performing texture mapping using three-dimensional or parameter-
ized procedural textures using fixed hardware. The primary reason
for thisisthe variety of procedurd textures, which makesit difficult
to design a single, efficient hardwired implementation for synthe-
sizing all textures. Other reasons include the complexity of many
procedural texture algorithms, and the ongoing development of new
algorithms. A hardwired accelerator not only would be difficult to
design to support all the exiting procedural texture algorithms, but
also difficult to modify to support new algorithms in the future.

This paper describes a new approach to synthesizing procedu-
ral textures in hardware in which FPGA hardware is used to pro-
vide high performance implementations of procedura texture ago-
rithms. The primary technique used is to compile the procedural
algorithms into hardware structures that can be programmed into
FPGAs. This approach is more memory efficient than storing pre-
generated textures in memory, since only the algorithms are stored.
The use of FPGASs also results in the ability to exploit the para-
lelism presented in each individual algorithm.

A procedural texture generator was designed using FPGASs. Itis
flexibleenoughto synthesize avariety of procedural texturesin high
speed, andissmall enough to beimplemented on one modern FPGA
chip. The procedural texture generator was implemented using the
Transmogrifier-2 (TM-2) rapid prototype system [11], as a part of
a3-D computer graphic rendering system design. The performance
and hardware cost of synthesizing procedural texturesin FPGAsare
estimated using the data collected on the TM-2 system.

2 3-D Rendering System

A 3-D computer graphic rendering system wasdesigned to eval -
uate the implementation issues of synthesizing procedural textures
in FPGA hardware. The architecture of this rendering system is
briefly described here. The input to the rendering systemisalist of
triangles. Each vertex of these trianglesis specified by two triplets.
Thefirst triple, (=, y, z), specifiesthe position of the vertex ina3-D
world space. The second triple, (u, v, w), specifies the position of
the vertex in a 3-D texture space. The rendering system performs
four major operations on each triangle. First, the system transforms
the 3-D world coordinates of the verticesinto the 2-D screen coordi-
nates. Second, al pixesinsidethetriangle are determined using the
2-D screen coordinates of the vertices. The texture coordinates of
these pixels are then calculated. Third, the system uses the texture
coordinates to calculate the color of each pixel. Finally theimage
is stored in aframe buffer and displayed on a screen.

Figure 1 showsthe overall architecture of the rendering system.
It consists of four major components:



World to Screen Screen to Texture
Space =1

Transformation Transformation

Space =

Procedural
Texture —=>
Generator

Frame Buffer

Figure 1: 3-D Rendering System Using Procedural Textures

ol B el
o Q
House Altera 5115 IS
Keeping <44 | 10K50-3 s||= g
FPGA £
Host 3
Loca Area g
. ICUBE :
Network Workstation g
House =
Keeping % Altera > | > 2
Pardllel | FpGa 10K50-3 g8 ks
Workstation Port 2113

—

VGA Interface Card

Monitor

Figure 2: Experimenta Setup

1. aworld to screen space transformation (WSST) unit
2. ascreen to texture space transformation (STST) unit
3. aprocedural texture generator

4. aframebuffer

Each component performs one of the operations listed in the previ-
ous paragraph. Conventionally, WSST functionsare usually imple-
mented in software; STST and the frame buffer areimplemented in
hardware; and textures are implemented using a RAM. We propose
to implement texturesin FPGAs as a procedural texture generator.
A set of textures can be implemented by loading their agorithms
into the FPGA based procedural texture generator. Although STST
and the frame buffer should idedly be implemented in ASIC, we
also congtructed them in FPGAS on our prototype.

The 3-D rendering systemisimplemented onthe TM-2. Asshown
in Figure 2, the TM-2 consists of two boards. Each board contains
two Altera 10K50 FPGAs and four banks of 64-bit wide SRAM.
The TM-2 system can be connected to alocal area network through
ahost workstation. Using the host, any workstation on the network
can communicate with the TM-2.

The resources used in the implementation include one worksta-
tion, all four FPGAsonthe TM-2, onebank of TM-2SRAM, aVGA
card, and amonitor. The workstation is connected to the TM-2 via
the loca area network. The partitioning of the rendering system
among all hardware resources is shown in detail in Figure 3. Since
there are only four FPGAs available, the entire rendering system
cannot be implemented on the TM-2 system. The WSST calcula-
tions are performed once per triangle, while other units perform cal-
culationsonce per pixel. Therefore, the WSST unit isimplemented

on the workstation, as commonly done in many graphic cards. Two
FPGAs are allocated to the STST unit. One and half FPGAsare a-
located for the procedural texture generator. Theframe bufferisim-
plemented using the remaining resources. It uses one bank of TM-2
SRAM as adouble frame buffer. It also controlsthe VGA card and
the monitor.

All softwareiswrittenintheC programming language. All hard-
waredesignsaredoneinthe AlteraHardware Description Language
(AHDL). The rendering system uses a screen space resolution of
512 x 512. Thetexture spaceresolutionis512 x 512 x 512. Colors
are eight bits.

3 FPGA Implementations of Procedural Texture Algo-
rithms

Six procedura texture algorithms have been implemented in FP-
GAs. Each of these algorithms takes three inputs, u, v, w. These
three inputs specify aset of coordinatesin a3-D texture space. The
substances that these textures model can be classified into two cat-
egories, solid and gaseous. Three textures model the coloring of
solidsincluding marble, brick, and wood. Another three model the
coloring of gaseous substances including fog, fire, and cloud. De-
spitethe difference in appearances, dl six textures are fractal in na-
ture — they al use the Perlin noise function to create fracta ef-
fects. In software, these algorithms are implemented in | EEE fl oat-
ing point arithmetic. Floating point hardware, however, is expen-
sivetoimplement in FPGAs. Fixed point hardwareis used, instead,
for minimum precison implementations. Extensive pipelining is
used to maximize the throughput of the a gorithms.



> FPGAFR— >—FPGA #4 —= Memory —| VGA Card —| Monitor

B wsst

STST

B Procedura Texture Generator

[] Display Hardware

Figure 3: Partition of the Hardware Resources
x 0.125

e mux mux mux
Base Function at 8 times frequency

x 0.250

Base Function at 4 times frequency,
Fractal Function

x 0.500

Base Function at 2 times frequency

x 1.000

Base Function
Figure 4: One Dimensional Fractal Function

3.1 Fractals and the Perlin Noise Function

This section describes the FPGA implementations of fractals and
the Perlin noise function.

3.1.1 Fractals

In computer graphics, fractal functions are often implemented
by summing severd versions of a base function at different scales
and frequencies. Figure4 showsthisprocessinonedimension. There
are a series of functions at the left side of the figure. They are de-
rived from the same base function by varying the frequency and the
amplitude. Moreformally, if the base functionisrepresented by the
equationy = P(u), thenthebasefunction at m timesthefrequency
can be represented by the equation y = P(m x u). To create the
fractal function, each version of thebasefunctionisscaled inversely
proportional toitsfrequency; then al versionsare summed together.
Therefore, the fractd function becomes:

1
y:P(u)—l—%><P(2><u)—|—...—|——><P(m><u)
m

Figure 5: Fractal Function Hardware

For every new version of the base function created, the frequency
is usually doubled and the scale factor is usudly halved from the
previous version. m is usualy set to be between eight and sixty-
four. A 3-D fractal function uses a base function of three variables,
P(u, v, w). All input variables of the 3-D base function are scaled.

Figure 5 shows the architecture of the fractal function in detail.
Inthefigure, blocksu, v, w, and fractal areall registers. The mul-
tiplexers and the registers are controlled by acontrol unit not shown
in the figure. The hardwareis used to implement two fractal func-
tions, turbulence and fractal sum. Thesefunctionsare defined by the
following formula:

turbulence = Z?):o 27 P(20u, 2%, 2 w)
fractalsum =3 . |2_’P(2’u7 2%, 2’w)|

wherethe function P(u, v, w) representsthe Perlin noise function,
the actual 3-D base function used. The hardware implements the
above two eguations by scaling and accumulating either the value
of the Perlin noise function or the absolute value of the Perlin noise
function into the register labeled fractal. When the absolute value



vint wint
ufr vfrac wfrac
[sm] [sm]
vint+1 wint+1

uint+1
ufracs vfracs wfracs
uint uint+1 uin uint+1 uint uint+1 uint uint+1
vint vint Vi nt+l vint+1 vint vint vint+1 vint+1
¢wi nt ¢wi nt ¢wi nt ¢wi nt ¢wi nt+1 ¢wi nt+ ¢wi nt+ ¢wi nt+1

random | | random | | random | | random | | random | | random | | random | | random
number | | number | | number | | number | | number | | number | | number | | number

I [ ufracs | [ ufracs

I [ ufracs | [ ufracs

Linear | | Linear Linear | | Linear
Interpolation Interpolation Interpolation Interpolation
| i I
Linear vfracs Linear vfracs

Interpolation [~ Interpolation [~
Linear wfracs
Interpolation [~

J

Figure 6: Perlin Noise Function Hardware

is used, the resulting fractal value is the turbulence. As the name
implies, the turbulence function simulates the turbulence character-
istics found in many fluidsand solidified solids [6]. Whenthe value
of the Perlin noise function isdirectly used, the resulting function is
the fractalsum function, which is often used to simulate gas forma-
tions [6]. In both cases, four cycles are needed to create one fractal
value.

3.1.2 Perlin Noise Function

The Perlin noise function is one of the most computationally effi-
cient base functions. In our applications, weuseaPerlin noise func-
tion of three-dimensiona space. It can be implemented using the
following equation:

where R(z1, ©2, x3 ) isapseudo random function of itsinputs; and
I(zo00, Zoo1, - - -, F111, Tu, Tv, T ) iSaAN interpolation functionin
three dimensions. This calculates the function value on the 8 cor-
ners of agrid cell, and performsinterpolation based on the associ-
ated values of the eight and the distance between the point in ques-
tion and each of these grid points[13].

Theoriginal Perlin noise function, as actually proposed by Ken
Perlin, implements the function, R(z1, z2, x3), as three tables of
256 pre-generated pseudo random numbers stored in memory and
two adders [6]. This method can consume quite large amounts of
memory, since multiple copies of R(z1, x2, zs) are needed to fully
exploit theparallelismavailable. A more efficient hardware method
of generating pseudo random function values using zor tables[15]

is used in this study. This method provides significant saving in
hardware.

The second improvement that we made to the original Perlin
noise function for hardware implementation is to the interpol ation
method, I (zo00, 001, - - -, 111, Tu, Tv, Tw). Theorigina function
uses an computationally expensive waveletinterpolation method [6].
This method has some superior statistical properties than the ordi-
nary 3-D linear interpol ation method; however, it ismuch more com-
putationdly expensive. In this study, we use a smoothing function,
sm(r) = 3z° — 23°, to remove any second order discontinuities
that might result from the linear interpolation process. Theinterpo-
lation function I(zogo,xoo1,--.,2111,2,,%,,2,) becomes
L(zo00, Toot, - - -, 111, sm(zw ), sm(xy ), sm(zw)), where L(. . .)
isthe linear interpolation function. By adding this smoothing func-
tion, the image quality of the 3-D linear interpolation is much im-
proved. Thehardware consumptionisstill much lower than thewavelet
method.

Figure 6 shows the Perlin noise hardware. The inputs are u,
v, w. The fraction, floor and ceiling values of each input are first
caculated and are denoted by u frac, v frac, wfrac, uint, vint,
wint, uint + 1, vint + 1, wint + 1, respectively. The function,
R(z1, x2, x3), isimplemented by blocks, labeled random number.
The function,
I(zo00, Zoo1,- - -, F111, Tu, Tv, Tw ), iISimplemented by blocks, la-
beded s and Linear Interpolation. ufrac, v frac,and wfrac
are processed by the smoothing function, sm. The smoothing func-
tion implements the equation sm(x) = 3z° — 22° in 10K50 EAB
memory blocks [1]. The outputs of the smoothing function are de-
noted by w fracs, v fracs, and w fracs.

Theinterna structure of the Linear Interpolation unitsisshown
in Figure 7. Each unit implements the function f(a,b,¢) = a +
¢ x (b—a). Thisisaspecid case of the general linear interpolation

formula, g(z) = g(z0) + Mﬂl(m — xp), Whereg(zo) = a,

xr1—%o
g(x1) =b,z1 —xo = 1,andz — zo = c. Theinput, ¢, must bea
positive fraction value between 0 and 1. « and b are rea numbers.



J/a \Lb T2

Linear c
Interlpol aion | v
¢ output v

output

Figure 7: Linear Interpolation Unit

bc
W

random

number

i output

Figure 8: Random Number Generator

Theinternal structure of the random number unitisshownin
Figure 8. For agiven set of inputs, the unit outputs a corresponding
pseudo random number. The zor tables shown in Figure 8 execute
the function:

or ... zor (zn and ron)
or ... zor (z, and ri,)

(zo and roo

Yo )
(xg and ryo)
)

n

xr
xr

Yn = (xo and ryo) zor ... zor (z, and ryy)

where  (yn,Yn—1,...,y0) is the output bit vector,
(Zn, Tn-1,...,%o) istheinput bit vector and

(7“00,7"01,...,7"071)

(7“10,7"11,...,7"171)

(rnosTnl,- -y Tnn)

isaset of pre-generated constant bit vectors[15]. Sincer;; isstatic,
the entire zor table can beimplemented in around 8 LUTSs. Thisis
much less expensive than 256 x 8 RAM. The zor tableis used to
scrambleitsinput bitsinto arandom value. This scrambling process
is repeated three times to produce a random value for any point in
space.

3.2 Perlin Noise Based 3-D Procedural Textures
This section discussesthe implementation of marble and wood tex-
tures. Both use the turbulence fractal function.

3.2.1 Marble

The marble algorithm models the internal coloring of marble.
Asillustratedin Figure 9, marbleisformed by |ayersof colored rock

turbulence

color table

marble color

Figure 10: Procedura Texture Generator ConfigurationfortheMar-
ble Texture

deposits. Over time, different colored layers start to intermix with
each other because of the extremely high pressure and the geologi-
ca movements. This process generates the unique vein-like color-
inginsidethemarble. Thisphenomenonismodel ed by thefunction:

M (u,v,w) = (turbulence(u, v, w) + v) mod 128

M (u, v, w) isused to index into a color table of 128 entries. The
color table is configured to store the color of the various rock lay-
ers. Each color table entry represents the color of one layer; and
the address of the entry correspondsto thelayer position. When the
color tableis accessed according to v, the resulting 3-D textureim-
age corresponds to the unmixed layers of marble. To simulate the
intermixing of layers over time, the turbulence value is added to v.

The hardware for generating the marbletextureis shownin Fig-
ure 10. The final marble texture mapped onto a cube is shown in
Figure 11.

3.2.2 Wood

Asillustrated by Figure 12, the internal structure of wood can
be approximated by a series of cones that are have random pertur-
bations. A tree grows one layer every year. The color within each
layer varies with the seasons. The range of color within each layer
isroughly the same from one layer to another.

Wood is modeled by the following function:

W(u,v,w) = ((u2 + 0 + aw)+
turbulence(u, v, w)) mod 128

W (u, v, w) is used to index into a color table of 128 entries. The
range of color within asingle layer is stored in the color table. The
basic shape of each cone is modeled by function v? + v 4+ aw,
which is a hyperbolic function of « and v. The exact equation for
conesis+v/u? + v2 4+ aw. The hyperbolic function is less expen-
sive to compute, and a so models the non-uniform growth of trees,



Figure 11: Marble Texture Mapped Cube

Figure 12: Wood Internal Structure

turbulence

‘ color table ‘

¢ waood color

Figure 13: Procedural Texture Generator configuration for the
Wood Texture

Figure 14: Wood Texture Mapped Cube

where young trees grow much faster than older ones. The mod op-
eration creates the layering effect of cones. Adding turbulence to
W (u, v, w) smulatestheirregularity of tree growth.

The hardware for calcul ating the wood texture is shown in Fig-
ure 13. A wood texture mapped cube is shownin Figure 14. Notice
that the pattern isrealistic and cons stent across al | faces of the cube.
Thisis more clearly shown in full color prints.

4 Performance and Hardware Cost

4.1 Performance

The portion of the rendering system implemented on the TM-2 uses
two clock signals. The frame buffer uses aclock frequency of 25.0
MHz. This speed is mandated by the VGA monitor that the frame
buffer controls. The rest of the system uses a clock frequency of
12.5 MHz. Under the 12.5 MHz clock, the system is able to pro-
duce one pixel for every four clock cycles. The WSST softwareis
executed on a296MHz UltraSPARC-II CPU. The software is able
to keep up with the performance of the hardware.
Theperformancebottleneck for therendering systemisthe STST
unit. When implemented on its own, the procedural texture gener-
ator can be clocked a a much higher clock frequency. When mea-
sured in isolation from the rest of the system, the execution speed
of all six texturesisdetermined by the fracta function unit. On the
TM-2, the generator can run at a maximum clock frequency of 28



Textures Look-Up Memory Area Areaas % of
Tables 1 Gb of DRAM Area
Mable 2839 1152 bits  47mm*> 4.1%
Wood 3428 1152 bits  57mm?> 5.0%
Brick 2870 1152 bits  47mm®  4.1%
Fog 2700 1152 bits  45mm?*  3.9%
Cloud 3006 1152 bits  50mm?*  4.4%
Fire 3152 5760 bits 52mm? 4.5%

Table 1: AreaCost of Implementing Procedura Texture Generator

MHz for all six textures, limited to 12.5 MHz by rest of the system.
Asdesigned, it can produce one pixd of texture for every four clock
cycles. Thisperformanceisequivaent to 7 Million Pixels Per Sec-
ond (MPPS). The system can fill 230K pixels per frame at 30 Hz
framerate.

4.2 Hardware Cost in Comparison to Memory Based Tex-
ture Mapping

In memory based texture mapping, large amounts of memory arere-
quired to store three-dimensional texture images. In this study, 3-D
procedural texturesare synthesized with aresolution of 512 x 512 x
512. Eight bits are used to represent the color of each pixel. Since
textures are accessed randomly by rendering engines, their can not
be compressed by conventional compression techniques. Without
any form of compression, each of these three-dimensional images
requires 1 Ghit of storage memory. On the other hand, less than
one and half 10K50 FPGAsarerequired toimplement each texture.
This section compares these two approaches to procedura texture
mapping using silicon area as ayard stick.

Current state of the art technologies can package 256 Mbits of
DRAM onto a286mm? die areausing a0.25um process[17]. Us-
ing the same DRAM technol ogies, 1 Gbit of memory would require
1144mm? of die. Alteral0K 100 FPGAsarethelatest implementa-
tion of the 10K 50 architecture. Scaled to the same 0.25pm process,
eachlogic array block of the 10K 100 FPGAs consumes 132, 000um?
of glicon [3]. This area not only includes the area consumed by
the look-up tables, but also the associated routing resourcesfor each
logic array block. Since each logic array block contains eight look-
up tables, each look-up table consumes approxi mately 16, 000um?
of silicon. Besides logic array blocks, embedded memory blocks
are also used in texture synthesis. Each embedded memory block
contains 2048 memory bits; and one embedded memory block is
approximately the same size as one logic array block.

The amount of FPGA resource consumed by each procedural
texture is shown in column two and column three of Table 1. Two
types of resources are consumed, the | ook-up tables and the embed-
ded memory blocks. Thetotal silicon areas consumed by these pro-
grammablelogic resources are shown in column four. Thefifth col-
umn of Table 1 shows the programmable logic area as a percentage
of the area consumed by 1 Gbit of DRAM. For the texture algo-
rithms investigated, the programmable logic implementations use
3.9%1t0 5.0% of thearearequired by the texture memory storing un-
compressed texturesof the sameresolution. TheFPGAscanachieve
even higher areaefficiency for agorithmswith moreinput variables
and larger texture spaces.

4.3 Single-Chip Graphic Accelerator with On-Chip Sup-
port for Perlin Noise based Procedural Texture Map-

ping
The experimental data and the wide spread use of Perlin noise

(u,v,w) L
color | FPGA
| core
ASIC

o [TV Y
pipeline WW¢

ASIC

Perlin

noise

Figure15: ASIC+FPGA Procedural Texture M apping Organization

function also suggest the possibility of synthesizing procedural tex-
tures in a mixture of ASIC and FPGA hardware. The combined
ASIC+FPGA approach havethe potentia of synthesizing Perlin noise
based textures at higher speed and with smaller silicon area cost.
TheASIC+FPGA procedural texture generator might be small enough
to fit on asingle chip with the rest of the graphic accelerator. The
possible floor plan for such an single-chip design is shown in Fig-
ure 15.

The difference between this approach and the pure FPGA ap-
proachisthat the Perlin noisewoul d bedirectly implementedin ASIC
hardware, which has higher performance and higher logic density.
Someother commonly used procedural texture functions might also
be directly implemented in ASIC along with the Perlin noise. Only
theremaining functionsin procedural texture algorithmsarerequired
to be implemented in FPGAs. Table 2 shows the possible perfor-
mance figure for the ASIC+FPGA implementation for six textures
investigated. Table 3 shows the possible area consumption by the
Six textures. These data are measured by removing the Perlin noise
function from these six textures and measuring the speed and hard-
ware costs of the remaining FPGA circuits. It is assumed that the
ASIC implementation of the Perlin noise function is able to keep
up with the performance of the FPGA circuits.

5 Conclusions and Future Work

This paper has presented the architecture of a3-D computer graphic
rendering systemwhich synthesizes 3-D procedurd texturesin FPGA
hardware. The rendering system is implemented on the TM-2 dig-
ital prototype system. The prototype system executes at a speed of
12.5 MHz and can produce pixels at arate of 3.125 MPPS. On the
TM-2 system, only 3.9% to 5.0% of the silicon area that would be
consumed by the texture memory is consumed by FPGASs imple-
menting the procedural texture generator. The implementation also
shown that the procedural texture generator can achieve high per-
formance required by the animation applications.



Textures Max. Clock Freq. MPPS Frames Per Second
Mable  125MHz 125 476

Wood 74 MHz 74 282

Brick 47 MHz 47 179

Fog wiring delay Limited by ASIC Limited by ASIC
Cloud 43 MHz 43 164

Fire 50 MHz 50 190

Table 2: ASIC+FPGA Performance

Textures Look-Up Memory FPGA Area

Tables
Marble 147 0 bits 2.4mm?
Wood 736 0 bits 13mm?
Brick 178 0 bits 2.9mm?
Fog 29 0 bits 0.47mm?>
Cloud 335 0 bits 5.5mm?
Fire 481 4608 bits  8.2mm?

Table 3: Areacost of FPGA Hardware in ASIC+FPGA Approach

There are three main areas of future work. Firg, itisatime
consuming job to manually translate procedura texture agorithms
into hardware, especialy when fixed point representation is used.
CAD tools need to be devel oped to automate most of thistrand ation
process. Second, procedural texture a gorithms contain many arith-
metic computations. New programmable logic architectures can be
developed to target at arithmetic applications, so procedural texture
algorithms can beimplemented in smaller and faster programmable
hardware. Third, to make the concept of synthesizing procedural
texture in FPGA hardware practical, more procedural texture algo-
rithms need to be developed. More importantly these algorithms
need to be efficiently implemented in programmable logic.

6 Acknowledgment

We would like to thank Dave Galloway for laying the ground work
by designing a 2-D texture mapping system on the TM-2. We also
like to thank him for all the TM-2 software and hardware support
that he has provided.

Wewould also liketo thank Marcusvan lerssel for designingthe
VGA interface card and maintaining and constantly improving the
TM-2 hardware, Jonathan Rose for histechnical input, and Vaughn
Betz for providing area estimate on Altera 10K series FPGAs.

References

[1] ALTERA. Altera 10k FPGA Databook.

[2] BERTIN, P, RONCIN, D., AND VUILLEMIN, J. Introduction
to Programmabl e Active Memories. Tech. rep., Digital Equip-
ment Corporation, June 1989.

[3] BETZ, V. Architecture and CAD for Speed and Area Opti-
mization of FPGAs. PhD thesis, University of Toronto, 1998.

[4] BUELL, D. A., ARNOLD, J. M., AND WATER, J. Slash 2:
FPGAsin a custom computing machine. | EEE Computer So-
ciety Press, Los Alamos, CA, 1996.

[5] CHEREPACHA, D., AND LEWIS, D. DP-FPGA: An FPGA
Architecture Optimized for Datapaths. Tech. rep., University
of Toronto, 1994.

[6] EBERT, DAVID S.AND MUSGRAVE, F. K., PEACHEY, D.,
PERLIN, K., AND STEVEN, W. Texturing and Modeling: A
Procedural Approach. AP Professiona, Boston, 1994.

[7] FoLEY, J. D., HUGHES, J.,, VAN DAM, FEINER, AND
HuGHs. Computer Graphics. Principles and Practice, sec-
ond ed. Addison-Wesley, Reading, Mass, 1990.

[8] GALLOwAY, D. 2-D Texture Mapping on TM-2. Tech. rep.,
University of Toronto, 1996.

[9] GLEICK, J. Chaos. Making a New Science. Penguin Books,
New York, 1987.

[10] KATZ, R. H. Contemporary Logic Design. Addison-Wesley
Pub Co, 1990.

[11] Lewis, D. M., GALLOWAY, D. R., |ERSSEL, M. V., ROSE,
J., AND CHow, P. The Transmogrifier-2: A 1 Million Gate
Rapid Prototyping System. Transactions on VLS (1997).

[12] PeacHEY, D. Solid Texturing of Complex Surfaces. Com-
puter Graphics (S\ GGRAPH ' 85 Proceedings) (1985), 279—
286.

[13] PeRLIN, K. AnlImage Synthesizer. Computer Graphics(S G-
GRAPH ' 85 Proceedings) 19 (July 1985), 287-296.

[14] RAJAMANI, S., AND VISWANATH, P. V. Accelerating the
RISC processor using Programmable Logic. Tech. rep., Uni-
versity of Berkely, 1992.

[15] RAu, B. R. Pseudo-Randomly Interleaved Memory. ACM
(1991).

[16] RAzDAN, R. PRISC: Programmable Reduced Instruction Set
Computers. PhD thesis, Harvard University, May 1994.

[17] WATANABE, Y., WONG, H., KIRIHATA, T., KATO, D., DE-
Brosse, J. K., HARA, T., YOSHIDA, M., MUKAI, H.,
QUADER, K. N., NAGAI, T., POECHMUELLER, P., PFEF-
FERL, P., WORDEMAN, M. R., AND FuUJII, S. A 286mm?
256Mb DRAM with x 32 Both-Ends DQ. |EEE Journal of
Solid-Sate Circuits 31 (April 1996).



[18] WITTING, R. D. OneChip: an FPGA Processor with Recon-
figurable Logic. Master’ sthesis, University of Toronto, 1995.



	Main Page
	FPGA'99
	Front Matter
	Table of Contents
	Session Index
	Author Index


