
Con�guration Cloning: Exploiting Regularity

in Dynamic DSP Architectures

S.R. Park W. Burleson

Dept. of ECE, University of Massachusetts

Amherst, MA 01003

fsrpark, burlesong@ecs.umass.edu

Abstract

Existing FPGAs have fairly simple and ine�cient con�g-
uration mechanisms due to the relative infrequency of re-
con�guration. However a large class of dynamically con�g-
urable architectures for DSP and communications can ben-
e�t from special-purpose con�guration mechanisms which
allow signi�cant savings in con�guration speed, power and
memory. Light weight con�guration mechanisms allow much
�ner grained dynamic recon�guration techniques of DSP
and communications functions that tune algorithm and ar-
chitecture parameters incrementally to track data and envi-
ronment variations. These adaptive techniques exploit the
time-varying nature of many DSP applications and avoid
the power costs associated with worst-case design.

In this paper we develop a new FPGA con�guration
method called con�guration cloning from the analogy of
biological cloning. The main motivation behind con�gu-
ration cloning is to exploit spatial and temporal regular-
ity and locality in algorithms and architectures by copying
and operating on the con�guration bit-stream already res-
ident in an FPGA. This results in a speed and power im-
provement over o�-chip partial recon�guration techniques
but does require additional interconnects and control hard-
ware on the FPGA. But in contrast to multiple-context and
striped con�guration approaches, cloning requires only a
small amount of hardware overhead to greatly increase the
on-chip con�guration bandwidth. Details of the con�gura-
tion cloning mechanism are described. Two familiar DSP
applications, motion estimation and FIR �ltering, are ex-
plained to demonstrate order of magnitude reductions in
con�guration time and power compared to existing con�g-
uration techniques. Resource recycling is also presented as
a generic method of reclaiming freed up logic resources and
using them as local memory to greatly reduce I/O require-
ments.

1 INTRODUCTION

Recon�gurable and custom computing is an emerging re-
search area that has relied largely on the improving capacity

and performance of commercial-o�-the-shelf (COTS) Field
Programmable Gate Arrays(FPGAs). Commercially avail-
able FPGAs provide exibility and rapid prototyping to a
wide variety of users, but their general applicability comes
at the expense of relatively low logic density, low speed, high
power consumption and cumbersome con�guration. Dy-
namic recon�guration is one of the most attractive possibili-
ties of recon�gurable computing in which the FPGAs can be
recon�gured to support di�erent tasks in di�erent time slots
(time-multiplexing) or to adapt an algorithm/architecture
to changing input signals and environments. The con�gura-
tion mechanism is clearly one of the most important factors
in dynamic recon�guration since it determines the overhead
and hence granularity of con�guration. However the most
widely used methods in commercial FPGAs, both full con�g-
uration and partial con�guration do not exploit the inherent
regularity and locality in many DSP and communications
applications. And perhaps more importantly, the increas-
ing size of FPGAs leads to ever increasing time, power and
storage requirements for both initial and modi�ed con�gura-
tions. For example, one of the biggest FPGAs in the Xilinx
XC4000 series[3], the XC4085XL, takes almost 2 seconds to
con�gure the whole chip with a 2Mbit bit-stream. Several
novel con�guration methods have been developed[7][8][23]
to locally store the con�guration memory however they typ-
ically involve very large hardware overhead. If one thinks
of con�guration memory as the program memory for a con-
�gurable architecture, there are a plethora of more sophisti-
cated architectural techniques from advanced computer ar-
chitecture which can be employed to reduce con�guration
overhead. In this paper, we explore one of the most obvious
which is the implementation of dynamically bound iterative
constructs (loops in programs or regular arrays in architec-
tures).

To implement regular arrays and dynamically modify
the bounds of the arrays, we develop a new con�guration
method named con�guration cloning, which comes from the
timely analogy of biological cloning. A clone is an individual
grown from a single body cell of its parent and genetically
identical to the parent and cloning is the process of making
a clone. Cloning provides a relatively simple mechanism to
increase the length of various dimensions (e.g. word length,
search space, window size, �lter length, crypto key length,
pipeline depth and queue length,...). in an array architec-
ture to accommodate adaptive algorithms. Cloning is im-
plemented by copying the bit-stream from one region of an
FPGA to one or several other regions. In some cases this
only involves modifying the logic and not the interconnect
or vice-versa, hence we make a distinction between di�erent

types of con�guration bits. We stretch the biological anal-
ogy a bit by allowing some variations between the parent
and the clone to accommodate irregularity. We also develop
a dual technique to accommodate the dynamic decreasing of
various array parameters. This technique is called resource
recycling and allows resources to be disconnected from the
operational portion of the array architecture and potentially
used as a local memory to avoid o�-chip I/O. This tech-
nique results in signi�cant power savings by avoid unneces-
sary computation as well as reducing power-hungry o�-chip
I/O.

The rest of this paper is organized as follows. In sec-
tion 2, con�guration cloning and its implementation are ex-
plained in detail. In section 3, di�erent types of con�gura-
tion methods are explained and compared. Three example
applications are explained in section 4 to show the usefulness
of this method. A performance comparison is given in sec-
tion 5 and �nally conclusions and future work are described
in section 6.

2 CONFIGURATION CLONING

As mentioned earlier, con�guration cloning exploits regular-
ity and locality in algorithms and architectures in the initial
con�guration as well as later recon�gurations. The con�gu-
ration overhead here includes: the con�guration time, con-
�guration bit storage and power consumed in con�guration.
Cloning is best suited for array type applications with a host
processor to coordinate con�guration. The adaptation algo-
rithm runs on the host hence it makes sense for the host to
coordinate con�guration. Since many signal or image pro-
cessing algorithms can be implemented in array architec-
tures, this method can be applied to a broad range of appli-
cations. In array type applications, an array is composed of
processing elements(PEs) with interconnection wires among
them. By using the cloning method, the overhead of the ini-
tial loading of con�guration bit-stream can be signi�cantly
reduced. In some cases, which will be explained later, it
is desirable to adjust the size of array processor to support
di�erent hardware parameters or to adapt the system to
changing input signals. If the FPGA in use can not support
partial con�guration, the whole FPGA needs to be repro-
grammed. In this case, the recon�guration time and power
can be large enough to cancel out the wins of small recon�g-
urations. Partially recon�gurable FPGAs are a step towards
alleviating this problem.

Con�guration cloning is particularly well-suited for this
case. By copying the bit-stream already resident in an FPGA
to multiple locations and using the con�guration bit-stream
lines simultaneously, cloning method can do the job in less
time with less power consumption. In the XC6200 series,
loading con�guration bits to multiple destination is imple-
mented using wild card [2]. While the wild card in the
XC6200 series can be thought of as SCMD (Single Con�gu-
ration Multiple Destination), cloning extends this to MCMD
(Multiple Con�guration Multiple Destination). This method
is also scalable as FPGA becomes larger and larger. Fig.1
shows two recon�gurable architectures: a shared memory
co-processor and a VLIW with an FPGA execution unit.

Fig.2 shows the inside of a tiny FPGA to explain the
proposed con�guration method. We suppose that the FPGA
has an architecture similar to the Xilinx XC4000 series. The
CLBs can be used as RAM if not used for implementing
logic. A CLB in a cell consists of two 4-input look-up ta-
bles(LUTs). For simplicity, we assume that the FPGA does
not have long interconnect wires which can be found in the

 - motion estimation
 - crypto
 - Reed-Solomom decoding

Implements special-purpose
highly parallel operations

Shared Memory
Co-processor

VLIW with FPGA
Execution Unit

EX 2EX 1 EX FPGA

Instruction Unit

CPU

FPGA resource

Mem

RF RF RF

(a) (b)

Figure 1: Two Con�gurable Architectures

XC4000 series. The whole array in Fig.2 is composed of 8
by 8 cells. A cell is composed of a CLB and accompanying
interconnection wires. Cells are grouped into 2 by 2 to form
a subarray.

Horizontal
Configuration
bit-stream line

Vertical Configuration
 bit-stream line

ARRAY

SUBARRAY

CellCell

Cell Cell
Cell

CLB

IC
wires

PSB

Figure 2: Inside the FPGA

Each subarray shares vertical and horizontal con�gura-
tion bit lines which across the whole chip length to send
or receive the con�guration bit-stream data. The receiver
and sender address sent by the command interpreter set the
switches in Programmable Switch Box(PSB) in a subarray
with the help of control circuit. Each subarray has its own
address (e.g. C0R1 for Column 0 and Row 1) and each cell
in a subarray can be distinguished. Furthermore the con�g-
uration bits for CLB and for interconnect in a cell can be
distinguished. A host processor can load or copy con�gura-
tion bit-stream from one location to another by simple com-
mands. The commands are, essentially, binary data from a
host processor to a command interpreter in an FPGA. Here
we explain them with an assembly language like format for
the sake of simplicity. The commands look like:

load destination, configuration data

copy direction of movement,

(multiple)destination, (multiple)source

The load command loads the con�guration bit-stream in
a speci�c location. Fig.3 shows the details of the destination.
By using a wild card similar to that of the XC6200 series[2],
multiple destinations can be speci�ed.

Cell ID(2) CLB or IC(1) Wild Card(5)Subarray Address(2)

Figure 3: Details of destination in a command

In the copy command, the direction of movement spec-
i�es the direction of the con�guration bit-stream movement,
which is either vertical or horizontal, but not both. Multiple
destinations can be used to copy the bit-stream into several
subarrays. When multiple sources and multiple destinations
are speci�ed, the bit-stream in each source is copied to mul-
tiple destinations along the speci�ed direction.

The cloning procedure is explained in Fig.4. In this ex-
ample all the components of the array have the same func-
tion (hence the same structure) and the same interconnec-
tion. (This is not realistic since the components at the edges
of a array can have di�erent structure than that of the core.
This limited irregularity can be easily handled with more
commands.) The commands from a host processor are:

load C0R0, configuration bit-stream

copy horizontal, C1 C2 C3, C0R0

copy vertical, R0 R1 R2 R3, C0R0 C1R1 C2R0 C3R0

Fig.4(a), (b) and (c) show the con�guration states after
the execution of each command above. In the �rst com-
mand, C0R0 is the address of the lower left subarray. The
con�guration data from a host processor is loaded to C0R0.
In the second command, the con�guration bits in C0R0 are
copied to the subarrays in the same row. Notice that the
copy is done not one by one but simultaneously. In the third
command, a multiple copy is done in the vertical direction.

(b) (c)(a)

Figure 4: Example of con�guration cloning procedure
(a)initial loading of bit-stream (b)horizontal copy (c)vertical
copy

More details of the con�guration cloning operation are
explained in the following. There is a simple command in-
terpreter in the FPGA as shown in Fig.5. The command
interpreter decodes the command from a host processor and
broadcasts sender and receiver address to a proper con�g-
uration bit-stream line. To start con�guration, a host pro-
cessor writes the command into the command register in
the command interpreter in the FPGA. If the command is
load, the command interpreter selects the proper con�g-
uration line and sends destination address to indicate the
destination. After this, the con�guration bit-stream is sent
along the con�guration bit line. Only the activated des-
tination receives(updates) the con�guration bit-stream. In
the case of a copy command, the command interpreter indi-
cates(activates) the source(s) and destination(s). After this,
the source sends the con�guration bit-stream along the con-
�guration bit-stream lines and the destination(s) receives
the bit-stream.

Fig.6 shows the detail of a subarray to support con�gura-
tion cloning. All subarrays in a row(column) are connected
to the command interpreter via a con�guration bit-stream
line as shown in Fig.5(b). The command interpreter can
specify the source and destination subarray, cell or CLB/IC
by setting the switches in the PSB in subarrays. The set-
ting of the switches is done by the control circuit in a sub-
arrary(not shown in Fig.6). Fig.6 shows the con�guration-
related parts in a subarray. The con�guration memory in a
subarray is divided into 8 chunks of scan chains. The ba-
sic units of con�guration are con�guration for CLB and for
interconnect(IC). The programmable switch boxes and pro-
grammable switches between CLBs and ICs are set accord-
ing to the source and destination speci�ed by the command

Interpreter

Command

C.I

(a)

bit-stream lineConfiguration

SA 0 SA 1 SA 2 SA 3

CI : Command Interpreter

(b) SA : Subarray

Figure 5: Command Interpreter in a FPGA

from the host. After all source and destinations are set, the
con�guration bits move via the con�guration bit-stream line
by the con�guration clock. The number of clocks necessary
is set in the counter in the command interpreter, since it can
be known from the command from the host.

IC 0CLB 0 CLB 1 IC 1 IC 3CLB3CLB 2 IC2

Configuration bit-stream line

Tranceiver

Figure 6: Programmable Switches in a Subarray

3 DYNAMIC CONFIGURATION METHODS IN FPGAS

Con�guration in an FPGA is the process of loading design-
speci�c con�guration data into an FPGA to de�ne the func-
tion of logic blocks and their interconnection. A large class
of dynamic recon�guration applications simply multiplex
the same logic over a group of tasks (e.g. coarse-grained mul-
tiplexing in video coding[17], swapped crypto/compression
coprocessor for wireless LAN[14] �ne grained multiplexing
of hardware(Cache logic[6]). Although this class of appli-
cations is challenging, we are not addressing it in this pa-
per since 1) it can usually be done statically, and 2) we
feel that the ever increasing size of FPGAs will make it
an increasingly less necessary technique. Instead, we ex-
plore truly adaptive systems that can use dynamic con�g-
uration to track statistical variations in the computations.
These occur at a wide range of time scales(nanosecond, mi-
crosecond, millisecond, second) and can also occur within

or between tasks. For example an environmental param-
eter like temperature could be hard-wired on a very slow
(seconds) basis due to the slow rate of change even in an
unmanned aircraft radar[13]. A faster con�guration might
occur at frame-rate (milliseconds) due to the changing con-
tent in a video sequence[11]. Micro-second level recon�gu-
ration would be useful for a mobile radio network channel
due to changing channel characteristics and network tra�c
[25]. Finally, nano-second level recon�guration can be used
to rapidly change architectural features like register sizes
and pipeline depth to match variations in computational
properties.

In addition to these varying time-scales, we also de�ne
four di�erent types of dynamic con�guration which have
quite di�erent requirements:

� Algorithm level con�guration
Agile crypto[22], Environment-dependent radar[13]

� Algorithm/Parameters con�guration
Motion estimation[11], Modem equalizer parameters
[26]

� Architectural level con�guration
DISC[15]

� Hard-wiring
Automatic Target Recognition[12], Hard-wired �lters
[19], Hard-wired crypto keys[21]

In the following section, several di�erent types of con�g-
uration methods are explained briey and matched to the
list above.

� Full Con�guration
The �rst and most typical con�guration method for
FPGAs is full con�guration. The entire FPGA should
be programmed before the beginning of the opera-
tion. To a user, the con�guration process looks like
the loading of a long serial con�guration bit-stream to
the con�guration memory in an FPGA. The con�gura-
tion time is usually on the order of 10's of msec and is
growing linearly with the ever growing size of FPGAs.
Widening the serial path to 8, 16, 32 bits improves the
time, but does not improve power. Due its slow speed,
full con�guration is limited to very slow adaptations
on the order of milliseconds.

� Partial Con�guration
More recently developed FPGAs such as the XC6200
series from Xilinx [2], CLAy from National Semicon-
ductor [18], ORCA series from Lucent Technologies[4]
and AT6000 series from ATMEL[6] support partial con-
�guration. A part of the chip can be recon�gured while
another part is operating. The XC6200 series also has
more features than just partial con�guration, such as
to write the same con�guration data to several cells
and to interface a host processor directly[2]. Partial
con�guration can be applied e�ciently down to the
nanosecond level but pays a price in extra hardware.

� Multiple-context Con�guration
A DPGA has multiple-context con�guration bits and
a context switch can be achieved by broadcasting a
global context identi�er[8]. A context switch can be
done in a clock cycle, but at an extremely high H/W
cost.

� Dynamic Compilation
The work by Mangione-Smith mentioned in [20] uses
small units of precompiled FPGA con�guration bit-
streams to overcome the disadvantage of slow FPGA
place and route tools. Con�guration bit-streams are
combined very quickly at run time to constitute a full
con�guration bit-stream. This is more of a fast place
and route technique, but could also be used as part
of a partial recon�guration approach. It seems to tar-
get complex recon�gurations that require re-running
of CAD tools in real-time and thus is limited to the
milli-second level or above.

� Striped Con�guration
Proposed in [7], striped con�guration is a method of
partial con�guration that is well suited for pipelined
applications.

� Con�guration Cloning
In our proposed con�guration method, portions of the
con�guration bit-stream can be copied from one lo-
cation to another in time proportional to the size of
the partial bit-stream (depending on the length of the
partial bit-stream this could be nanoseconds up to
seconds). The main advantage of cloning is avoid-
ing the high cost of o�-chip communication through
straightforward compression and incremental genera-
tion of regular bit-streams. Multiple destinations can
be speci�ed to reduce the con�guration time in array
applications. Cloning was conceived for applications
which use dynamic con�guration to incrementally tune
algorithm/architecture parameters to track data vari-
ations (e.g. word length, search space, window size, �l-
ter length, crypto key length, pipeline depth and queue
length,...).

The pros and cons of the above con�guration methods
are shown in Table.1. The �rst two methods: full con�gu-
ration and partial con�guration are targeted to general pur-
pose applications. The last three methods are more appli-
cation speci�c. It is our belief that the best con�guration
method depends highly on the application area, but that if
the application area is large enough, new FPGA hardware
and software are warranted. Cloning presents another ap-
proach worth considering for a large class of applications
with regular structures that vary dynamically.

4 EXAMPLE APPLICATIONS

Three example applications of con�guration cloning are ex-
plained in this section. The �rst one is motion estimation for
video coding implemented in a two dimensional systolic ar-
ray. Cloning is a good match for this example due to its two
dimensional regularity and easily routed array structure. It
is also the example that motivated our interest in cloning to
avoid the time and power costs of very �ne-grained recon-
�guration. We then explore the FIR �lter and notice that
a canonical implementation that preserves tap regularity is
preferred for cloning over an e�cient distributed arithmetic
implementation. We then present a generic technique for
generating dynamically variable-sized local memories using
recycled resources and illustrate this in the motion estima-
tion example.

4.1 Motion Estimation

Motion estimation is the most computationally demanding
part of video coding and widely used in video coding stan-

con�g. method main features best suited drawbacks H/W support

full simple fast long scan
con�g. con�g. prototyping con�g. time chain
partial selective fast additional random
con�g. con�g. recon�g. H/W overhead access
multiple fast swapping time multiple
context of multiple multiplexable more copies of
con�g. context tasks application con�g. memory
striped pipeline stage pipelined speci�c wide on-chip
con�g. level con�g. tasks con�g. cache
con�g. incremental tuning array type H/W overhead extra routing
cloning of algo/archi applications and circuit

parameters per subarray

Table 1: Comparisons of Con�guration Methods

dards such as H.261, MPEG-1, MPEG-2 and even MPEG-
4. For estimating motion by means of a block matching
algorithm, the image is divided into blocks of n � n pixels.
Usually n is 16. The blocks resulting from the segmentation
of the current and previous frames are called the current
and previous block, respectively. For each current block,
the best matching previous block is found within a search
area surrounding the previous block(Fig.7(b)). The previous
blocks in a search area are called candidate blocks. Suppose
the search area extends on both sides over p pixels in the
horizontal and vertical directions, then the search area is
(2p + n)2, and the total number of the candidate blocks in
search area is (2p + 1)2. The picture size is M by N pixels.
Fig.7 shows a block and the block matching algorithm.

N

M

n

n
2p+n

2p+nCurrent frame

Previous frame

(a) (b)

search area

macroblock

Figure 7: (a) Block in a frame (b) Motion Estimation by
block matching

To compute the motion vector, the Mean Absolute Dif-
ference (MAD) criterion is widely used.

D(k; l) =
X

i

X

j

jx(i; j)� y(i+ k; j + l)j; (1)

where x(i; j) is the luminance value of a pixel in the
current block and y(i + k; j + l) is the luminance value of
a pixel in the candidate block. Vmin is called the motion
vector. The displacement calculated is limited to a search
area range such that �p � k; l � p.

The two dimensional systolic implementation is shown
in Fig.8 [10]. The `AD block' computes the absolute value
and summation and the `R block' is composed of a mux and
registers. The `+ block' accumulates the results and the `M
block' determines the Vmin.

The statistics of motion vectors vary considerably be-
tween and within video sequences. Fig.9 shows the distri-
butions of the horizontal component of the motion vector of
`Miss America' and `table tennis' video sequences. The �rst
100 frames were used for collecting the motion vectors. As
can be seen, the range and the shape of the distribution of

M block

D

MIN

y

+

mux

x
x’

|x-y|

AD block

(b)

y x

R block

AD block

+ block

M block

(a)

Figure 8: practical implementation[10] (a) details of AD
block and M block (b) architecture (n = 3; p = 2)

motion vectors di�er due to the di�erent types of motion in
the two sequences. In the `table tennis' sequence, even in
the same sequence, the shape of the motion vector distri-
bution varies due to the the changing characteristics of the
image.

If there is little motion in the picture, the search range
can be reduced without sacri�cing the picture quality. The
result is substantial power saving by avoiding unnecessary
computation.

Miss America

-16

0

16

pixel
1

50

99

frame
0

400

16

0

16

pixel

Table Tennis

-16

0

16

pixel
1

50

99

frame
0

400

16

0

16

pixel

Figure 9: Motion Vector Distribution over time in `Miss
America' and `table tennis' video sequences.

Fig.10 (b) is a simpli�ed representation of Fig.8 (b).
Fig.10 (c) is a recon�gured architecture to support a larger
search area than Fig.10(b). The cloning method can exploit
the regularity in this array architecture. To increase the
array size from Fig.10(b) to (c), two steps of the copy com-

AD Block

R Block

+ Block

M Block

p=2
n=3

(a)

p=2
n=3

(b)

p=4
n=3

(c)

Reference
Block

Search Window

Figure 10: (a) Kernel of the search algorithm[10] (b) sim-
pli�ed block diagram (n = 3; p = 2) (c) recon�gured ar-
chitecture to support a larger search area (n = 3; p = 4)

mand are su�cient. First, the uppermost row in Fig.10(b)
is copied to the desired location and then the next row is
multiple copied. Notice that the con�guration time does
not depend on the amount of recon�guration in this exam-
ple. Limited irregularity is also well handled. Moreover the
cloning method outperforms partial con�guration, since it
can exploit the wide con�guration bit lines simultaneously
and copy the con�guration bit-stream to multiple destina-
tions at the same time.

4.2 FIR Filter

Filtering is the most fundamental of DSP algorithms. Digi-
tal �lters can be implemented in many ways. Programmable
DSPs lie at one end of the spectrum and dedicated ASICs
the other end. FPGAs can also e�ciently implement digital
�lters and several recent e�orts have explored recon�gurable
implementations [9] [19]. A key idea in recon�gurable �lters
is the distinction between the con�guration of the �lter co-
e�cients (which has no regularity) versus the con�guration
of the �lter length and word lengths for both data and co-
e�cients (usually results in regular interconnections). This
idea also emerges in cryptography keys [21].

The Finite Impulse Response(FIR) �ltering can be ex-
pressed as follows.

y[i] =
X

k

x[k� i]c[k] (2)

where c[i] is �lter coe�cients and x[i] is input data.
Fig.11 shows a typical implementation of an FIR �lter.

As can be seen, the FIR �lter has a regular structure, hence
can be easily cloned. Di�erent numbers of taps for di�erent
input signal statistics can be accommodated easily.

DD D D
x[i]

y[i]

Figure 11: Typical Implementation of FIR Filter

Fig.12 shows the 16-tap FIR �lter implementation us-
ing LUT-based Serial Distributed Arithmetic[9], where the
Multiply and Accumulation(MAC) of input data and �lter
coe�cients is implemented by Look-up tables(LUTs). The
�ltering operation is done in a bit-serial way. Although this
implementation is more practical in LUT-based FPGAs, the

Accumulator
1-Bit Scaling

LUT

LUT

LUT

LUT

REG

REG

REG

REG

REG

REG

REG

REG

SUM

1/2

S-RAM

S-RAM

S-RAM

S-RAM

S-RAM

S-RAM

S-RAM

S-RAM

S-RAM

S-RAM

S-RAM

S-RAM

S-RAM

S-RAM

S-RAM

S-REG

Figure 12: 16-Tap FIR Filter using LUT-based Serial Dis-
tributed arithmetic[9]

structure is not regular at the tap-level, hence can not be
easily cloned. However cloning could be accommodated in
the coe�cient word length dimension by cloning an addi-
tional slice onto all datapaths and then loading new values
into the distributed arithmetic lookup tables.

4.3 Local Memory Structure with Resource Recycling

A very useful application of cloning occurs in the implemen-
tation of variable length bu�ers and queues. In many signal
processing algorithms, a signi�cant number of redundant o�-
chip memory accesses are required because data-structure
are simply too large to �t in on-chip memory. This prob-
lem is particularly acute in FPGAs where memory is fairly
expensive. Cloning can be used to e�ciently instantiate
arrays of special-purpose memories. In addition, the size
of those memories can then be adjusted with the cloning
mechanism. In some cases, a large fraction of the unused
resources on the FPGA can be recycled and used as mem-
ory. Memories like queues and FIFOs are fairly easy to
route and can be partitioned to �ll up much of the space
in an otherwise fractured oor plan. The data structures
in image and video signal processing algorithms and pre-
sumably many other applications are currently too large to
�t on FPGA chips. So rather than rely on generic cache
mechanisms which are rarely supported in commodity FP-
GAs, our techniques allow an explicit control of the mem-
ory structures which are quite predictable and structured
in signal processing. Most commercial FPGAs provide an
alternative use of the CLB con�guration memory as local
memory. This can be combined with the CLB registers to
build small distributed memories.

An example of this occurs in our recon�gurable motion
estimation system described in [11]. When the parameter of
an array architecture is reduced due to changes in the envi-
ronment and reduced computational demand, the freed-up
resources can be used as local memory to hold a piece of the
data-structure that is repeatedly used by the algorithm. In
the motion estimation case, a portion of the image will be
used again to search for matching blocks in a two dimen-
sional neighborhood of adjacent pixels(Fig.13).

2p

M

N

M

2p+n

2p+n

2p+n

2p

N

(b) (a)

Figure 13: Data structure reuse in sliding window-based
image processing (a) horizontal overlapped area (b) vertical
overlapped area

The local memory reduces the o�-chip I/O and hence
can signi�cantly reduce power consumption. Fig.14 shows
an example that freed up resources are used as local memory.
The following table shows the power savings due to reducing
the search space size in our motion estimation example both
with and without resource recycling for local memory.

search Pcomp PI=O PI=O with
area(p) recycled local memory

16 1.00 1.00 1.00
14 0.77 0.86 0.81
12 0.57 0.73 0.63
10 0.40 0.61 0.46

Table 2: Power Saving with recycled local memory

Each term was normalized to 1 when p = 16. The pic-
ture size is 720� 576(CCIR 601 format) and n = 16. When
estimating the PI=O with local memory, we assumed that
we build local memory only by returning resources from re-
ducing the search area. Returning resources are used for lo-
cal memory for horizontal overlapped area(Fig.13(a)). How
much local memory can be built from returning resources de-
pends on the FPGAs being used. Our estimates are based
on on the Xilinx XC6264.

By reducing p from 16 to 10, Pcomp was reduced by 60 %
and PI=O with local memory by 54 %. The e�ect of utilizing
unused or returning resources as local memory is larger than
one may expect due to the very high cost of o�-chip I/O.
When reducing p from 16 to 14, PI=O reduced by 14 % but
with local memory total 19 % of reduction in PI=O can be
obtained.

Reduced memory accesses can also have other bene�ts
(e.g. reduced conicts on an external shared bus, reduced
use and pollution of an external shared cache, etc.).

Power savings through resource recycling provides an an-
swer to the bothersome question of what to do with un-
used resources once you have down-sized your computational
structures. Occasionally it will be possible to �nd algorithms
in which one dimension decreases while another increases
(for example number of �lter taps and word length) resulting
in a �xed overall amount of hardware. However we feel that
this is a rare case and resource recycling for local memories
provides a much more generic technique. Although we don't
illustrate further examples, we expect resource recycling is
a fairly generic technique in recon�gurable DSP and other
algorithms which can exploit dynamically variable memory
sizes. This would include queues, bu�ers, dictionaries and
other large data structures. It is an architectural low-power
technique that requires some hardware support but proba-
bly not more than that required for sub-system power-down
or dynamic supply voltage scaling [24].

Full Search

Block Matching
Full Search

Block Matching

pixel data

 memory

p=12 = pmax

External Memory External Memory

FPGA FPGA

p=6

(b)(a)

Figure 14: Resource Recycling in Motion Estimation

5 PERFORMANCE COMPARISON

The amount of impact of recon�guration to overall system
performance depends on applications. For example, when
FPGAs are used for fast prototyping and are con�gured only
once at the beginning of the operation, slow full con�gura-
tion may not be a problem. For real-time recon�gurable
DSP, slow recon�guration can result in most operation time
being wasted for recon�gurations[19].

First we look at the con�guration time. As we mentioned
earlier, the best con�guration method depends strongly on
the application. Therefore we do not try to compare con-
�guration cloning to all con�guration methods in section 3.
Instead we compare our method to full con�guration and
partial con�guration. To make the comparison fair, we sup-
pose the following. Basic architectures of three FPGAs: full
con�guration, partial con�guration and con�guration clone
are the same and only the con�guration methods, hence the
additional hardware to support them, are di�erent. All three
methods have the same con�guration clock speed, although
con�guration cloning can have a higher clock rate since it
does not rely on o�-chip I/O. By partial con�guration, we
mean the ability to con�gure a part of an FPGA indepen-
dently of other parts. Furthermore we suppose that all con-
�gurations in the three methods are done in a bit-serial way.
For some commercial FPGAs such as the XC6200 series have
more features than a simple meaning of partial recon�gura-
tion (e.g. wild card register, FastMap register, direct inter-
face to microprocessor etc). We do not consider them in the
comparison for two reasons. One is these features are more
like other aspects of con�guration than a simple meaning of
partial con�guration. The other is to support these features,
cost, silicon area, should be paid.

We use the motion estimation example in section 4 for
the comparisons. Since the con�guration time is propor-
tional to the number of con�guration bits, we count the
number of con�guration bits to measure the con�guration
time. we consider the following situation in motion estima-
tion. We want to increase the search space to accommodate
a large motion in a picture, which can occur after a scene
change. The search space will be adjusted from p = 4 to
p = 8, and n is �xed to 16 as in most video compression
standards. From the Fig.10 (b) and (c), we know that 8
rows of `R block' are to be added.

For each con�guration method, the con�guration time is:

� Full Con�guration

the total number of cells � con�guration time for one
cell

� Partial Con�guration
the number of cells to be recon�gured � con�guration
time for one cell

� Con�guration Cloning
the steps needed in recon�guration � con�guration
time for each step

We assume that 44 by 44 array of cells is necessary to
implement 1 bit RBMAD[16] motion estimation, and that
the `R block' in Fig.10(b) takes up 1 cell. The numbers of
cells to be recon�gured and the number of steps needed in
each con�guration method are:

full con�guration : 44 * 44 = 1936 cells
partial con�guration : 16 * 2 * 4 = 128 cells
con�guration cloning : 1 + 1 = 2 steps

Since the time for one step in con�guration cloning is
almost the same as for recon�guring one cell, we can ob-
serve that signi�cant reduction in recon�guration time can
be achieved by reusing the con�guration bit-stream.

An additional advantage of the cloning method is for
saving power during the con�guration. This occurs in at
least four ways:

1. Cloning can reduce power-hungry o�-chip I/O by re-
using the con�guration bits already resident on the
FPGA.

2. Even if the bit-stream comes from o�-chip, cloning al-
lows a more compressed bit-stream due to its exploita-
tion of regularity.

3. By avoiding using a single large con�guration bus,
switching capacitance is reduced,

4. Cloning also wins over the traditional method of using
a small number of serial bit-streams for con�guration,
due to reduced switching capacitance and improved
signal correlations that can result in fewer node tran-
sitions,

The con�guration time and power of the motion estima-
tion example are summarized in the following Table. For
con�guration power comparison, we assume that the power
is proportional to the number of cells to be recon�gured
and the capacitance of o�-chip I/O and a con�guration bit-
stream line are 50pF and 1pF, respectively. Note that this
uses a simple model of dynamic CMOS power dissipation
and does not model transition probabilities or static power.

time power

full con�guration 1936 1936
partial con�guration 128 128
con�guration cloning 2 0.44

Table 3: Comparisons of Con�guration Time and Power

6 CONCLUSIONS AND FURTHER WORK

A new con�guration method called con�guration cloningwas
proposed and the details were explained. Unlike many com-
mercial FPGAs, con�guration cloning can reuse the con�g-
uration bit-stream already loaded in an FPGA. This can
greatly reduce the con�guration overhead in initial loading
of con�guration bit-stream and later �ne tuning of algo-
rithm/architecture to adapt the system to input data. More
than an order of magnitude of con�guration time win over
full con�guration can be obtained in some applications at
some cost of silicon area. Two common examples in im-
age and signal processing areas, motion estimation and FIR
�ltering, are explained. Cloning works well for motion esti-
mation due to its preservation of regularity while it is not a
good match for the FIR �lter due to the shared distributed
arithmetic look-up tables across multiple �lter taps. In addi-
tion, the capability of recycling unused resources into mem-
ory with the help of cloning can help increase on-chip mem-
ory thus avoiding power hungry o�-chip I/O. A prototype
cloning FPGA is currently being designed in .25 � CMOS
to verify the area, speed and power overhead of the special-
purpose cloning hardware.

Further work in this area includes:

1. CAD tools are needed to support cloning. Exploit-
ing and preserving regularity is not a priority in cur-
rent FPGA place-and-route tools, therefore new ap-
proaches are needed. We do not expect that clonable
designs will be automatically identi�ed from a high-
level description of automatically generated. We ex-
pect that some hand-design will be needed to develop
clonable macros but that these could then be com-
posed with automated methods. Despite numerous ef-
forts, automated methods for identifying and exploit-
ing regularity in general-purpose computation remain
an elusive goal. Techniques also need to be developed
which allow clonable portions of the circuits to exist
with more irregular non-clonable circuitry.

2. FPGA architectures need to be developed which e�-
ciently implement clonable macros as well as enabling
the actual cloning mechanism. This involves support-
ing regular structures.

3. A run-time operating system needs to orchestrate clon-
ing by providing some external bit-streams as well as
controlling the copying and manipulation of bit-streams
on chip. It would also coordinate resource recycling
drawing on techniques from garbage collection.

4. Techniques for supporting minor irregularities would
also be useful. For example, if the only thing that var-
ied across the slices of a particular array was the reset
polarity of a single register, it should be fairly easy to
modify this in the con�guration without requiring a
full bit-stream.

5. Con�guration cloning shares some ideas with the dy-
namic compilation suggested by Mangione-Smith [20]
except that we combine bit-streams at a much later
stage of the con�guration process (ie on-chip). There
are obvious limitations to cloning if the compiled bit-
streams are highly optimized and hence di�cult to
combine. But if regular computations can map to reg-
ular bit-streams rather than highly optimized and at
bit-streams, it should be possible to merge and modify
bit-streams on-chip.

6. More applications need to be explored to see if this
technique has general applicability. We realize that we
have tuned it highly to our Motion Estimation example
from which it emerged. However we have strived to
keep the techniques generic.

7. More work is needed on resource recycling. This tech-
nique could be quite powerful and draw on the large
literature in distributed memory.

8. Regular routing resources can be used to route the con-
�guration bit-stream. This obviously requires care to
avoid recon�guring the con�guration mechanism cir-
cuitry during a con�guration.

9. Quantitative comparison of con�guration time and po-
wer for FIR �lters and other applications with pro-
grammable coe�cients is needed.

References

[1] B.L. Hutchings and M.J. Wirthlin, \Implementation
Approaches for Recon�gurable Logic Application",
FPL`95, pp.419-428,Oxford,1995.

[2] Xilinx, XC6200 Field Programmable Gate Arrays Data
Sheet, Ver. 1.8, 1996.

[3] Xilinx, XC4000E and XC4000X series Field Pro-
grammable Gate Arrays Data Sheet, Ver. 1.4, Nov.
1997.

[4] Lucent Technologies, ORCA OR2CxxA and OR2TxxA
Series Field-Programmable Gate Array Data Sheet,
Jan. 1998.

[6] ATMEL, AT6000/LV Series Data Sheet.

[7] H. Schmit, \Incremental Recon�guration for Pipelined
Applications", Proceeding of IEEE workshop on FP-
GAs for Custom Computing Machines, 1997.

[8] A. DeHon, \DPGA Utilization and Application",
FPGA`96.

[9] G.R.Goslin, \A Guide to Using Field Programmable
Gate Arrays(FPGAs) for Application-Speci�c Digital
Signal Processing Performance", Proceedings of High-
Speed computing, Digital Signal Processing and Filter-
ing Using recon�gurable Logic, 1996, SPIE Vol.2914,
pp.321-331.

[10] P. Pirsch, N. Demassieux, and W. Gehrke, \VLSI Ar-
chitectures for Video Compression -A Survey," Proc. of
IEEE, vol.83, pp.220-246, Feb, 1995.

[11] S.R. Park and W. Burleson, \Recon�guration for Power
Saving in Real-Time Motion Estimation", ICASSP,
1997.

[12] J. Villasenor, B. Schoner, et al, \Con�gurable comput-
ing solutions for automatic target recognition", Pro-
ceeding of IEEE workshop on FPGAs for Custom com-
puting machines, pp.70-79,1996.

[13] M. Petronino, R. Bambha, J. Carswell, and W.
Burleson, \An FPGA-based Data Acquisition systems
for 95GHz W-band Radar", ICASSP, 1997.

[14] A. Brahmbhatt, and W. Burleson, \FPGA-based Co-
processors for Wireless Data Communications", Mas-
sachusetts Telecommunications Conference, 1997.

[15] M.J. Wirthlin, and B.L. Hutchings, \DISC: The dy-
namic instruction set computer", Field Programmable
GateArrays (FPGAs) for Fast Board Development and
Recon�gurable Computing, Proc. SPIE 2607, pp. 92-
103, 1995.

[16] Y. Baek, H.-S. Oh, and H.-K. Lee, \An e�cient block-
matching criterion for motion estimation and its VLSI
implementation", IEEE Trans. Consum. Elec. Vol.42,
pp.885-892, Nov. 1996.

[17] B. Schoner, C. Jones, and J. Villasenor, \Issues in Wire-
less Video Coding using Run-time recon�gurable FP-
GAs", Proceedings of the IEEE Symposium on FPGAs
for Custom Computing Machines, 1995.

[18] National Semiconductor, \Con�gurable Logic Ar-
ray(CLAy) Data Sheet, 1993.

[19] M.J. Wirthlin and B.L. Hutchings, \Improving Func-
tional Density Through Run-Time Constant Propaga-
tion", FPGA`97, 1997.

[20] J. Villasenor and B.L. Hutchings, \The Flexibility
of Con�gurable Computing", IEEE Signal Processing
Magazine, pp.67-84, Sep. 1998.

[21] J. Leonard and W.H. Mangione-Smith, \A Case Study
of Partially Evaluated Hardware Circuit: Key-Speci�c
DES", International Workshop on Field Programmable
Logic and Applications, 1997.

[22] personal communication with C. Paar,
http://ee.wpi.edu/People/faculty/cxp.html

[23] http://www.cs.berkeley.edu/projects/brass/

[24] J. Rabaey, \Digital Integrated Circuits", Prentice Hall,
1996.

[25] D. Goeckel, \Strongly Robust Adaptive Signaling for
Time-Varying Channels," Proceeding of the 1998 Inter-
national Conference on Communications, pp. 454-458,
June 1998.

[26] M. Goel, N. Shanbhag, \Low-Power Equalizers for
51.84 MB/s Very High-Speed Digital Subscriber Loop
(VDSL) Modems, IEEE Workshop on Signal Process-
ing Systems, 1998.

	Main Page
	FPGA'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

