
Abstract

In this paper, we investigate the speed and area-efficiency of
FPGAs employing “logic clusters” containing multiple LUTs and
registers as their logic block. We introduce a new, timing-driven
tool (T-VPack) to “pack” LUTs and registers into these logic
clusters, and we show that this algorithm is superior to an existing
packing algorithm. Then, using a realistic routing architecture and
sophisticated delay and area models, we empirically evaluate
FPGAs composed of clusters ranging in size from one to twenty
LUTs, and show that clusters of size seven through ten provide the
best area-delay trade-off. Compared to circuits implemented in an
FPGA composed of size one clusters, circuits implemented in an
FPGA with size seven clusters have 30% less delay (a 43% increase
in speed) and require 8% less area, and circuits implemented in an
FPGA with size ten clusters have 34% less delay (a 52% increase in
speed), and require no additional area.

1.  Introduction
Much of the speed and area-efficiency of an FPGA is determined by
the logic block it employs. If a very small, or fine-grained, logic
block is used, many connections must be routed between the
numerous logic blocks [Rose93]. Since routing consumes most of
the area and accounts for most of the delay in FPGAs, a small logic
block often results in poor area-efficiency and speed due to the
excessive routing required to connect all the logic blocks. If, on the
other hand, a very large, or coarse-grained, logic block is employed,
the logic block area and delay may become excessive, again result-
ing in poor area-efficiency and speed [Rose93]. Choosing the best
size, or granularity, for an FPGA logic block therefore involves bal-
ancing complex trade-offs.

In this work we determine the best size for “cluster-based” logic
blocks, which we refer to as “logic clusters”. This style of logic
block is of interest for several reasons. First, the Altera Flex series
FPGAs [Alte98], the Xilinx 5200 and Virtex FPGAs [Xili97,
Xili98], and the Vantis VF1 FPGAs [Vant98] all employ cluster-
based logic blocks, so research concerning the best size of logic
clusters is of clear commercial interest. Second, prior research
[Betz98a] has shown that the area-efficiency of large logic clusters

is quite competitive with that of FPGAs using single look-up table
(LUT) logic blocks. Third, an FPGA composed of large logic clus-
ters requires fewer logic blocks to implement a circuit than an
FPGA using a more fine-grained block. This reduces the size of the
placement and routing problem, and hence design compile time —
an increasingly important concern as the logic capacity of FPGAs
rises. Finally, we show in this paper that cluster-based logic blocks
can improve FPGA speed compared to single-LUT logic blocks by
reducing the number of connections on the critical path that must be
routed between logic blocks.

Prior research [Betz98a] has focused only on the area-efficiency of
different sizes of logic clusters. In this work, we simultaneously
examine both the area-efficiency and the speed of FPGAs using dif-
ferent logic cluster sizes. Since both speed and density are crucial in
modern FPGAs, only by examining both issues can we determine
the best logic cluster size. As well, we use a more complex and
realistic routing architecture than [Betz98a] in our investigations,
leading to more accurate architectural conclusions. Finally, we
present a new, timing-driven algorithm (T-VPack) to “pack” cir-
cuitry into logic clusters. Relative to prior work [Betz97a], this new
algorithm not only improves circuit speed, but also reduces the total
amount of routing required between logic blocks, resulting in
improved area-efficiency.

This paper is organized as follows. Section 2 introduces the struc-
ture of cluster-based logic blocks. In Section 3 we outline the
experimental methodology used to evaluate the utility of different
cluster sizes. Then, in Section 4 we explain why the area-delay
product is useful for evaluating the quality of each architecture.
Next, Section 5 describes the FPGA architecture and timing models
used in our experiments. Section 6 describes a new timing-driven
logic block packing algorithm (T-VPack) and explains the enhance-
ments it contains relative to an earlier CAD tool, VPack. In
Section 7 we present experimental results comparing VPack and T-
VPack, and the effect of various cluster sizes on FPGA area and
delay. Section 8 discusses potential sources of inaccuracies. Finally,
in Section 9 we present our conclusions.

2.  Cluster-Based Logic Blocks
Cluster-based logic blocks, orlogic clusters are a generalized ver-
sion of the Logic Array Blocks used in Altera’s FLEX 8K and
FLEX 10K parts [Alte98]. Figure 1-a shows the structure of abasic
logic element or BLE [Betz98a] which consists of a 4-LUT plus a
flip-flop. A logic cluster consists of one or more BLEs, plus the
local routing required to connect them together. Figure 1-b shows
how the BLEs are connected. For clusters of size greater than one,
the architecture used is fully connected: each BLE input can be
connected to any of the cluster inputs or to the output of any of the
BLEs within the cluster. Clusters of size one (i.e. a cluster contain-
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ing a single BLE) do not contain local routing, and hence have nei-
ther multiplexors on the BLE inputs nor local feedback paths.

Following the convention of [Betz97a], we use two parameters to
describe a logic cluster,N andI, whereN is the number of BLEs
per cluster andI is the number of inputs per cluster. In [Betz97a] it
is shown that setting  is sufficient for complete logic
utilization, so we use this relation for all of our experiments.

3.  Experimental Methodology
We use an empirical method to explore different FPGA architec-
tures. This involves technology-mapping, packing, placing, and
routing benchmark circuits1 into realistic architectures with clus-
ters of size 1 through 20. We then estimate the area required by
each architecture to implement each benchmark circuit, and mea-
sure the speed of each implementation. At this point we have
enough information to judge the quality of each architecture.

3.1 CAD Flow
Figure 2 illustrates the CAD flow for our experiments. Each circuit
we use is logic-optimized by SIS [Sent92] and then technology-
mapped into 4-LUTs by FlowMap [Cong94]. VPack [Betz98b,
Betz97b, Betz99] or T-VPack is then used to group the LUTs and
registers into logic clusters of the desired size. Finally, we use VPR
[Betz98b, Betz97b, Betz99] to place and route each circuit. VPR’s
timing-driven router extracts the elmore delay [Elmo48] of each
routed net, and performs a path-based timing analysis to determine
the delay of the circuit critical path. Finally, VPR uses a transistor-
based area model [Betz98b, Betz99] to estimate the total layout
area required by this FPGA.

1 Our benchmarks consist of 20 of the largest MCNC circuits [Yang91] and
5 University of Toronto benchmark circuits [Leve98, Ye98, Gall98,
Padi98, Hame98]. The circuits range in size from 1047 to 8383 4-LUTs.
The MCNC circuits used are: alu4, apex2, apex4, bigkey, clma, des, dif-
feq, dsip, elliptic, ex1010, ex5p, frisc, misex3, pdc, s298, s38417,
s38584.1, seq, spla, and tseng. The University of Toronto circuits used
are: des_fm, des_sis, marb, grayscale, and wood.

In FPGA architecture and CAD research, it is convenient to have
tools which can vary the FPGA dimensions (number of columns
and rows) and channel width (number of tracks in each channel).
VPR allows this, and it also allows us to find the minimum channel
width required to successfully route a circuit. By allowing the
channel width to vary, and searching for the minimum routable
width, we can detect small improvements in FPGA architectures or
CAD algorithms that might otherwise go unnoticed. Compare this
to mapping a circuit into a fixed size FPGA — this would only tell
us if it fit or not. It is more difficult to draw architectural conclu-
sions from such a “binary” result.

VPR is capable of performing bothhigh-stress andlow-stress rout-
ings [Swar98]. A high-stress routing occurs when VPR routes a
given circuit into an FPGA with the minimum channel width
required for a successful routing. To accomplish this, VPR repeat-
edly routes each circuit with different channel widths, scaling the
architecture accordingly until it finds the minimum number of
tracks in which the circuit will route. A low-stress routing occurs
when an FPGA has significantly more routing resources than the
minimum required to route a given circuit. In our experiments we
define a low-stress routing to occur when there are 30% more
tracks per channel than the minimum required.

We feel that low-stress routings are indicative of how an FPGA
would generally be used (it is rare that a user will utilize 100% of
the routing and logic resources), so all of the results that we
present are based on low-stress routings. Additionally, the low-
stress and high-stress results are very similar, and both cases result
in the same conclusions.

4.  Architecture Evaluation — Area-Delay Product
One metric that we will use to evaluate the quality of different
architectures is the area-delay product. We feel that there are two
reasons that this metric makes sense:

1. Intuitively, we want to find the point at which we are
sacrificing the least amount of area for the most
improvement in speed. Given that we can always trade
area for speed (see below), and speed for area, it makes
sense to combine these two factors into one curve to see
where the best trade-off occurs.
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2. Much of the performance gain from using an FPGA is
derived from parallelizing functional units, rather than
raw clock speed. In this case,throughput = number of
functional units⋅ clock rate. Another way of looking at
this is, throughput = (1/area per functional unit)⋅ (1/
delay). Therefore if we minimize the area-delay product,
we will maximize throughput.

There are two main factors which can affect the area-delay product
of an FPGA: transistor sizing, and the FPGA architecture. In gen-
eral, the speed of an FPGA can be increased (to a point) by sizing
up the buffers and transistors within the FPGA, but this increases
area. Alternatively, the FPGA can be made smaller by sizing down
the buffers and transistors, but this degrades the FPGA perfor-
mance.

Throughout this paper, we will size the transistors in each FPGA
architecture to minimize the FPGA’s area-delay product. Only by
resizing transistors appropriately for each architecture in this way
can we fairly compute the speed and area-efficiency of FPGAs
with different logic block architectures.

5.  Architecture Modeling
To evaluate the speed and area of an FPGA we must choose not
only the logic block architecture, but also a routing architecture
and transistor sizes. The following sections detail all of our archi-
tectural choices, which are provided to VPR in an architecture
description file [Betz98b, Betz99].

5.1 Basic Architecture
We investigate island-style FPGAs in which each logic block bor-
ders a routing channel on its four sides. Each circuit is mapped to
the smallest square FPGA with enough logic blocks and pads to
accommodate it. The FPGAs of Xilinx [Xili94], Lucent Technolo-
gies [Luce98], and Vantis [Vant98] employ an island-style archi-
tecture.

Delays, capacitances, and resistances of the FPGA circuitry are
obtained from SPICE [Meta92] simulations of TSMC’s 0.35µm
CMOS process.

5.2 Routing Architecture
We define the number of logic blocks which a routing segment
spans as thelogical length of that segment. [Betz98b, Betz99]
found that an architecture in which routing segments have a logical

length of four, with 50% of the segments connected by tri-state
buffers and 50% connected by pass-transistors, provides good
area-efficiency and speed for FPGAs containing logic clusters of
size four. An example of this routing architecture is shown in
Figure 3. We implicitly assume that this routing architecture is
good for architectures containing logic clusters of all sizes, and we
use this routing architecture in all of our experiments. Ideally, one
would like to find the best routing architecture for each FPGA
employing a different cluster size, but this would require a huge
amount of effort. By basing all of our experiments on this routing
architecture, we may slightly favor architectures with size four
clusters over other architectures.

5.3 Effect of Varying Cluster Size on FPGA Routing
Segment Length

As we increase the cluster size, both the logic area per cluster and
routing area per cluster grow. The logic cluster and its associated
routing is called a tile. Figure 4 demonstrates how a tile grows as
cluster size is increased. This increased tile size results in routing
segments with the same logical length having physically different
lengths for logic clusters of different sizes.

We define the measured length of a routing segment as itsphysical
length. There is a linear relation between the physical length of a
routing segment, and the resistance and capacitance of that seg-
ment. We have experimentally determined the average rate at
which the FPGA tiles grow with cluster size, and have used this
knowledge to appropriately scale the routing segment resistance
and capacitance values for the various cluster sizes.

5.4 Scaling Transistor and Buffers to Compensate for
Increased Segment Physical Length

To compensate for differences in the capacitance and resistance of
different length routing segments, we scale the routing pass-tran-
sistors and buffers. All of our transistor and buffer scaling is in
relation to a base architecture that has been area-delay optimized
for clusters of size four [Betz98b, Betz99]. From this base archi-
tecture, we linearly scale our buffers and pass transistors depend-
ing on the relation between the new segment lengths and the base
segment length. For example, in an FPGA with size 16 clusters, the
physical segment length is approximately 2x longer than in an
architecture with size 4 clusters. To maintain roughly the same
routing speed, we increase the size of the routing switches con-
necting to each wire by a factor of 2. In Section 7.2 we verify that
this linear scaling of buffers and pass-transistors with segment
length provides the best results.

In our architecture models, we account for variations in delay
caused by resizing buffers and pass-transistors. Also, changes in
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area due to the use of different sizes of routing pass-transistors and
inverter chains are automatically calculated by VPR.

5.5 Varying F c, in and Fc, out with Logic Cluster Size

In [Rose91] it is shown that  is good for logic clusters of
size one; i.e. each logic block pin can be connected to any routing
track in an adjacent channel. As cluster size increases, setting

 provides more flexibility than is required, wasting area.
In [Betz98b, Betz99] it is shown that settingFc on the input pins
(Fc, in) to  andFc on the output pins (Fc, out) to
provides a good level of routing flexibility, so all of our experi-
ments use these values for clusters of sizes other than one.

5.6 Detailed Logic Cluster Structure .
In Figure 5 we show the structure of a logic cluster and the cir-
cuitry connecting the logic clusters to the main FPGA routing.
Table 1 shows delay values for selected cluster sizes. The multi-
plexor, buffer, LUT, and flip-flop delays were obtained by model-
ing the structures in SPICE [Meta92] with TSMC’s 0.35µm
process parameters.

6.  Packing Algorithms
The packing step (in Figure 2) takes a netlist consisting of LUTs
and flip-flops and produces a netlist consisting of logic clusters.
This involves combining the LUTs and flip-flops into BLEs, and
then grouping the BLEs into logic clusters.

There are two main constraints that packing algorithms must meet:

1. The number of BLEs must be less than the cluster size,
N.

2. The number of distinct inputs generated outside the
cluster and used as inputs to BLEs within the cluster
must be less than or equal to the number of cluster
inputs,I.

In this section, we present two packing algorithms, VPack
[Betz97b, Betz98b, Betz99], and T-VPack. Then we show that our
new T-VPack algorithm outperforms the original VPack algorithm
in both area and critical path delay.

6.1 Input-Sharing VPack Algorithm
The original VPack algorithm has two optimization goals. The first
is to pack each logic cluster to its capacity in order to minimize the
number of clusters needed. The second goal is to minimize the
number of inputs to each cluster in order to reduce the number of
connections required between clusters.

Vpack uses a greedy algorithm to construct each cluster sequen-
tially. At the start of each cluster operation, Vpack selects as a
“seed” an unclustered BLE with the most used inputs, and then
places this “seed” into a clusterC. Then VPack selects a new BLE,
B to pack intoC based on theattraction thatB has toC. Attraction
is determined by the number of inputs and outputs thatB andC
have in common:

(1.1)

After each cluster reaches capacity, packing begins on a new clus-
ter. The process terminates when there are no more unclustered
BLEs left. The time complexity of this algorithm is O(kmax⋅n)
(where n is the number of BLEs in the circuit and kmax is the
fanout of the highest fanout net) which results in an execution time
of about four seconds to pack the largest circuit (clma) on a 296
MHz UltraSPARC-II processor.

6.2 Timing-Driven T-VPack Algorithm
Our new packing algorithm is based on the original VPack algo-
rithm, but its optimization goal is minimizing the number of exter-
nal connections (connections between clusters) on the critical path.
The reasoning behind this is that external connections have higher
delay than internal connections (connections within a cluster), so
by reducing the number of external nets on the critical path, we
will reduce the circuit delay. The first stage of this algorithm
involves computing which connections are on the critical path. We
then sequentially pack BLEs along the critical path into logic clus-
ters and recompute which BLEs are critical.

6.2.1  An Overview of Slack and Criticality Calculation

The first step in determining which nets are critical is to determine
theslack of each connection [Hitc83, Fran92]. Slack is defined as
the amount of delay which can be added to a connection without
increasing the delay of the entire circuit.

Calculating slack involves computing the arrival time,Tarrival and
the required arrival time,Trequired at all BLE input pins. This is
accomplished using two breadth-first traversals of the circuit; the
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first traversal propagatesTarrival forward from input pins and regis-
ter outputs (Sources), and the second propagatesTrequired back
from output pins and register inputs (Sinks). The slack of a connec-
tion driving a BLE input pin,i, is defined as:

(1.2)

Finally, we define the criticality of the connection driving inputi
as:

(1.3)

whereMaxSlack is the largest slack amongst all point-to-point con-
nections in the entire circuit.

6.2.2  Delay Estimates of an Unplaced and Unrouted Circuit

To obtain a good packing solution1 the T-VPack algorithm models
three types of delay: The delay through a BLE, orlogic_delay,the
connection delay between blocks within the same cluster or
intra_cluster_connection_delay, and the connection delay between
blocks that are in different clusters, or
inter_cluster_connection_delay. We experimentally determined
that settinglogic_delay=0.1, intra_cluster_connection_delay=0.1,
and inter_cluster_connection_delay=1.0 results in the clustered
circuits having the smallest delay after placement and routing by
VPR2.

6.2.3  The Attraction Function

We extend the attraction function from the original VPack algo-
rithm to include timing information. The first BLE that is placed
into a cluster is the unclustered BLE that is driven by the most crit-
ical connection in the circuit. Then, based on our attraction func-
tion (Equation 1.8, below) we add the most attractive BLEs to the
cluster. We repeat this absorbtion until either no more BLEs will fit
into the cluster, or all of the cluster inputs are used. Once a cluster
is full, we start a new cluster with a new seed, and repeat the pro-
cess until there are no unclustered BLEs left in the circuit. We next
describe how blocks are selected for absorbtion.

We define the base criticality of each unclustered BLE,B, or
Base_BLE_Criticality(B), to be the maximum
Connection_Criticalityvalue of all connections joiningB to BLEs

1 A good packing solution is one that results in the smallest delay after be-
ing placed and routed by VPR.

2 Note that these delay values are only used in the packing process. After
packing is complete, VPR places and routes the circuits and extracts the
real (elmore) delay of each routed net. All of the delay results that we
present in this paper are computed by VPR.

within the cluster currently being packed,C. If B does not have any
connections toC then the base criticality score is zero. In Figure 6
we illustrate how theBase_BLE_Criticalityvalues are assigned.
We have labelled each connection between unclustered BLEs and
BLEs within the cluster with a criticality value. Notice how the
base criticality of each BLE is assigned the highest criticality value
of all its connections to the cluster.

When selecting which BLE to absorb into a cluster there is a high
potential for multiple BLEs to have the same base criticality value.
We use a tie-breaker mechanism to select which BLEs are the most
beneficial to pack. This mechanism is based on the desire to pack
BLEs together in a manner that most effectively reduces the
number of BLEs remaining on the critical paths. This is best illus-
trated by an example.

In Figure 7 we have darkened connections and BLEs on the critical
paths. Notice that when selecting which BLEs to place into a clus-
ter, it is more beneficial to absorb certain critical BLEs over other
critical BLEs. In this case, absorbing BLEs H, I, and J would be
much more beneficial than absorbing BLEs A, D, and F. We can
see that absorbing H, I, and J affects the criticality of seven BLEs
(A, B, C, D, E, F, and G), while absorbing A, D, and F would only
affect the criticality of three BLEs (H, I, and J). Clearly it is best to
cluster BLEs that reduce the criticalities of the most other BLEs.

We define three variables that keep track of the number of critical
paths that each BLE in the circuit effects. First we define
input_paths_affectedas the number of critical paths between
sources in the circuit and the BLE currently being labelled. Next
we defineoutput_paths_affectedas the number of critical paths
between the sinks in the circuit and the BLE currently being
labelled. Finally, we definetotal_paths_affected as the sum of the
previous two variables. The calculation of these variables is
explained below.

The BLE labels in Figure 7 demonstrate theinput_paths_affected
value for each BLE. We assign any sources that are on the critical
paths with aninput_paths_affected value of one, and all other
sources are set to zero. Then we perform a breadth-first traversal of
the circuit starting at the sources, and define the
input_paths_affected value as in (1.4).

slack i( ) Trequired i( ) Tarrival i( )–=

Connection_Criticality i( ) 1 slack i( )
MaxSlack
--------------------------–=

Figure 6.  BLE Base Criticality Assignment
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(1.4)

Wherecritical inputs(B) refers to the BLEs driving the connec-
tions onB’s inputs that are on the critical path.

Theoutput_paths_affected variable is calculated in the same man-
ner, but it starts at outputs and works back towards the inputs.

(1.5)

We definetotal_paths_affected as

(1.6)

Criticality(B) is defined as.

(1.7)

where ε is a very small value that ensures that the
total_paths_affected value acts only as a tie-breaking mechanism.

Finally, we define our new attraction function as follows:

(1.8)

WhereG is a normalization factor which is set to the maximum
number of nets to which any a BLE can connect, i.e.

(1.9)

In (1.8),α is a trade-off variable which determines how much we
wish the attraction to be affected by criticality vs. input pin shar-
ing. If we setα to 0 then we have a purely pin-sharing based algo-
rithm, and the program functions the same as the original VPack
algorithm. If we setα to 1 then we have an algorithm that focuses
only on minimizing the critical path with no concern for the
number of inputs shared. We experimentally determined that set-
ting α to a value of 0.75 results in clusterings with the least delay.

The time complexity of this algorithm is O(n2) (where n is the
number of BLEs in the circuit) which results in an execution time
of about two minutes1 to pack the largest circuit (clma) on a 296
MHz UltraSPARC-II processor.

7.  Area and Delay at Various Cluster Sizes
This section shows the effect of varying cluster size on the area and
delay of the benchmarks. This involves packing, placing, and rout-
ing the benchmark circuits and comparing the resulting FPGA area
and critical path delay. The results that we present are based on
low-stress routings (described in Section 3.1).

1 There is an option in T-VPack which allows the user to specify how many
blocks, P, to pack before re-computing the timing information. This re-
duces the time complexity to O(n2/P). We have found that performing a
timing analysis only once at the beginning (set P=n) does not reduce the
quality of the placed and routed circuits. This reduces the complexity to
O(kmax⋅n), and requires only a few seconds to pack the largest circuit.

7.1 Cluster Size Comparison using both VPack and T-
VPack

In this section we present results from circuits packed with both
VPack and T-VPack. We demonstrate that the T-VPack algorithm
is superior to the VPack algorithm, and we show the effects of
increased cluster size on area and delay.
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Figure 10.  Area-Delay Product vs. Cluster Size
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7.1.1  Area and Delay as Cluster Size is Increased

After the benchmark circuits were packed with the two different
clustering algorithms, they were placed and routed using VPR to
obtain area and critical-path delay estimations. The total area of
each circuit (logic plus routing) is given in terms of the equivalent
number ofminimum-width transistor areas. A minimum-width
transistor area is the layout area occupied by the smallest transistor
that can be contacted in a process, plus the minimum spacing to
another transistor above it and to its right [Betz98b, Betz99].

In Figure 8 we show the geometric average of the total circuit area
of the benchmarks vs. cluster size. It can be seen that the T-VPack
algorithm has significantly improved the area required for each cir-
cuit when compared to the original VPack algorithm, particularly
for larger cluster sizes (this improvement is explained in
Section 7.1.2).

Area is affected by two factors. First, as we increase cluster size we
reduce the routing requirements between clusters, so we require
less routing area. Second, as we increase cluster size, the total area
of the multiplexors within each cluster grows quadratically. For
sufficiently large clusters, the area reductions in the routing are
overtaken by the increased area required within the larger clusters.

Figure 9 shows the geometric average of the critical path delay of
the benchmarks vs. cluster size for both algorithms, and demon-
strates that the delay for the T-VPack algorithm is less than the
delay for the original VPack algorithm. Additionally, this graph
shows that the critical path delay is decreasing as cluster size is
increased. This means that for clusters of size one through 20,
larger clusters provide better speed (a detailed explanation of why
this occurs is given in Section 7.1.3).

In Figure 10 we show the geometric average of the area-delay
product of the benchmarks vs. cluster size. Comparing T-VPack to
VPack, we can see that T-VPack has improved the area-delay prod-
uct by about 20% for clusters of size seven through ten. This repre-
sents a comparison of both algorithms at their best performance
points. At larger cluster sizes the T-VPack algorithm provides even
more of a performance gain. This is mainly due to the increased
number of nets that the T-VPack algorithm completely absorbs
within clusters, resulting in reduced circuit area.

Figure 10 makes an important result visible — clusters of size
seven through ten provide the best trade-off between area and
delay. Compared to a cluster of size one, a cluster of size seven has
an area-delay product that is 36% better, and a cluster of size ten
has an area-delay product that is 34% better.

On average, circuits implemented in an FPGA with size seven
clusters have 30% less delay (a 43% increase in speed) and use 8%
less area than circuits implemented in an FPGA with size one clus-
ters. Circuits implemented in an FPGA with size ten clusters have
34% less delay (a 52% increase in speed), and require no addi-
tional area compared to circuits implemented in an FPGA with size
one clusters.

All of the individual benchmark circuits tracked these averages
quite well (with minor variations, mostly at cluster sizes one and
two).

7.1.2  T-VPack Area Improvement over VPack

As Figure 8 shows, T-VPack produces circuits that require less
area than circuits packed with VPack. To understand the reason for
this surprising result, one must compare the structure of the packed
circuits produced by VPack and T-VPack. The criticality term in
the T-VPack attraction function (1.8) makes T-VPack prefer to

cluster a BLE with BLEs that are in its fan-in or fan-out, rather
than with BLEs that it shares inputs with. As a result, T-VPack pro-
duces circuit packings in which many low-fanout nets have been
completely absorbed into logic clusters1.

Figure 11 shows the number of nets absorbed vs. cluster size for
both VPack and T-VPack. Since T-VPack has absorbed more nets
than VPack, it has fewer nets to route between clusters than the
output of VPack; however, the average fanout of each inter-cluster
net is slightly higher (not shown). The net result is that the circuits
packed with T-VPack are somewhat easier to route than the circuits
packed with VPack, resulting in a reduction in the routing area
required2.

7.1.3  Explanation of Delay Results

In Figure 12 we show the relationship between the number of
internal (intra-cluster — fast) and external (inter-cluster — slower)
connections on the critical path. As cluster size is increased the
number of internal connections on the critical path is increased,
and the number of external connections is decreased. This provides
a circuit speedup due to fact that internal connections are faster
than external connections3.

It is interesting to note that for clusters of size greater than four, the
number of external (inter-cluster) nets on the critical path does not
decrease as much with cluster size as the inter-cluster delay
decreases with cluster size (see Figure 13). From size four to size
twenty we have a reduction in the number of external nets on the
critical path (Figure 12) of about 18%; compare this to the inter-

1 For a net to be completely absorbed into a cluster, it must have all of its
terminals contained within that cluster.

2 This result shows the importance of using a full CAD flow, including
placement and routing, to evaluate many FPGA issues. It would have
been difficult or impossible to guess that the output of T-VPack would be
easier to route than the output of VPack without actually placing and rout-
ing the outputs from both packing algorithms. In fact, since the circuit
packings produced by T-VPack have more point-to-point connections to
route between clusters (despite having fewer nets), one would likely guess
that T-VPack’s circuits would be more difficult to route.

3 As cluster size is increased, internal cluster multiplexor and wiring delays
increase. If we were to keep increasing the cluster size, this effect would
eventually result in internal delays becoming large enough that any gains
obtained from making connections local to the cluster would be lost.
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cluster critical path delay (Figure 13) which has been reduced by
40% over this same range. This means that the circuit speedup vis-
ible in Figure 13 for larger cluster sizes is not only caused by a
reduction in the number of external nets on the critical path but it is
also caused by inter-cluster connections on the critical path
becoming faster. This is explained below.

The improvement in inter-cluster delay with increased cluster size
is caused in part by a reduction in the “logical” manhattan distance
between connections in the FPGA as shown in Figure 14. By
sizing buffers1 to compensate for the increased physical length of
routing wire segments associated with larger clusters, the delay of
each routing segment has remained roughly constant. Since the
total number of segments on the critical path has decreased due to
the reduction in the “logical” manhattan distance, the result is a

1 Changes in delay and area due to different size routing buffers is account-
ed for in VPRs timing and area models.

greater improvement in critical path delay than the reduction in the
number of nets on the critical path would indicate.

7.2 Effect of Routing Transistor Sizing on Critical Path
Delay and Area at Various Cluster Sizes

The purpose of this section is to provide a verification that the
manner in which we sized buffers and transistors is acceptable, and
did not favor one cluster size over another. In this section we use
only T-VPack to pack the circuits since we have demonstrated that
it is superior to VPack.

We have repeated the experiments described in Section 7.1 using
transistor and buffer sizes of one-half and double the sizes used in
Section 7.1. The results from these experiments are shown in
Figures 15, 16, and 17. These experiments validate the original
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Figure 14.  Decreased Manhattan Distance as Cluster Size
Increases
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Sizings
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transistor sizings that we used since the new transistor sizings do
not improve the area delay trade-off.

8.  Potential Sources of Inaccuracies
Every effort has been made to ensure that our results are accurate,
however, there are three potential sources of inaccuracies.

First, without actually laying out the various FPGA architectures,
there is some estimation involved in determining how much area
various FPGA implementations will require.

Second, VPR uses the Elmore delay model [Elmo48] to evaluate
the speeds of circuits implemented in various FPGA architectures.
Generally the delays calculated by VPR are within 9% of SPICE
delays [Betz98b, Betz99]. Also, delay results can be affected by
our area model since it affects wire lengths and transistor sizings.

Third, area and delay results are affected by the quality of the
placement and routing software. The tools used for these experi-
ments have been shown to produce high quality results [Betz98b,
Betz99], but it is always possible that the CAD software does a
better job for certain architectures over others.

We have taken considerable care to minimize the effects of these
potential sources of inaccuracies, and we believe that the our
results are of high quality.

9.  Conclusions
We presented a new timing-driven packing algorithm, T-VPack
and demonstrated that this algorithm provides significant timing
and area improvements over the original VPack algorithm. Circuits
packed with T-VPack have an area-delay product that is 20% better
than circuits packed with VPack for clusters of size seven to ten,
and for larger cluster sizes the improvement is even greater.

Using the area-delay product evaluation metric, we demonstrated
that clusters of size seven to ten are the best size to use when con-
structing an FPGA. Compared to circuits implemented in an FPGA
with size one clusters, circuits implemented in an FPGA with size
seven clusters have 30% less delay (a 43% increase in speed) and
use 8% less area, and circuits implemented in an FPGA with size
ten clusters have 34% less delay (a 52% increase in speed), and
require no additional area. The reason for this improvement in cir-
cuit speed at larger cluster sizes is partly due to an increased
number of critical connections becoming local within clusters, and
partly due to a reduction in the “logical” manhattan distance
between BLEs.
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