Low Power Methodology and Design Techniques for

Processor Design
J. Patrick Brennan, Alvar Dean, Stephen Kenyon, and Sebastian Ventrone
IBM Microelectronics, 1000 River Street 862C, Essex Junction VT 05452
brennanp @ us.ibm.com

ABSTRACT

IBM’s ASIC design methodologies is used
to develop a low power microprocessor for
the mobile (battery powered) marketplace.
The design called for a reduction of active
power by a factor of 10 times from an
estimate of a product designed in a
standard 3 volt ASIC design system. An
overview of the design methodology and
some of the innovative power reduction
techniques are presented.

INTRODUCTION

As the portable, battery-operated, electronics market moves to
computational-intensive products like cellular telephones and
notebook computers, the need to focus on low-power design
becomes critical to extend battery life. The small feature sizes and
lower operating voltages of today’s advanced semiconductor
processes inherently reduce power consumption. The small
feature sizes reduce circuit capacitance (wire lengths and
parasitics), which directly reduces dynamic (switching) power
consumption, while the lower voltages reduce power by the
square of the voltage reduction. Combining these technology
features with low-power design techniques and ASIC design
systems is key to introducing “Core+ASIC” low-power de51gns
for the mobile market.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

ISLPED98, Monterey, CA, USA

© 1998 ACM 1-58113-059-7/98/0008..$5.00

268

QL /Behavioral Model

@ ioral Level Powe, M,
&

Power verification SU%®

Figure 1. The Power Wheel

The power wheel depicts all major components needed for low-power
design. At the center are the low-power technology and supporting books
models. As you move up in levels of abstractions, you go into the outer
rings from transistor to gate to register transfer (RT) levels.

Low-power product design has traditionally been a manual
process aided by.some Electronic Design Automation (EDA)
software tools. Designing for the lowest possible power
consumption requires addressing all phases of the electronic
design process: architectural definition, logic entry, floor
planning, circuit design, and optimal use of low-power process
technologies. An accurate power estimator, coupled with useful
power metric reporting is key to delivering first-pass hardware
that meets the targeted power specification.

Typically, an ASIC cell-based design methodology was not
considered an option in the design of complex integrated products
with low-power characteristics. In this article, we present the
process and techniques of IBM’s Blue Logic ASIC design

methodologies to develop a low-power microprocessor for the
mobile (battery powered) marketplace.

PROJECT OVERVIEW

The design of this microprocessor was done in two phases, First
the functionality and performance targets were achieved, and
second, a power reduction effort was undertaken to meet the
power consumption objectives. The power consumption target
called for a reduction of active power by a factor of 10 from an
estimate of the power of a product designed in a standard 3 V
ASIC design system.

To achieve the power reduction target, six major efforts were
undertaken:

1. - Utilize a IBM ASIC design system that supported dual
rail power supplies, (core to run at a lower voltage than
the 1/O circuits).

2. Create method to enable fast and effective power
consumption feedback at both the Register Transfer
(RT) and gate levels.

3. Change design architecture and structure to reduce
dynamic power.

Employ new and innovative methods for active power
reduction, including pseudo-microcode, a new logic
structure for controlling data paths, and innovative logic
analysis combined with a very wide word (VWW)
control system.

5. New low power IBM core library elements (RAMs,
ROMs, Phase Locked Loop (PLL), voltage regulator,
and one new logic book type).

The physical design team made extensive use of
bit-stacking and latch/clock splitter “power groups” .

Power and performance are predicted correctly by IBM’s ASIC
design methodology tools. The resulting product is fully LSSD
testable..

Using the techniques described in this paper, our team was able to
meet the power consumption target for the microprocessor. The
table below shows the percent of overall power savings observed
for our design with the low-power design techniques described in
this paper, excluding power savings achieved by changes to
custom macros, such as the ROM, PLL, and the RAM, which
were very significant. Actual power savings may vary from
design to design.

Technique Saving
Low Power Synthesis 15%
Clock Gating 8%
Logic/Architectural Changes 45%
Voltage Reduction 32%

269

POWER REDUCTION METHODOLOGY

A power reduction methodology (Figure 2) must support power
consumption feedback at the HDL, gate, or transistor level.
Varying degrees of power calculation accuracy are expected at the
various levels of design abstraction. Basic correlation must exist
to assure that the benefits of power reduction changes at the HDL
level result in corresponding reductions at the gate level and
transistor level.

BEH / RTL Netlist

Synthesis / FE Process

1
CAP & RC Data
SDF Gen
SDF
.............. PowerCalc
BetRtl Zero Delay Nominal Delay Low Power Opt
iont Gate Sim Gate Sim

Re-Place & Route
CAP & RC Data

PowerCalc
Low Power Opt

Timing Correct

o

_ECO Place & Route
Toggle Report
\ Final CAP & RC Data
Power Reduction
Design Changes ! Physical Design

Figure 2. Low Power Design Methodology

The design methodology allows for early power consumption feedback at
the BEH/RT level in the form of node toggle reports and power
calculations at the gate level with either zero, unit, or nominal delay
simulation results. Physical design parasitics can be used at the gate level
for improved power estimation.

Accuracy at the gate level and good correlation to hardware are
key factors for a reliable power reduction methodology. A power
calculator’s results are only as good as the available switching
factor information. The power estimating tools used by the design
team report the power information in a form (toggles) so that the
team could make the most informed decisions about where to
prioritize their power reduction efforts.

Other factors that substantially effect the power calculation results
are: the data values used in data-path or arithmetic units, and the
values and frequency of primary input and output switches.
Ideally, the logic synthesis process must be power driven (in
addition to area and timing driven) to observe a power budget.

Automatic power optimization algorithms that can be applied at
the gate level are very desirable.

Power Verification Suite: Finding a set of representative
applications that will yield power consumption close to the

average power of the hardware is difficult. In battery-powered
embedded applications, the microprocessor function is limited to
the application code in the ROM. The range of applications is
typically bounded; embedded applications spend most of their
powered-up cycles in certain segments of code. This bounded
code can confidently be used to characterize average dynamic
operating power and identify instructions with high usage
frequency.

Behavioral/RT Power Estimation/Reduction:
Since dynamic power consumption is directly proportional to the

amount of switching activity, at the behavioral (BEH) or RT
levels, switching activity can approximate the power
consumption. Net ‘and bus switching factors obtained from
BEH/RT level logic simulation can identify hot spots on which
the designer’s efforts should be focused. Once a baseline
behavioral switching factor information is obtained, pass-to-pass
comparisons of the BEH/RT level changes can verify the
reduction of switching activity and thus dynamic power.

Gate Level Power Calculation and

0{)timizati0n: At the gate level, an accurate power
calculation is possible, limited only by the accuracy of the gate

power models and the extracted parasitics. Early on in the design
process, estimated parasitics coupled with a zero-delay simulator
provide enough accuracy, while post-wiring parasitics and
nominal delay simulation are required for more accurate
calculations later on. Logic synthesis selects logic gate size based
on net capacitance and/or slew driven power minimization.

Once estimated parasitcs are obtained from a place and route of
the gate level netlist, a nominal delay simulation is done to extract
the network switching factors from the Power verification suite.
The slew driven power optimization tool is run to find the optimal
slew rate and gate sizes for power consumption that may result in
higher or lower powered books being selected (gates powered up
or down). At this point, we have obtained minimum crossover
current during CMOS switching while meeting the network
timing constraints.

The correlation between BEH/RT level power estimates via node
toggles and gate level power calculations varied from design unit
to design unit from 5% to over 30% difference.

POWER CONSUMPTION REPORTING

The power consumption report is a key component of the power
reduction process. A power consumption report must be detailed
and formatted such that a designer can promptly implement power
reduction changes. Too low a level of detail, such as at the cell
level, may be useless to a designer who is thinking in terms of
high-level blocks. We developed a customizable power reporting
program that abstracts the detailed power information from the
PowerCalc report and presents it at a level delineated by the
designers. Power can be reported not only at the net or gate level,

270

but also at the bus, data-path, unit, or sub-unit abstraction levels,
all under user control.

Since the clock distribution network can consume anywhere from
one quarter to one half of the active power in a design, special
attention must be given to the clock distribution network.
Techniques such as clock gating have traditionally been used to
manage clock distribution power. Our ASIC clock distribution
methodology calls for a single clock to be distributed through a
re-driven network to clock splitters, which create two
non-overlapping, out-of-phase clocks. These clocks are then used
to drive master/slave latches. We developed a specialized clock
distribution power reporting program that post-processes the
PowerCalc power report and gathers all the clock network power
by unit and breaks it down by driver and splitter power. This data
is very helpful when prioritizing and structuring the clock gating
logic and analyzing the clock distribution network.

DYNAMIC POWER REDUCTION

Cycle-to-Cycle Minimization: The two main
approaches to RT level power reduction are first, to minimize the

power required to implement a function, and second, to minimize
how often the function needs to be executed. While the former
approach reduces power, the latter can result in much larger
power reduction. A new method of reducing AC power was
devised to minimize cycle-to-cycle unnecessary toggles. In this
method, next cycle control signals are derived as a function of
next cycle function, along with the previous cycle state. By
minimizing cycle-to-cycle functional toggle requirements, power
can be saved independent of function implementation. The idea is
a simple one, if a functional path is not required on the current
cycle, ensure that all the control paths and data paths remain at the
previous cycle’s state, eliminating all node toggles.

Pseudo-Microcode: The IBM microprocessor design
chose a decode method that differed from other microprocessors.

The two common decoding techniques are distributed decode,
where each logic control signal is derived as an independent cone
of logic, and microcode, where each opcode is translated to an
entry point address to a Read Only Memory (ROM) or
Programmable Logic Array (PLA) that provides the complete set
of control signals. We combined the simplicity of microcode with
the flexibility of distributed decode into a style we call
pseudo-microcode. For every opcode, all control signals that can
be set by that opcode are bundled together as a total identity.
These include the pipeline control, the address generation control,
and the execute control bits. Upon each cycle boundary, a first
stage very wide word (VWW) dispatch (Figure 4) is sent to n
microcode units (22 for IBM microprocessor). The microcodes
are decoded in each microcode unit for the instruction type. Once
the instruction type is determined, then the value is set for every
control signal within that microcode unit.

Previous

Cycle
State

vww
Dispatch

Inst A
Decode

Inst F
Decode

Microcode Unit 1

Latches

Control
Signals

Inst K
Decode
.

Inst P
Decode

L

\—>

Microcode Unit n

Figure 3. Pseudo-Microcode Structure

By combining current cycle decode (VW W) with previous cycle state
each opcode becomes a function of the previous opcode. Only conflicting
signals need to be resolved enabling the minimum amount of logic needed
to execute an opcode.

For every instruction decode, the control signals can be set to 0, 1
value, or the previous value. By only changing the signals that are
required for that function, the power of the machine can be
reduced. Now each opcode becomes a function of the previous
opcode (Figure 3). Only conflicting control signals need to be
resolved. In the example below, during the first NOP instruction,
the controls to the Arithmetic Logic Unit (ALU) are left in the
ADD state even though the ALU is not needed to perform the
NOP operation. The ALU controls are left in the SUB state during
the NOP and MULT instructions following the SUB instruction.

EX: ADD/SUB (control signals are: Set ALU_Control ON, Set Register_Enable

ON, Set MULT_Control ON)

NOP (looks like ADD, but Register_Enable OFF)

SUB (looks like ADD, but different ALU_Control)

NOP (looks like SUB, but Register_Enable OFF)

MULT (looks like SUB, but Register_Enable ON, MULT_Control ON)

etc.

With this method, the control signals for each unit remain in the
same state and only change when a new state is required with the
next opcode being executed essentially turning the processor into
a giant state machine.

An advantage to this type of microcode is the ability to embed
logic within the microcode, such as conditional checks within an
opcode type. This can reduce the number of microcode addresses
which may reduce the overall size of the decode unit, saving
power.

271

Decode Current Opcode

Set Required Function Signals

Set Exclusive Functions Outside
Current Opcode to Previous State

Latch Results

Figure 4. Pseudo-Microcode State Machine Decoding

A VWW feeding a pseudo-microcode function allows for state
change minimization, embedded logic, passing of variables, and
improved readability in a design of lower power and more flexible
design structure.

CONTROLLING DATA PATHS

Clock Gating by Opcode Typing: Since the clock distribution
network typically consumes a large percentage of the processor
power, clock gating, where the clocks are turned off to portions of
the network that do not require it, can save a lot of active power.
This mechanism works well for data-flow logic, where clocking
requirements can be predetermined at least one cycle ahead. Clock
gating is difficult within the current cycle for control registers due
to the random nature of the control logic. In addition, the clock
gating signals must be valid halfway into the cycle to gate off the
capture clock.

An automated method for generating clock gating signals the
maximize the number of laches that are turned off every cycle was
developed. This method, called opcode typing, searches the
microcode function and groups control signals into clock gating
groups with the goal of maximizing the number of opcodes for
which the signals in the clock gating group stay constant. Type
generation is done with a program that iteratively picks different
groupings of signals to be typed together, analyses opcode
coverage, and picks the type groupings that maximize opcode
coverage with the minimum number of groupings.

Once optimum clock gating groups are defined and opcodes have
been assigned to types, typed clock gating can begin. Early in the
cycle, opcodes are pre-decoded to generate a type field
corresponding to the groups of registers. The current opcode’s
type field is then compared to the previous cycle type field. If the
previous cycle type is ON, and the current type is ON, then clock
gating can be enabled since the control signals will be the same
value from the previous opcode to the current opcode for that
type. In the microprocessor decode, about 10 clock gating signals
were generated for the registers, but this is entirely a function of

the number registers and the amount of type coverage that one is
trying to obtain.

While this method of typing control signals by
opcode/microcode/function cannot clock gate on a per-bit basis, a
significant ratio of cycle-to-cycle clock gating can be obtained for
control logic registers.

Data-Path Toggle Reduction: A common element in
data-path processors is the bus multiplexer. The multiplexer

selects one of several data buses to be driven onto a single output
bus. If care is not taken, unwanted transitions on multiplexer
inputs can propagate to the output buses and to downstream logic,
even when the multiplexer is not used during the current cycle.
The standard approach to multiplexer node toggle reduction is to
hold previous value, or to force the multiplexer to a constant state
when not in use. On our application, this approach did not yield
any significant power reduction when applied to heavily used
multiplexers. While power is saved when the multiplexer is not
used for many cycles, if the multiplexer is required to change
values frequently, no power savings are observed.

An alternative method was created for data-path multiplexing
which guarantees that the multiplexer outputs will switch once
and only once during the cycle when they are needed and never
on cycles where the multiplexer is not functionally needed. In a
normal data-path design, due to individual path delay differences,
different bits of a bus will arrive at a different time within the
cycle, which may result in repeated arithmetic or logical
calculations downstream as an input bus settles on the final value
for the cycle. To minimize data-path power, inputs to arithmetic
units, such as multipliers, shifters and adders, should be applied
only once during the cycle on which they are used.

To achieve these goals, a new transition-once multiplexer was
designed (Figure 5). The transition-once multiplexer ensures a
single transition on the output bus per cycle by guaranteeing that
data is propagated through the multiplexer.only when the input
data buses are valid and stable. The transition-once multiplexer
holds the previous value when the multiplexer is not selected or
during transitions to a new value. If the multiplexer is not selected
in the current cycle, the output is held at the previous cycle’s
state.

Early Se! A Late Set A

Select A

Data A

waten [Data Out

Data B

Select B

Early Sel B Late Sel B

Figure 5. Two Port Transition-Once Multiplexer Schematic

272

Four rules exists for the transition-once multiplexer:

No new data until select off

No new select until new data

If no select, hold previous value

If same select, deselect (and hold previous value) during
data transition time

el e

To accomplish these four rules, two selects are defined for every
data port. One select is called the fast select, and the second select
is the slow select. The fast select was timed to be faster then the
fastest data bit for that input port. The slow select was timed to
arrive after the slowest bit of the same data port. The two selects
are fed into an exclusive NOR (XNOR). Each select must be the
same value (either both O or both 1) for the multiplexer input port
to be gated to the output stage. Between the input stage and
output stage is a soft latch, which holds the output state during
either a selection to a new data port or when no pair of selects are
active. If the same input port is to be selected from one cycle to
another, then both selects are toggled (if both 0, then on the next
cycle both would be 1). By toggling both selects, the input port is
deselected during the input data transition. The fast select will go
to the new state before the slow select, temporarily disconnecting
the input port from the output during the transition of the input
port. Once the slow select changes to the same value as the fast
select, the data transition is complete, and the new value of the
selected input port is allowed to pass to the output stage.

Data in ————f
Late Select——{ A
Early Select ——»

Out |—»Data Out
Data In ————»
Early Select—» B
Late Select
Data in W ﬂﬂﬂ
Data Out L
Early Select J
Late Select _J
Select Re-Select De-Select Re-Select
New Data Hold Previous New Data

Figure 6. Two Port Transition-Once Multiplexer Timir_lg Diagram

The transition-once multiplexer reduces toggles by filtering out transient
changes in the input data from the output date. Figure 6 shows how the
multiplexer is used to either select a data path, re-select the same data path
on another cycle, or de-select a path to hold previous data. The late select
must be timed to arrive no earlier then the fact input data transition.

By cutting down the intermediate transitions of data multiplexers
and preventing false calculations of downstream logic from
occurring, the transition-once multiplexer played a major role in
the dynamic power reduction effort. Note that if the fast and slow
selects are not timed to arrive at their optimal times, the only
penalty will be a few toggles that pass thru the multiplexer.

A variation on the transition-once multiplexer was to use a
transition-once buffer within random logic (Figure 7). At key
pinch points in the design, a transition-once buffer was inserted.
Using the same control logic as the transition-once multiplexer
(only one set of selects in this case), the buffer is allowed to
transition when the input control signals are stabilized. By cutting
down the intermediate transitions, the amount of power used by
the random logic could also be reduced.

il

Random
Logic
l l l l Pinch-Point
Enabl
Diszblz Transition-once Buffer }
Random
Logic

Lo

Figure 7 Transition-Once Buffer

When a pinch-point exists in the design, a transition-once buffer can
isolate the downstream logic cone from the upstream cone, reducing
transient node toggles.

Insertion of timed buffers is an easy way of reducing the AC
toggle in random logic. The overhead is the addition of the timed
selects and the buffer itself. The result is the elimination of
downstream toggles due to the intermediate transitions of the
previous stage logic.

TECHNOLOGY AND CORE LIBRARY

In general, macro performance was optimized to meet low power
macro objectives. Quasi-differential drive latches were used to
reduce the clock input loading by 80%. Low power clock splitters
are used exclusively to match low power latches and enable clock
gating. The ASIC library was expanded to include drive strengths
with smaller device widths so power could be minimized on paths
with non-critical timing.

An analog PLL was designed with low power features. Starting
from an existing design that was built for higher performance
chips, the maximum operating frequency was reduced from
400 MHz to 100 MHz. Clock shutdown modes specified by the
chip architecture allowed the PLL to be commanded to suspend
operation during chip sleep modes. Node toggling was eliminated

273

on logic branches that are unused during a given mode of
operation. DC paths were reduced or eliminated.

For the ROM, input addresses are latched only if a ROM access is
requested. Next, partitioning and proper sequencing of the ROM
timing events was orchestrated to minimize overlap of events that
could cause DC paths or high power conditions. The word line
decoder divides the 256-word lines into 32 parts of 8-word lines
each. One part is active at a time. For each data output bit, only
one of the 32-bit lines that could be accessed is pre charged.
Finally, ROM output data is held until the next ROM read is
executed, reducing downstream switching.

The multi-port SRAM used a number of techniques to minimize
power consumption. Clock-gating was performed in the interface
logic based on port request signals, minimizing clock tree and
latch power. The array was implemented using three sequential
operations to a standard six-transistor cell to reduce area. Support
circuits were fully interlocked, maximizing the
power/performance efficiency. To minimize array power, a
NAND decode word-line system was chosen, and word-line
length was kept to 64 bits, reducing bit-line pre-charge power and
all associated sense amp and control signal power. Standby power
was reduced, primarily by reducing sub-vt leakage of the OFF
word line driver PFET devices (greater than minimum channel
length was used).

Technology leverage was used to reduce voltage to core logic
from 2.5 V to less than 2.0 V. This results in a power reduction of
over 20%. Power shutdown circuitry is incorporated into voltage
regulators. A diode is used during shutdown mode to hold core
voltage to non-critical circuits.

SUMMARY AND RESULTS

We have described a methodology and design methods for
creating a low-power processor design. Designing for lowest
possible power consumption requires attention to the entire design
process, including: technology, ASIC library selection, power
reduction methodology development, architectural and gate-level
logic design techniques, and physical design methodology.

A complete HDL-to-gate level methodology has been described to
successfully identify, track, and implement a power reduction
strategy. Emphasis was placed on power reporting and analysis,
and automatic low-power synthesis capabilities.

Several innovative design techniques were described for dynamic
power reduction, including register typing for control logic clock
gating, a transition-once multiplexer to reduce data-path node
toggles, and a pseudo-microcode approach to processor
instruction decoding to minimize overall instruction stream
dependent power.

Acknowledgments

The authors would like to thank the following people for their
contributions to this paper: John Adams, Dave Blum, Rob Busch, Dr. Ken
Goodnow, Roger Gregor, Gary Koch, Manabu Ohkubo, and Chris Ro.

	Main Page
	ISLPED98
	Front Matter
	Table of Contents
	Session Index
	Author Index

