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Abstract

In this paper, we propose an efficient statistical sampling
technique which is suitable for estimating the total power
consumption of ‘a large VLSI system. The basic idea is
to generate simulation units for each module in the sys-
tem independently and then form samples of the system
power by randomly selecting ssmulation units for each mod-
ule. Hence, sampling is performed both temporally (across
different clock cycles) and spatially (across different mod-
ules). A module clustering step ensures that the module
types are compdtible with this sampling strategy. Ezperi-
mental results show a 4z reduction in the stmulation teme
compared to existing Monte-Carlo simulation techniques.

1

Power dissipation, along with area and speed, has become
one of the important design metrics in VLSI designs. As
a result, the issue of estimating the power dissipation of a
VLSI system which consists of a large number of modules
has become a critical task. Notice that this problem is
different from the problem of estimating the power dissi-
pation of an individual module in the system.

One way to improve the simulation efficiency is to ap-
ply statistical sampling techniques to select a small subset
of the applied vectors for power simulation. Such tech-
niques use a Monte Carlo iteration loop to incrementally
improve the estimation accuracy until user-specified error
and confidence levels are met [1, 2, 3]. A common charac-
teristic of these techniques is that the simulation time, in
terms of the number of simulated clock cycles, is directly
proportional to the cycle-by-cycle fluctuation of power dis-
sipation, or in statistical terms, the relative variance of the
power dissipation per cycle (Relative variance is defined as
the ratio of the variance to the mean squared).

Previous sampling techniques can be described as clock-
based techniques since the total power dissipation of the
target system at a single clock is the basic unit of sam-
pling. Conceptually, one can view the cycle-based sam-
pling strategy at the system level as sampling each mod-
ule in a system simultaneously and synchronously. That
is, if the power measurement of a module in a particu-
lar clock cycle is included in a power sample, the power
measurements of the remaining modules in the same clock
cycle must also be included in the same sample. These
strategies essentially sample in the temporal domain only.

In this paper, we will show that it is possible to improve
the efficiency by sampling in the spatial domain as well.
More precisely, we will show that as the number of modules
in a system increases, the relative variance of the cycle-by-
cycle power decreases. This results in a smaller number
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of samples needed for convergence in a Monte-Carlo sim-
ulation. We will next show that as the number of samples
required for convergence becomes smaller than 10, Monte-
Carlo simulation oversamples by more than 20%. In fact,

the smaller the number of samples required for conver-
gence, the higher the oversampling.

The primary cause of this problem is that each sample
unit in clock-based sampling techniques is very large. If
we reduce the size of each sample unit, we can avoid the
problem of oversampling in Monte-Carlo simulation. The
sampling techniques proposed in this paper use the collec-
tion of the power dissipations of each module at each cycle
as the population for sampling. Furthermore, estimation
of total system power is performed with one Monte-Carlo
simulation. This is different from the strategy which es-
timates each module in one Monte-Carlo simulation and
sums up the estimates to produce the total system power
estimate. The drawback of the latter strategy is that it
is difficult to determine a prior what confidence and error
levels should be assigned for each module so that the sum
of individual power estimates satisfies user-specified error
and confidence levels of the total system power estimate.

The rest of the paper is organized as follows. In Section
2, we consider sampling issues for system level power esti-
mation. We propose a cluster-based technique in Section
3. Experimental results are presented in Section 4 followed
by concluding remarks in Section 5.

2 System Level Issues

A system is defined as a collection of modules in which
all inputs come either from system inputs or from other
modules in the system. We further assume that the vector
traces of all sequential elements are given as a result of
functional simulation of the system.

Let m and n denote the total mumber of modules and
clock cycles, respectively. Power dissipation of the jth
module, M;, at the ith clock cycle is denoted as pi ; and
stored at the < i, > entry of a power log matriz. Note
that this matrix is just for conceptual convenience; the
actual power values p; ; are not known before simulation.
Only the input vectors that will be used to simulate the
jth module at the ith clock cycle are known at this time.

To compare different sampling strategies, we define the
notion of (simulation) workload. The workload for a sam-
ple, is calculated as the product of the number of tran-
sistors being simulated times the number of simulated cy-
cles. Therefore, if a system consists of modules A and B
(each having 10k transistors) is simulated for 30 clock cy-
cles and the average power over the 30 cycles is used to
produce one sample value, then the workload for the sam-
ple is measured as 20k x30=600k transistor-cycles. On the
other hand, if module A is simulated for 15 cycles and
module B is simulated for 15 cycles and the 30 simulation
results are averaged and multiplied by a factor of 2 to pro-
duce the sample value, then the workload for the sample
is measured as 10k x 15410k x 15=300k transistor-cycles.

From the analytical point of view, if the population
mean and variance are known a prior, then E[X] and V[X]
of samples are also known. In addition, if the samples fol-
low normal distribution, we can compute the ideal number
of required samples, kigeat, to achieve an error level € and
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Figure 1: Oversampling in Monte Carlo simulation.
a confidence level (1 — ), as follows:
z
kigear = (<2L2)* Vo (X) (1)
where z4/7 is defined such that the area to its right under a
standard normal distribution is equal to a/2 and V.« (X)
is the relative variance of X.

If we perform a large number of runs using Monte Carlo
simulation on the same population for the same values of
€ and (1 — «), we obtain an average value for the number
of required samples, denoted as k... The relationships
for kmc and pme versus kigea: are plotted for a 99% confi-
dence level in Figure 1 (kmc is computed by 100,000 runs

of Monte Carlo simulation).” Note that both km. and pmc
are independent of e.

The efficiency coefficient pm. for Monte Carlo simula-
tion is defined as

k..
Pme = =222 100%

mc

The Monte Carlo efficient region, called mec-efficient re-
gion, is defined as the range of kigeq: values where pme >
70%. The compliment set of the mc-efficient region is de-
fined as the mc-inefficient region.

From Figure 1, the mc-efficient region is found to be
in the range [7,00]. In this region, the smaller kigea:, the
lower pm.. For instance, when kigeat = 2, pme = 37%
whereas kigeai = 1, pmc = 22%. On the other hand, when
kideal = 10, pme = 80%, a mere 20% loss in efficiency. In a
large VLSI system, the power simulation for a single clock
cycle requires a significant computation time. Therefore,
although kigear is very small in the mc-inefficient region,
the impact of inefficient estimation is. still enormous.

While we have demonstrated that Monte Carlo simula-
tion may oversample, the question remains: “Will we run
into mc-inefficient region when using clock-based Monte
Carlo simulation for estimating the system power?” In an-
other words, “what k;4eq: values do we encounter in prac-
tice?” It is difficult to give a precise quantitative answer.
Our approach is to derive the relation between kigea: at
the module level and that at the system level. Based on
results reported at the module level [1, 2], we can infer
the possible range of kigeq: values for system power esti-
mation. We consider both cases where the modules are
uncorrelated and correlated.

Let k537 ;fm denote the value for k;4eq: for the whole sys-

tem, whereas MAX (k72%+®) denote the maximum kidea:
for the modules in the same system.
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Figure 2: Illustration of the sampling strategy based on
the power log matrix

Theorem 2.1 Consider a system which has m uncorre-
lated modules M1, M, .. M,,. Let the random variable rep-
resenting the cycle-by-cycle power of module M; be P; and

its mean be E[P}],
" B[P
g < A 2 1B @
(il ElPD)

Theorem 2.2 Let the system be the same as the one de-
fined in Theorem 2.1, except that the modules are corre-
lated, we have

MAX (k732a)

kon™ < MAX (Klg2a') 3
For the proofs of the above Theorems, please refer to
[4]. Note that if the covariances among module power dis-

A -, ¢
sipation are positive, the &;%° 7™

magnitude to M AX (k72%4¢). In the case of some negative

k¥t is smaller than M AX (kT2dvte).

ideal

becomes comparable in

covariances, the

3 Cluster-based Power Estimation

To give an intuitive rationale for our approach, we need to
revisit (1).

From (1), the total number of required simulation units
(vector pairs) is given by

Zo
‘Ne = (_6/2 )2Vrel(Ps)

kidear (4)
where, n, is the number of units per sample and P; is
the random variable representing the clock-based system
power. Our goal is how to ensure the normality of samples
while reducing ns, which will in turn increase &%’ a’fm and
thus avoid the oversampling problem. We can ac‘ilieve this
by sampling each module independently and thus increas-
ing the number of independent random variables included
in a sample to ensure the normality of samples as described
next. The rule of thumb is that there should be at least
30 independent (and comparable) random variables in a
sample in order to maintain the normality of samples.
Consider a fairly homogeneous system (for instance, a

_ system consisting of adders and subtractors). The case for
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heterogeneous systems will be explained later. There are
n clock cycles and m modules in the system. The average
power dissipation in this system is calculated as:

E(Pa) = % Z Zpij

i=1 j=1

(%)



Next, consider system B which consists of a single adder
but there are n - m clock cycles. Furthermore, the power
log matrix of system B is obtained by concatenating all
columns of the power log matrix of system A into a single
column as shown in Figure 2(a). The average power of this
system is:

E(Pgp) = ;nlfn Z Zpij

i=1 j=1

(6)

Obviously, (6) is simply scaled down from (5) by m.
Therefore all entries in the single column matrix should be
multiplied by m if we want to estimate the average system
power of system A by sampling on system B.

Our sampling strategy, which we call miz-and-stratify,
is explained next. Consider system A as described above.
First the zero-delay power estimates are calculated for all
clock cycles and all modules, and the units of all modules in
the system are put together. The mixture is stratified into
m’ equal size strata. One unit is randomly sampled from
each stratum. We know which module this unit is from
and can then perform transistor-level simulation on that
module under the corresponding vector pair. The observed
power from the simulation is multiplied by m and treated
as a unit drawn in the standard stratified sampling 2], that
is, when calculating the sample value, we follow the steps
in the standard stratified sampling. This approach can
easily be extended to nmon-equal size strata or non-equal
sample sizes.

The advantage of the mix-and-stratify approach is that
the minimum simulation workload in a sample to maintain
normality of samples can be less than that of simulating
the entire system for one clock cycle. To give an exam-
ple, consider a system with 60 adder modules. These 60
modules are lumped into a cluster (super module). Let
the number of strata be 30. One unit is randomly drawn
from each stratum and collectively becomes a sample. The
simulation workload of this sample is same as simulating
only one half of the system for one clock cycle.

By heterogeneous systems, we mean systems which con-
sist of more than one type of module. The type classifi-
cation is based on the glitch activity in each module. For
instance, multipliers are classified as different from adders.
All modules of the same type are put into one cluster. In
terms of the power log matrix, all the columns correspond-
ing to the modules in the same cluster are concatenated
into a single column matrix. Let the number of clusters be
¢ and the number of modules in each cluster be m;, where
¢ =1,...,c. After the column concatenation, all the en-
tries in the sth single column matrix are multiplied by m;,
as shown in the previous section. Then the estimation can
be reduced to that of estimating the power on a new sys-
tem consisting of ¢ modules with each module representing
a single column matrix as shown in Figure 2(b).

4 Experimental Results

We compared the sampling efficiency of two techniques:
clock-based simple random sampling (SRS) and cluster-
based stratified sampling(CSTS).

The circuits are selected from popular high level syn-
thesis benchmarks: a Chebyshev filter (CHEB), a differen-
tial solver (DS), an IIR filter (IIR), and a discrete cosine
transformation circuit (DCT). CHEB, DS, IIR, and DCT
have 8(5), 4(7), 8(5), and 48(10) adders (multipliers), re-
spectively. The input sequences are obtained from music
CD’s. For CSTS, we use zero-delay power estimate as the
predictor. The target simulator is a real-delay gate-level
simulator. The total circuit power of each circuit is first
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Table 1: Results of 100,000 Monte Carlo simulation runs
for 5% error

CHEB D3

Scheme | SRS | CSTS | SRS [ CSTS
Favg | 6.0 | 87| 116 | 10.7

ver | 180 57 | 348 6
V(%) | 0.2 06| 0.4 0.9
rt | 7.5 7.4 | 18.9 3.1

IR DCT

Scheme | SRS | CSTS [ SRS [ CSTS
Favg | 7.1 87 5.2 75

vel | 180 53 | 156 17
vr(%) | 0.7 ] 06 02 0.4
r.t | 9.0 25 16.2 2.1

obtained by simulating the circuit over the entire sequence.

We set the error and confidence levels to 5% and 0.99,
respectively. We perform 10,000 simulation runs for each
sampling methods. For stratified sampling, to reduce the
overhead in calculating the predictor values, a different
subpopulation of size 1000 is first randomly selected in
each run. The stratification (predictor calculation, sort-
ing) is only performed on the subpopulation. The sample
size is set such that there are at least 30 independent ran-
dom variables in'a sample. We use two clusters. All adders
are put into one cluster whereas all multipliers in another.
Each cluster is stratified into the same number of stra-
tum as the sample size and one unit is sampled from each
stratum. The sample size for both techniques is 30.

The results are summarized in Table 1. The ‘kavy’
rows list the average number of samples required in each
method. The ‘W, .’ rows list the average relative work-
load, defined as kq.q times the ratio of the workload per
sample to the workload of simulating entire system for one
clock cycle. The ‘v.r’ rows list the percentage of simula-
tions that have greater than 5% error. The ‘r.t’ rows list
the run time in seconds on a Pentium Pro machine. This
table clearly shows that CSTS is better than SRS. The run
time improvement is a factor of 4.

5 Conclusion

In this paper, we proposed efficient statistical sampling
techniques suitable for system level power estimation. We
first showed that Monte-Carlo-based statistical power es-
timation techniques tends to oversample when the relative
variances of samples are small. To address this issue, we
attempted to reduce the simulation workload per sample
while maintaining the normality of samples. We thus pro-
posed a cluster-based Monte-Carlo simulation technique
to achieve this goal. We demonstrated that the proposed
technique provides a reduction of 4x in terms of the sim-
ulation workload compared to existing Monte-Carlo simu-
lation techniques.
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