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1. ABSTRACT

An automatic modeling technique is presented
in this paper that allows to build an accurate
model of power consumption in embedded
memory blocks. A software neural-network is
used to create a regression tree by automati-
cally splitting those variables that have a dis-
continuous effect on the power consumption.
An application of the methodology to the mod-
eling of a 0.35um CMOS embedded SRAM is
presented.
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2. INTRODUCTION

The importance of static and dynamic simulation of power
consumption in VLSI circuits is continuously increasing. A
number of tools at different levels of abstraction have been
introduced [1], to facilitate power analysis throughout the
design flow. An important class of VLSI circuits, like DSP
cores, embedded processors, etc., make an extensive use of
data-storage units. like cache, frame buffers, register files
etc. Therefore the power consumed by the memory units is
a large fraction of the total power consumption for such
circuits. Nevertheless, not quite the same degree of
attention has been paid to the accurate modeling of power
in memories. The models described in [2], [3] and [4]
achieve a relatively good accuracy in modeling switching
activity dependent power but are limited to relatively small
size memories or to specific architectures. The problem of
deriving a_general model of the power consumption in
memories is far from being trivial because, depending on
the state of the control ports, it is possible to observe orders
of magnitude differences. in the power dissipation with
similar I/0Q switching activity pattern. This is due to the
wide range of unique operations affecting power
consumption that different memories may perform. For
example, direct R/W vs. page addressing, etc. Other control
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inputs or special architectures (e.g. self timing) may apply
to specific types of memories only (e.g. DRAMs, multiple
port RAMs). Furthermore, depending on the complexity,
the internal architecture can be completely different. In
order to derive a general model, the I/O behavior shall be
considered only, thus ignoring the internal structure and
building blocks of the memory. These constraints are even
more demanding if the automatic characterization of the
model is considered. In this paper we propose a black box
approach for modeling of power consumption in embedded
memories which is based only on I/O functional and timing
information. We will demonstrate that the-algorithm is
capable of automatically detecting the particular power
patterns associated with a given functionality without any
knowledge of the hardware implementation. The
organization of the paper is the following: the automatic
modeling algorithm is described in Section 3. An
application example is shown in Section 4. Section 5 will
present conclusions and directions for future work.

3. AUTOMATIC MODELING ALGORITHM
In this section the flow for the automatic modeling of
memory’s power consumption is presented. The starting
point is a spice netlist of the memory, including parasitics,
and an appropriate set of stimuli. No assumptions will be
made neither on the architecture nor on the operations of
the memory. All the needed information shall be inferred
from the simulated response of the memory to the applied
stimuli. In general the model variables will be both the
states and the transitions at the I/O ports. The target model
is a linear regression tree as that described in [5]. However
an adaptive power-driven algorithm based on a software
neural network (SNN) is used in order to build the tree
instead of using a statistical approach. The memory is
considered as a state machine with number of states
exponential to the number of primary inputs. Let’s assume

that it is characterized by # control inputs (cl, oo cu) and

v non-control inputs (d 1 ’dv ). In general the power

consumed by the memory will be a non linear and, likely,
discontinuous function of the value of both control and non-
control inputs, i.e.:

(O PWR =P 4 (c), o Cpdy d)
where the name of an input signal in Eq. (1) is used to
represent either the binary state or a transition event on the

corresponding input. More often the power consumption will



be a strongly non-linear function of the state for some of the
control inputs and a reasonably linear function of the
transition events at every non-control input. Let assume that

the unknown function P is sampled M times,

n-lin
represented by  the couple (X, P) where
X = (xl""’xu+v) is a (u+tvxl) wvector with

M »u+v. The range of variation of P can be arbitrarily
1, ..., k. Initially a number
are selected to identify the

different domains of the input vector X associated with the
quantized values of P. Usually different codebook vectors
are associated to each class of P values, and (X, P) is then

assigned to the same class to which the nearest m; belongs.

quantized in k intervals P, i =

of ‘codebook vectors’ m;

Let m, define the nearest m; to X. The value of m; that

minimize the misclassification errors in the above nearest-
neighbor classification can be found as asymptotic values in
the basic LVQ learning process [6]. The recognition
accuracy relative to the codebook can be tested and, if a

reasonable value is reached, a partitioning of the M couples
(X, P)in k clusters is performed. The graph in figure 1
shows the power clustering for a 2 variable case.
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Fig. 1:Power to cluster mapping.

Given k clusters Cl’ ees Ck’ it is possible to define a

corresponding  vector of centers of  gravity:
G = (gj, 18 ) where each component g1

defined as:

u by
gji=l§1Q_‘ i=1,..,u+v j=1,.

Qj is the number of codebook vectors b; belonging to the

j-th cluster (Z Qj = ZCodebooks )- Each gj; represents

the average value of input x; in cluster j, that is when the

power consumption is close to P;. Let sort the k classes by
increasing values of P and observe the behavior of the piece-
wise function g(P) obtained by joining all the 8

corresponding to input i —th as shown in figure 2. If, for
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some input i, X; = 0(1) corresponds to “low” P values and,
at the same time x; = 1(0) corresponds to “high” P values,
the curve g,(P) should show a sudden step. Otherwise, a
smooth or oscillating behavior should be observed. For
example, the curves gl(P) and gz(P) plotted in figure 2
are obtained by considering the data from the example in
figure 1. Notice that gy(P) = 1 for P <P, and 0 for P> P, .
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Fig. 2:Creation of g;(P).

This indicates that the value of input x, discriminates
among different power regions. The function g,(P) instead
is smooth and always close to 0.5. Therefore the input x;
can’t be associated with different power consumption
patterns. This is also evident from the x; <> x, graph in

figure 1, as x| assumes indifferently value 1 and O in all the

clusters whereas X, is 1 in P, P, and 0 in P3, P4. It is thus
evident that x, is a natural candidate for splitting. In order
to extract the splitting variables automatically from the
analysis of the functions gl.(P),i =1,...,uty it is
necessary to define some selection criteria. First,
monotonicity is required; then a fitness function can be

defined by taking into account the stationary points, the
steepness and position of steps, etc., For example, the

simple variance s(gl.) = Z(gjl.— { gi))2 can be used as

the fitness function. The sellection of variables for splitting
will be based upon the value of the fitness function, i.e.,
variables associated with largest fitness values will be
selected first. The use of a generic fitness function allows for
a more flexible and general implementation of the
algorithm. It might happen that no variables are available for
splitting. In this case the proposed algorithm fails, and a
statistical technique can be applied, or another splitting
variable may be selected. The above described modeling
algorithm is iterative, as it is re-applied successively to the
tree obtained after each branching, until certain stopping
criteria are met. Since after each iteration the number of
sub-models is increased by one, a stopping criteria should
be defined in order to control the trade-off between accuracy
and complexity. Three different criteria have been defined:
i) a predefined accuracy goal is met, i) the maximum
number of branches has been reached, iii) the accuracy
improvement is less than a predefined tolerance. If i) or ij)
are met then the algorithm is stopped. If iii) is met then the
current branch is terminated, but other branches could be
further expanded until i} or i) are met. If the accuracy is still
not satisfactory it is possible to start a new run by either



changing the training set, or by redefining the power
regioning, the stopping criteria or both.

4. APPLICATION EXAMPLE

The proposed methodology was tested on a static,
synchronous RAM with 32 lines, 16 bit words. This
memory supports several functions: i) read; ii) write; iii)
power off;, iv) output three-state; v) read & write. The
required accuracy threshold was set at £20% max error with
respect to PowerMill. In figare 3 the obtained regression
tree is shown.
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Fig. 3:a) Regression tree for a 32x16 static RAM. b) Timing

The algorithm first selected the clock status CK as the root
of the tree, thus identifying a synchronous circuit. The next
variable selected was a transition on write enable (WEN”)
thus discriminating between write and read mode (WEN’= 0
-> read). The other branches were generated similarly. Only
control variables have been selected for splitting. A shmoo
plot showing model prediction vs. simulation is presented in
figure 4. The target accuracy with respect to PowerMill was
achieved by using a linear model for the leafs. Better
accuracy can be obtained by tightening the precision
constraint (thus growing the tree). However, by considering
that a 20% error magnitude at the level of each single
transition, corresponds to a much lower RMS error, the
achieved trade-off between model simplicity and accuracy
is indeed extremely good.

Fitted vs simulated power consumption for SPS3_32x16mA (comparisor with +/- 20%)
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Fig. 4:Model vs. simulation. Comparison with 20% erwor.

The benchmarks results are summarized in Table 1, showing
that a 100X computational time speedup is achieved with a
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limited loss of accuracy.

——————
Benchmark Powermill Design Power Error
# of vectors CPU P [mW] CPU PmW] | %
1436 12h 45min 1.128 Imin 1.214 +7.6
700 20h 2.202 Imin 2356 +7
700 2h 0.0345 1min 0.0371 +7.4
256 1h 50min 0.910 1min 0.965 +6%

TABLE 1: TOTAL AVERAGE POWER RESULTS

5. CONCLUSION

An automatic approach for modeling and characterizing
the power consumption in semiconductor memories have
been proposed. The methodology does not require any
knowledge of the memory architecture or operations.
Because of this, the algorithm is suitable for integration in
an automatic design flow. The capability of automatically
detecting the control signals and the modes of operations
of the macroblock is general and can be applied to other
kinds of memories. The automatic modeling capabilities
have been demonstrated on an application example
showing that a user controllable level of accuracy can be
obtained while keeping the model simple. As future work
we plan to improve the accuracy of the model by using
non-linear leaf models and to include other parameters,
like cut-size, etc., in order to automatically produce power
models for module generators.
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