Optimizing the DRAM Refresh Count for Merged DRAM /Logic LSIs
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Abstract

In merged DRAM/logic LSIs, the DRAM portion could
suffer from shorter data retention time because of heat
and noise caused by the logic portion. Frequent refreshes
increase power consumption. Also, they disturb normal
DRAM accesses leading to performance degradation. In or-
der to overcome this problem, we propose several DRAM
refresh architectures. The basic idea is to eliminate unnec-
essary DRAM refreshes. We have estimated the DRAM re-
fresh count in executing benchmark programs under several
architecture models. As a result, in the most effective combi-
nation of the architectures, we have obtained more than 80%
reduction against a conventional DRAM refresh architecture
for most benchmark programs. In addition to it, even when
we have taken normal DRAM access into account, we have
obtained more than 50% reduction for several benchmarks.

1 Introduction

Merged DRAM/logic LSIs are expected to play an impor-
tant role in the “system-on-silicon” era [6] [8].

However, information stored in each DRAM cell could
be lost unless each bit is refreshed periodically. The period
which each DRAM cell retains the information is heavily
affected by the ambient temperature, because the charac-
teristic of MOS transistors are getting worse as the ambient
temperature rises. For example, the increase of the temper-
ature from 25°C to 70°C would result in reducing the data
retention time to 1/30 [2].

Moreover, the DRAM portion of such merged
DRAM/logic LSIs could suffer from lower data retention
time because of higher heat and noise [11] caused by the
logic portion on the same chip. It is known that DRAM
refreshes have some negative effects in the following man-
ners [4].

e Power Consumption: As is generally known,
DRAM refresh is major factor to increase the energy
consumption of DRAM.

e Performance: Since a DRAM refresh is performed
by reading a row, a normal memory access may con-
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Figure 1: Definitions

flict with the refresh and stall (called refresh-penalty).
This problem will deteriorate as the processor becomes
faster [3].

It might be necessary to reconsider refresh architectures
for DRAM of merged DRAM/logic LSIs. In this paper,
we propose several DRAM refresh architectures tailored to
them. The basic idea behind them is to eliminate unnec-
essary DRAM refreshes. In conventional DRAMs, DRAM
refreshes are performed to every row of its cell array with a
fixed time interval. On the other hand, our proposed archi-
tectures can select when and which row to refresh.

The rest of this paper is organized as follows: Sec-
tion 2 discusses issues on DRAM refresh. Section 3 proposes
DRAM refresh architectures and the method for reducing
the number of DRAM refreshes. Section4 presents some
simulation models, simulation environments and the simu-
lation results. Section5 concludes this paper and discusses
future work.

2 Backgrounds

2.1 Definitions

Data retention time (trer) is the time while each cell can
keep the information without being refreshed. All the bits
in a row of a DRAM matrix can be refreshed simultaneously
just by reading that row. Hence every row of a DRAM ma-
trix should be refreshed, or accessed, within a certain time
window. The time window is called refresh period (trer),
and the refresh period must be shorter than the data reten-
tion time of the worst cell of all. Refresh rate (Rrer) is
a tuple of the number of the rows and the refresh period,
such as “4096/64msec”. Refresh interval is the inverse of
the refresh rate.



Generally, if an access to a DRAM conflicts with a re-
fresh, the access is not served while the refresh has been
performed. The rate of such conflicts between refreshes and
normal DRAM accesses is called refresh-busy rate (v). It is
defined as follows:

(1a)
(1b)

v = RREF tRCMIn

where Nyow is the number of rows and trcmin is the mini-
mum cycle of DRAM access. trcmin is limited physically.

Here, the size of DRAM cell matrix (M) can be expressed
as follows:

M= Nrow . (2)
where Nioiumn is the number of columns. Since Neotumn
data-lines are driven simultaneously by one DRAM refresh,
the amount of data-line capacitance (Cpr) can be expressed
as follows:

Ncolumn,

CDT = Ncolumn N CD, (3)
where Cp is the capacitance of a data-line.

Here was a serious problem whenever we would like to
increase the memory size for conventional DRAM.If we in-
crease Neolumn, both of Cpr and the number of sense ampli-
fiers increase. It is not preferable, since it causes the increase
of power consumption. On the other hand, if we increase
Nyow, both of v and Cp increase. The former causes the
increase of refresh-penalty and the latter also increases the
power consumption. To solve these problems, both of Nrow
and N.oiumr have been doubled equally, and trrr have been
extended so far. Furthermore, to reduce Cpr charged in one
access, DRAM cell array has been divided into some sub-
‘arrays.

However, trer has the following limitation:

(4)

M
trer < mi{l {tpr(®)},
1=

where tpr(i) is the data retention time of the ith cell. In
merged DRAM /Logic LSIs, it seems difficult to continue
the conventional approach, since ¢tpr(%) might be limited
physically or shortened by both heat and noise.

In order to solve this problem, we propose decreasing the
refresh rate , Rrer, at some architecture level and redefine
Rrer specific for merged DRAM /logic LSIs as follows:

(5)

NREF
Rprer = (

N’row)
t )

trREF

where nrgr is the number of DRAM refreshes and ¢ is a
certain time period. Our strategy is to decrease nrer.

2.2
Energy(E) consumed by a DRAM is expressed as follows:

Es (/ AQAdt+/AQPdt) Vop,

where the following notation are used;

AQa:

Impact of DRAM Refresh on Energy Consumption

(6)

The amount of charge supplied to the memory array
in unit time.
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Table 1: Parameters

Clock frequency 100MHz
Refresh rate (Rrer) 4096 /tpE F
Cache miss rate (CMR) 5%
Memory references per instruction (M RPI) 1.4
Clock cycles per instruction (CPI) 0.5

AQp: The amount of charge supplied to peripheral circuits
in unit time.
Vpp: The power supply voltage.

It is known that decreasing Vpp, / AQadt and
/ AQpdt are essential for reducing the energy dissipa-

tion [2]. / AQadt can be expressed as follows:

/AQAdt = Neotumn - CD / AVpdt, )]

where AVp is the swing of the internal supply voltage.
Here, we assume the power consumption for a normal
read/write operation and a refresh operation are the same.

If every DRAM access is performed in trcmin, / AQadt

can be expressed as follows:

trc
/AQAdt = Ncolumn ) C’D *MA - / AVDdt, (8)
0

where n4 is the total number of DRAM accesses and defined
as follows:

9)

where nrw and npgr are the total number of read/write
operations and that of refresh operations, respectively.

Figure 2 shows nrw, nrepr and ns when a merged
DRAM/logic LSI with a processor and a cache has the char-
acteristic shown in Table 1. From Figure 2, we can see that
the refresh count increases drastically, if the refresh period
(trEF) is less than 20 msec and that decreasing the refresh
count helps reduce the power consumption.

Figure 3 shows the relative increase of na, or
nreF/nRW, varying both Nroy from 4 Kbit to 32 Kbit and
trer. We can see that the DRAM refresh count increases
as the number of rows(N,.w) increases and that shorter
data retention time(tgrgr) or refresh period(trer) affects
the power consumption and the memory performance.

There are some proposals for reducing the power con-
sumption in static, or standby, mode [12] [1] [5]. In the next
section, we propose a couple of architectures for reducing
the number of refreshes in both static and normal modes.

nA = NRW + NREF,

3 Architectures for Reducing DRAM Refresh

In this section, we propose some new architectures for re-
ducing the number of DRAM refreshes.
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3.1 Selective Refresh Architecture

Selective Refresh Architecture (SRA) allows DRAM refresh
to perform selectively on regions(e.g., rows).

In general, each data (data in the wide sense, i.e., vari-
ables, program texts, and so on) in the memory has a period
in which they are available. The period is referred to as a
lifetime. The data must be retained while it is in its life-
time. But, the data which is not read hereafter need not be
refreshed. We show an example of the implementation as
follows.

The DRAM controller provides a refresh flag per row.
Each row is refreshed when the corresponding refresh flag is
1 (see Fig.4). The processor provides a “store” instruction
that executes a normal store operation and sets the refresh
flag to 1 at the same time. On the other hand, the processor
provides two types of “load” instructions. One is the same
as traditional “load” instruction. The other, called “load
and reset RFLAG”, executes a normal load operation and
sets the refresh flag to 0 at the same time. The data can
be prepared by a “store” instruction, and if it will not be
required any longer, it can be abandoned by a “load and
reset RFLAG” instruction.

Figure 5 shows the SRA architecture in detail. If the sig-
nal SRE (means set refresh flag) is 1, the refresh flag selected
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Figure 5: SRA circuit

by the row address becomes 1. Thus, that row is started
refreshing. 4

In SRA, it is easy to know when and which row to start
refreshing, because refresh operations to a row is started
after the row has been accessed. On the other hand, it is
difficult to determine when and which row to stop refreshing.
We have the following two ideas to stop refreshing.

(1) Operating system or memory management unit: An op-
erating system or a memory management unit stop re-
freshing. This is probably the most simple method, but
brings some overheads.

(2) Static detection by a compiler: A compiler detects stat-

ically when and which data to abandon and embeds the

instructions which stop refreshing. This method can
control DRAM refresh more fine-grain than the above
methods, however it has the following two difficulties.

e Difficulty to detect data no longer needed: Since
most data is alive across procedures, a compiler
which can perform inter-procedural lifetime analy-
sis is required.

e Difficulty to detect rows no longer required refresh-
ing: Since a row may contain different data, it is
difficult to detect rows no longer needing refreshing.
Suppose that a row R contains two data: one is in
location a and the other is in locations 3. Even if
the data at location a can be abandoned, the row
R still need to be refreshed, since the data at loca-
tion' 8 may be alive. Present compiler-techniques
cannot analyze data location in memory so as to
reduce the number of refreshes.
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3.2 SRA scheme for Cache Memory System

The SRA scheme ,which refreshes only used rows, can re-
duce the number of refreshes on DRAM of which the data
is copied in external memory system. For example, the sys-
tem which provides a write-back cache can stop refreshing
to a row if all cache lines of the row would became dirty (see
Figure6). This is because each of these cache lines will be
written back inevitably. This technique seems to be suitably
for the systems which provides caches whose line size is the
same as the row size of a DRAM cell array [6] [10].

3.3 Variable Refresh Period Architecture

Variable Refresh Period Architecture (VRA) has multiple
refresh period and applies the most appropriate period to
each region (e.g., per Tow).

The data retention time of each cell in DRAM is differ-
ent [12]. Furthermore, bad cells, which have the very short
data retention time, is fairly little. On the other hand, the
real data retention time of most cells (called normal cells)
is longer than that of bad cells. In conventional DRAMs,
refresh periods of all rows are fixed to less than the worst
data retention time. This architecture can make use of the
real data retention time corresponding to the data retention
time of the good rows. For example, the following imple-
mentation is possible.

The DRAM controller provides refresh counter and re-
fresh interval table per row (see Fig.7). When the refresh
counter becomes 0, the corresponding row will be refreshed.
At the same time, the refresh counter will return to the cor-
responding value of the refresh interval table. The DRAM
refresh count can be reduced by setting the refresh interval
table to an appropriate value.

However, this implementation lacks reality because (i)
more than two refreshing operations for different rows may
be required at a same time, (ii) this implementation may suf-
fer from high hardware cost because it requires the plural
refresh counters. In order to overcome the above problems,
we have the following idea: Divide the refresh periods of each
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Table 2: Hardware cost
Area(mm®)
16M-bit Conventional DRAM 103.7
16M-bit SRA DRAM 103.7 4+ 5.2
16M-bit VRA DRAM (2-level) 103.7 + 7.5
16M-bit VRA DRAM (4-level) || 103.7 + 14.5
16M-bit VRA DRAM (8-level) 103.7 + 21.2

row into N time regions. The row in ith region is performed
refreshes with a refresh period (7). Prepare the single re-
fresh counter which can count the least common multiple of
N periods. The row in ith region is refreshed when the re-
fresh counter becomes multiples of T;. In particular, it will
keep the lower hardware cost by setting all refresh periods
to the multiple values of the shortest period [3].

Figure 8 shows the VRA architecture in detail. If the
signal SRTE (means set refresh interval table) is 1, the re-
fresh interval table selected by the row address is set to the
value of SRT. It is not necessary to change the refresh inter-
val table continually, but occasionally or only startup time.
Though the refresh interval table in this figure is designed
as registers, the refresh interval table can be made of PROM
or EPROM [9].

3.4 Hardware Cost

We estimate the area of supplemental hardware in fig-
ure 5 and figure 8. We design the supplemental hardware
with 0.5um/poly-1/metal-2 process and estimate their area.
Then, we compare them to a 16M-bit DRAM designed with
0.5¢ m/poly-3/metal-2 process [12]. Table 2 shows the re-
sults. Since their processes are different each other, the re-
sult is a rough comparison.

4 Experiments

We simulate proposed architectures, SRA and VRA, We ex-
ecute some benchmark programs and estimate the DRAM
refresh count under the some simulation models.

4.1 Experimental Environment and Assumptions

We execute several programs in SPECY92 and SPEC95
benchmark suites on Sparc Sun Solaris2.5. These programs
are compiled by GNU C Compiler.

We assume that the system satisfies the following condi-
tions.
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o The DRAM has a capacity which is only required by
the executed benchmark program.

e The program text is stored in the ROM.

o Each DRAM refresh is performed for just one row of
the DRAM matrix.

e The number of cells in each row is 4096 and the refresh
rate is 4096/64 msec (We assume it is reasonable.).

o The DRAM module consists of one bank.

4.2 Simulation models

Here, we introduce the following five simulation models and
an original model as the standard of this simulation.

i. Original: This model performs the DRAM refreshes to
all rows with a single period which treats the worst cell
of all.

ii. SRA(1): This model simulates SRA. The lifetime of
each data is from the time when the data is accessed,
or written, for the first time through the time when
the execute of the program finishes. Thus, this model
simulates method (1) in the latter of Section3.1.

SRA(2): This model is similar to the above model,
SRA(1). However, the lifetime of each data is from the
time when the data is accessed, or written, for the first
time through the time when the data is accessed, or
read, at last. Thus, this model simulates method (2) in
the latter of Section3.1.

VRA: This model simulates VRA. The refresh period
is different among rows. In order to decide the refresh
period of each row, we approximate the data retention
time of every cell with according to the actual measure-
ment value [12] (see Fig.9). We assume the distribution
of the data retention time is uniform and the refresh in-
terval table has ideal value. Thus, each row is refreshed
with the most appropriate refresh period.

iii.

iv.

v. SRA(1)+VRA: This model simulates the architecture
which has the functions of both SRA and VRA. Con-
sequently, this model is able to perform refreshing with
the most appropriate periods. The lifetime of each data
is the same as SRA(1).
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Figure 11: Reduction rate of the DRAM activation count
relative to the original model.

vi. SRA(2)+VRA: This model similar to the above
model, SRA(1)+VRA. However, the lifetime of each
data is the same as SRA(2). Thus, this model should
bring the ideal reduction in these proposed architec-
tures.

4.3 Results

Figure 10 shows the reduction rate of the DRAM rafresh
count. First, both SRA(1) and SRA(2) reduce the number
of DRAM refreshes by 50% to 10% of the original model.
This means the effect of SRA depends on the behavior of ap-
plications. Moreover, SRA(2) reduces the number of DRAM
refreshes by 60% to 5% of SRA(1). This is because SRA(2)
takes careful account of lifetime analysis than SRA(1). For
example, SRA(1) brings less effect for applications which
allocate large data in the early time.

Secondly, the results of VRA report an average of about
75% reduction, because the approximation of data retention
time reflects this result directly.

Thirdly, the results of SRA+VRA show about the values
multiplied those of SRA and those of VRA together.

Moreover, we estimate the DRAM activation count,



which is the sum of DRAM refresh count and normal DRAM
access count. In this estimation, we assume the following
conditions in addition to the assumptions of Section4.1.

o The system has one level cache, and its miss rate is
5% (this number can be considered as a modest miss
rate).

e The block size of the cache is below the row size, or
4096 bits (512 bytes).

e The clock frequency of the processor is 100MHz.

Figure 11 shows the reduction rate of the DRAM activa-
tion count. The reduction rate of DRAM activation count
is more application-dependent than that of DRAM refresh
count. It is due to the ratio of execution time to the normal
access count.

Here, note that this simulation assumes the DRAM is
only in the normal mode, in which normal DRAM accesses
are occurred continuously. In real systems, however, the
DRAM is frequently put into static mode, in which it is
only keeping memory by performing refreshes, as a conse-
quence of I/O, interruptions and so on. If it is taken into
account that the DRAM is sometimes put in the standby
mode, the proportion of the DRAM refresh count to the
DRAM activation count will increase. Hence the reduction
rate of the DRAM activation count will certainly overcome
these results.

5 Conclusions

In this paper, we have discussed the issues on DRAM re-
freshes in merged DRAM/logic LSIs. In order to overcome
this problem, we have proposed a couple of DRAM refresh
architectures, SRA and VRA. SRA can reduce the number
of DRAM refreshes by selecting the row to refresh. VRA
¢an reduce it by varying the refresh period per region.

‘We have estimated the DRAM refresh count by executing
some benchmark programs under several architecture mod-
els. As a result, in the most effective combination of the ar-
chitectures, or SRA(2)+VRA, we have obtained more than
80% reduction against a conventional DRAM refresh archi-
tecture for most benchmark programs. Furthermore, even
when we have taken normal DRAM access into account, we
have obtained more than 50% reduction for several bench-
marks.

By the way, we have another approach which reduces
the number of DRAM refreshes. Each data whose lifetime
overlaps each other is allocated to a common row [7].

For future work, we will establish the method to real-
ize proposed architectures, how to determine values of the
refresh interval table, how to analyze the lifetime and so
on. Moreover, we will estimate the hardware cost of each
implementation.
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