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Abstract
Oscillators are key components of electronic systems. Undesired perturbations,
i.e. noise, in practical electronic systems adversely affect the spectral and tim-
ing properties of oscillators resulting inphase noise, which is a key perfor-
mance limiting factor, being a major contributor to bit-error-rate (BER) of RF
communication systems, and creating synchronization problems in clocked and
sampled-data systems. In this paper, we first present a theory and numerical
methods for nonlinear perturbation and noise analysis of oscillators described
by a system ofdifferential-algebraic equations(DAEs), which extends our re-
cent results on perturbation analysis of autonomous ordinary differential equa-
tions (ODEs). In developing the above theory, we rely on novel results we es-
tablish for linear periodically time-varying (LPTV) systems: Floquet theory for
DAEs. We then use this nonlinear perturbation analysis to derive the stochastic
characterization, including the resulting oscillator spectrum, of phase noise in
oscillators due tocolored(e.g., 1= f noise), as opposed to white, noise sources.
The case of white noise sources has already been treated by us in a recent publi-
cation. The results of the theory developed in this work enabled us to implement
a rigorous and effective analysis and design tool in a circuit simulator for low
phase noise oscillator design.

1 Introduction
Oscillators are ubiquitous in physical systems, especially electronic
and optical ones. For example, in radio frequency (RF) communica-
tion systems, they are used for frequency translation of information
signals and for channel selection. Oscillators are also present in digital
electronic systems which require a time reference, i.e., a clock signal,
in order to synchronize operations.

Noise is of major concern in oscillators, because introducing even
small noise into an oscillator leads to dramatic changes in its frequency
spectrum and timing properties. This phenomenon, peculiar to os-
cillators, is known asphase noiseor timing jitter. A perfect oscilla-
tor would have localized tones at discrete frequencies (i.e., harmon-
ics), but any corrupting noise spreads these perfect tones, resulting in
high power levels at neighboring frequencies. This effect is the ma-
jor contributor to undesired phenomena such as interchannel interfer-
ence, leading to increased bit-error-rates (BER) in RF communication
systems. Another manifestation of the same phenomenon, timing jit-
ter, is important in clocked and sampled-data systems: uncertainties
in switching instants caused by noise lead to synchronization prob-
lems. Characterizing how noise affects oscillators is therefore crucial
for practical applications. The problem is challenging, since oscilla-
tors constitute a special class among noisy physical systems: theirau-
tonomousnature makes them unique in their response to perturbations.

In a recent publication [1] (which has a brief review of previous
work on phase noise), we presented a theory and numerical methods
for practical characterization of phase noise in oscillators described by
a system ofordinary differential equations(ODEs) withwhite noise
sources. In this paper, we extend our results to oscillators described
by a system ofdifferential-algebraic equations(DAEs) with colored
as well as white noise sources. The extension to DAEs and colored
noise sources is crucial for implementing an effective analysis and de-
sign tool for phase noise in a a circuit simulator. Almost all of the
circuit simulators use the MNA (Modified Nodal Analysis) formula-
tion, which is basically a system of DAEs. Colored noise sources such
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as 1= f noise has a significant impact on phase noise of practical oscil-
lators. Understanding how colored noise sources affect the oscillator
spectrum is crucial for low phase noise, low cost, integrated oscillator
designs that can meet the stringent specifications of today’s RF com-
munications applications.

First, in Section 2, we establish the equivalent of Floquet theory
(and some related results) for periodically time-varying systems of lin-
ear DAEs, which we then use in Section 3 to develop the theory and
numerical methods for nonlinear perturbation analysis of autonomous
DAEs. In Section 4, we analyze the case of colored noise perturbations
and obtain a stochastic characterization of the phase deviation. Models
for burst (popcorn) and 1= f (flicker) noise, the most significant col-
ored noise sources in IC devices, are discussed in Section 5. Then,
in Section 6, we calculate the resulting oscillator spectrum with phase
noise due to a colored noise source. Our treatment of phase noise due
to colored noise sources is general, i.e., it is not specific to a partic-
ular type of colored noise source. Hence, our results are applicable
to the characterization of phase noise due to not only 1= f and burst
noise, but also other types of possibly colored noise, e.g., substrate or
power supply noise. In Section 7, we consider the presence of white
and colored noise sources together, and derive the resulting oscilla-
tor spectrum. Finally, in Section 8, we present simulation results in
phase noise characterization of oscillators. All proofs are omitted due
to space limitations.

2 Floquet theory for DAEs
We now consider then-dimensional inhomogeneous linear system of
DAEs1

d
dt

(C(t)x)+G(t)x+b(t) = 0 (1)

where the matrixC(�) : IR!IRn�n is not necessarily full rank, but we
assume that its rank is a constant,m� n, as a function oft. C(t) and
G(t) areT-periodic. The homogeneous system corresponding to (1) is
given by

d
dt

(C(t)x)+G(t)x= 0 (2)

Solution and related subspaces
WhenC(t) is rank deficient, (2) doesnot have solutions for all initial
conditionsx(0) = x0 2 IRn. We assume that the DAEs we are dealing
with are index-1 [2]. Then, the solutions of the homogeneous system
(2) lie in anm-dimensional subspace defined by [2]

S(t) =
�

z2 IRn :
�
G(t)+Ċ(t)

�
z2 imC(t)

	
(3)

Also, everyx(t) 2 S(t) is a solution of (2) [2]. LetN(t) be the null
space ofC(t):

N(t) = kerC(t) (4)

which is ann�m= k-dimensional subspace. For index-1 DAEs, we
have [2, 3]S(t)\N(t) = f0g and

S(t)�N(t) = IRn (5)
1Note that the time derivative operates on the productC(t)x, not onx only. It will

become clear in Section 3 why we use this form.



where � denotesdirect sum decomposition. For our purposes,
it suffices to know that (5) is equivalent to the following: If
Z(t) = fz1(t);z2(t); : : : ;zm(t)g is a basis forS(t), and W(t) =
fw1(t);w2(t); : : : ;wk(t)g is a basis forN(t), thenZ(t)[W(t) is a basis
for IRn.
Adjoint system and related subspaces
Before we discuss the forms of the solutions of (2) and (1), we would
like to introduce theadjoint or dual system corresponding to (2), and
the related subspaces. The adjoint system corresponding to (2) is given
by

CT(t)
d
dt

y�GT(t)y= 0 (6)

Note that the time derivative operates ony only, not on the product
CT(t)y, in contrast with (2). It will become clear shortly why (6) is
the form for the adjoint of (2). Ify(t) is a solution of (6) andx(t) is a
solution of (2), then we have

d
dt

�
yT(t)C(t)x(t)

�
=

�
d
dt

yT(t)

�
C(t)x(t)+yT (t)

d
dt

(C(t)x(t))

= yT(t)G(t)x(t)�yT (t)G(t)x(t)

= 0

ThusyT(t)C(t)x(t) = yT(0)C(0)x(0) for all t � 0. Let

ST(t) = fz2 IRn : GT(t)z2 imCT(t)g (7)

and

NT(t) = kerCT(t) (8)

ThenST(t)\NT(t) = f0g andST(t)�NT (t) = IRn.
State-transition matrix and the solution
Having introduced the adjoint system for (2), we now consider the
state-transition matrix and the solutions for (2) and (1).
Theorem 2.1 The solutionφ of (2) satisfying the initial condition
x(0) = x0 2 S(0) is given by

φ(t;x0) = Φ(t;0)x0 (9)

where the “state transition matrix”Φ(t;s) is given by2

Φ(t;s) =U(t)D(t�s)V(s)C(s) (10)

where

D(t�s) = diag[exp(µ1(t�s)); : : : ;exp(µm(t�s));0; : : : ;0| {z }
k

]

U(t) : n�n and V(t) : n�n are both T-periodic and nonsingular (for
all t), and satisfy

V(t)C(t)U(t) =

�
Im 0
0 0

�
(11)

µi are called the characteristic (Floquet) exponents of (2), andλi =
exp(µiT) are called the (Floquet) characteristic multipliers. Note that
(2) hask= n�m Floquet multipliers that are 0.

Let ui(t) be the columns ofU(t), andvT
i (t) be the rows ofV(t):

U(t) = [u1(t); : : : ;um(t);um+1(t); : : : ;un(t)] (12)

VT(t) = [v1(t); : : : ;vm(t);vm+1(t); : : : ;vn(t)] (13)

fu1(t); : : : ;um(t)g is a basis forS(t), andfum+1(t); : : : ;un(t)g is a ba-
sis for N(t). Similarly, fv1(t); : : : ;vm(t)g is a basis forST(t), and
fvm+1(t); : : : ;vn(t)g is a basis forNT(t). For 1� i � m, x(t) =
ui(t)exp(µit) is a solution of (2) with the initial conditionx(0) = ui(0).
Similarly, for 1� i �m, y(t) = vi(t)exp(�µit) is a solution of (6) with
the initial conditiony(0) = vi(0).

2Authors in [3] derive a similar result for the state-transition matrix of a DAE system.

Remark 2.1 The following orthogonality/biorthogonality conditions
hold:

vT
j (t)C(t)ui(t) = δi j i = 1; : : : ;m j = 1; : : : ;m (14)

vT
j (t)C(t)ui(t) = 0 i = 1; : : : ;m j = m+1; : : : ;n (15)

vT
j (t)G(t)ui(t) = 0 i = m+1; : : : ;n j = 1; : : : ;m (16)

(14) and (15) follow from (11). (16) follows from the fact that
vi(t)exp(�µit); j = 1; : : : ;m is a solution of (6), and ui(t); i = m+
1; : : : ;n is in the null space N(t) of C(t).
The state transition matrixΦ(t;s) in (10) can be rewritten as

Φ(t;s) =
m

∑
i=1

exp(µi(t�s))ui(t)v
T
i (s)C(s) (17)

Theorem 2.2 The solutionφ of (1) satisfying the initial condition
x(0) = x0 2 S(0) (for b(0) = 0) is given by

φ(t;x0) = Φ(t;0)x0+

Z t

0
Ψ(t;s)b(s)ds+Γ(t)b(t) (18)

where

Ψ(t;s) =U(t)D(t�s)V(s) (19)

andΓ(t) : n�n is a T-periodic matrix of rank k which satisfies

Γ(t)C(t)[u1(t); : : : ;um(t)] = 0 (20)

i.e., the null space ofΓ(t) is spanned byfC(t)u1(t); : : : ;C(t)um(t)g.
From (10) and (19), the solutions of the homogeneous system (2) and
the inhomogeneous system (1) are respectively given by

xH (t) =
m

∑
i=1

exp(µit)ui(t)v
T
i (0)C(0)x(0)

xIH (t) = xH(t)+
m

∑
i=1

ui(t)
Z t

0
exp(µi(t�s))vT

i (s)b(s)ds+Γ(t)b(t)

If the initial conditionx(0) = x0 is not inS(0), i.e., if it is not a consis-
tent initial condition for (2), thenx(t) = Φ(t;0)x0 is still a solution of
(2), but it does not satisfyx(0) = x0. Any x0 2 IRn can be written as
x0 = x0e f f + x0N wherex0e f f 2 S(0) andx0N 2 N(0), which follows
from (5). Then

Φ(t;0)x0 =U(t)D(t)V(0)C(0)x0 = Φ(t;0)x0e f f

sinceC(0)x0 =C(0)x0e f f. Hence,x(t) = Φ(t;0)x0 is a solution of (2)
satisfying theeffectiveinitial conditionx(0) = x0e f f.
State-transition matrix for the adjoint system
The state-transition matrixΩ(t;s) for the adjoint system (6) isnotsim-
ply given byΦT(s;t) in terms of the state transition matrixΦ(t;s) =
U(t)D(t� s)V(s)C(s) for (2), as it would be the case for ODEs. In-
stead, it is given by

Ω(t;s) = VT(t)D(s� t)UT (s)CT(s)

=
m

∑
i=1

exp(�µi(t�s))vi(t)u
T
i (s)C

T(s)

Monodromy matrix
We define the monodromy matrix for (2) asΦ(T;0), and it is given by

Φ(T;0) =
m

∑
i=1

exp(µiT)ui(T)vT
i (0)C(0) =

m

∑
i=1

exp(µiT)ui(0)v
T
i (0)C(0)

ui(0) for i = 1; : : : ;m are the eigenvectors of the monodromy ma-
trix Φ(T;0) with corresponding eigenvalues exp(µiT), andui(0) for



i = m+1; : : : ;n are the eigenvectors of the monodromy matrixΦ(T;0)
corresponding to thek-fold eigenvalue 0.vi(0) arenot the eigenvec-
tors of thetransposedmonodromy matrixΦ(T;0)T . Here, we must
consider the monodromy matrixΩ(T;0) for the adjoint system (6),
which is given by

Ω(T;0) =
m

∑
i=1

exp(�µiT)vi(0)u
T
i (0)C

T(0) (21)

Now, vi(0) for i = 1; : : : ;mare the eigenvectors of the monodromy ma-
trix Ω(T;0) with corresponding eigenvalues exp(�µiT), andvi(0) for
i = m+1; : : : ;n are the eigenvectors of the monodromy matrixΩ(T;0)
corresponding to thek-fold eigenvalue 0.
Numerical computation of the monodromy matrix
The eigenvalues of the monodromy matrix determine the stability of
(2) [4, 5]. Hence, one would like to calculate the monodromy ma-
trix and its eigenvalues. Authors in [5] define areducedmonodromy
matrix for (2) as anonsingular m�m matrix, as opposed to the mon-
odromy matrix we defined which isn�n and hask eigenvalues equal
to 0. The monodromy matrix they define has the same eigenvalues
as the one we define, except for thek-fold eigenvalue 0. For the nu-
merical computation of the reduced monodromy matrix, as proposed
by the authors in [5], one needs to calculatem linearly independent
consistent initial conditions for (2). With our definition, we avoid hav-
ing to computem linearly independent consistent initial conditions for
(2). Instead, we integrate (2) with aneffectivematrix (rankm) initial
conditionX0e f f : n�n (columns of which are consistent initial condi-
tions for (2)) fromt = 0 to t = T to calculate the monodromy matrix
as follows: In numerical integration of (2), we set the initial condition
X(0) = In, the n-dimensional identity matrix. From (5), we can write
In = X0e f f +XkerC where the columns ofX0e f f lie in S(0) of (3)3, and
the columns ofXkerC lie in N(0) (null space ofC(0)). X(0) = X0e f f is
effectively realized during numerical integration by

C(0)In =C(0)X0e f f +C(0)XkerC=C(0)X0e f f

Note that during the numerical integration of (2), one does not need
to calculateX0e f f itself, but onlyC(0)X0e f f =C(0)In. The numerical
integration of (2) is started with an order 1 method (i.e., backward
Euler) at t=0 that requires onlyC(0)X(0) to compute theX(t) at the
first time step. If one would like to obtain the effective initial condition
X0e f f, a backwards step in time (with the same time step) can be taken
after the first forward time step is computed.4 This is a much more
efficient way of computing consistent initial conditions for (2) then the
one used in [5].
3 Perturbation analysis for autonomous DAEs

Consider the system of autonomous DAEs:

d
dt

q(x)+g(x) = 0 (22)

We assume that (22) has an asymptotically orbitally stable periodic
solutionxs(t) with periodT, i.e., a stable limit cycle in the solution
space. Hence

d
dt

q(xs)+g(xs) = 0 (23)

Let us take the derivative of both sides of (23) with respect tot:

d
dt

 
d
dx

q(x)

����
x=xs

ẋs

!
+

d
dx

g(x)

����
x=xs

ẋs = 0 (24)

Thus,ẋs(t) is aT-periodic solution of the LPTV system of DAEs

d
dt

(C(t)x)+G(t)x= 0 (25)

3They also spanS(0), since the columns ofIn are linearly independent.
4The author would like to thank Hans Georg Brachtendorf for pointing this out.

where

C(t) =
d
dx

q(x)

����
x=xs

(26)

G(t) =
d
dx

g(x)

����
x=xs

(27)

Let Φ(t;s) be the state transition matrix of (25). Since (25) has aT-
periodic solution ˙xs(t), we can choose, without loss of generality,

u1(t) =�ẋs(t) (28)

and

λ1 = exp(µ1T) = 1 (29)

in the representation ofΦ(t;s) in (17). Hence, one of the Floquet (char-
acteristic) multipliers of (25) is 1. One can show that if the remaining
m�1 Floquet multipliers have magnitudes less than 1, i.e.,

jλi j= jexp(µiT)j< 1 i = 2; : : : ;m (30)

thenxs(t) is an asymptotically orbitally stable solution of (22).
Lemma 3.1 If xs(t) is a solution of (22), then xs(t+α(t)) is a solution
of

d
dt

q(x)+g(x)+c1(t)C(t +α(t))u1(t +α(t)) = 0 (31)

where the scalars c1(t) andα(t) satisfy

d
dt

α(t) = c1(t)

c1(t) = 0 for t < 0 alpha(0) = 0

Now, consider a small, additive, state-dependent perturbation of the
form B(x)b(t) to (22) (whereB(�) : IRn!IRn�p andb(�) : IR!IRp):

d
dt

q(x)+g(x)+B(x)b(t) = 0 (32)

Next, we decompose the (small) perturbationB(x)b(t) into its compo-
nents using

fC(t +α(t))u1(t +α(t)); : : : ;C(t +α(t))um(t +α(t));
G(t +α(t))um+1(t +α(t)) : : : ;G(t +α(t))un(t +α(t))g

as the basis5, whereui(t) are the columns ofU(t) of Section 2

B(x)b(t) =
m

∑
i=1

ci(x;α(t);t)C(t +α(t))ui (t +α(t))+

n

∑
i=m+1

ci(x;α(t);t)G(t +α(t))ui(t +α(t))
(33)

where the coefficientsci(x;α(t);t); 1� i �m are given by

ci(x;α(t);t) = vT
i (t +α(t))B(x)b(t) for 1� i �m (34)

which was obtained using the orthogonality/biorthogonality relation-
ships in (14) and (16). We distinguish the component in (33) along
C(t +α(t))u1(t +α(t)) =�C(t +α(t))x́s(t +α(t)) from the rest:

b1(x;t) = c1(x;α(t);t)C(t +α(t))u1(t +α(t))
b̃(x;t) = B(x)b(t)�b1(x;t)

5Recall that the columns ofU(t) form a basis for IRn for index-1 DAEs. It can
be shown thatfC(t+α(t))u1(t+α(t)); : : : ;C(t+α(t))um(t +α(t));G(t+α(t))um+1(t+
α(t)) : : : ;G(t+α(t))un(t+α(t))g also forms a basis for IRn for the index-1 DAE case.



Theorem 3.1

1. xs(t +α(t)) solves

d
dt

q(x)+g(x)+b1(x;t) =
d
dt

q(x)+g(x)+

vT
1 (t +α(t))B(x)b(t)C(t +α(t))u1(t +α(t)) = 0

where

d
dt

α(t) = vT
1 (t +α(t))B(xs(t +α(t))b(t) α(0) = 0 (35)

2. xs(t +α(t))+z(t) solves

d
dt

q(x)+g(x)+B(x)b(t) = 0 (36)

where z(t) doesnot grow without bound and it indeed stays
small (within a factor of b(t)). If b(t) = 0; t > tc for some
tc > 0, then z(t)!0 as t!∞, and xs(t +α(tc)) solves (36)
for t!∞.

We considered the perturbed system of DAEs in (32), and obtained the
following results: The unperturbed oscillator’s periodic responsexs(t)
is modified toxs(t +α(t)) + z(t) by the perturbation, whereα(t) is a
changing time shift, orphase deviation, in the periodic output of the
unperturbed oscillator,z(t) is an additive component, which we term
the orbital deviation, to the phase-shifted oscillator waveform.α(t)
andz(t) are such that:α(t) will, in general, keep increasing with time
even if the perturbationb(t) is always small, and if the perturbation
is removed,α(t) will settle to a constant value. The orbital deviation
z(t), on the other hand, will always remain small (within a bounded
factor of b(t)), and if the perturbation is removed,z(t) will decay to
zero. Furthermore, we derived anonlinear differential equation(35)
for the phase deviationα(t).
Numerical methods
For perturbation analysis and phase noise/timing jitter characteriza-
tions of an oscillator, one needs to calculate the steady-state periodic
solutionxs(t) and the periodic vectorv1(t) that appears in (35). Below,
we describe the numerical computation ofv1(t).

1. Compute the large-signal periodic steady-state solutionxs(t) for
0� t �T by numerically integrating (22), possibly using a tech-
nique such as the shooting method [6].

2. Compute the monodromy matrixΩ(�T;0)6 in (21) by numeri-
cally integrating

CT(t)
d
dt

Y�GT(t)Y = 0 Y(0) = In (37)

from 0 to�T, backwards in time, whereC(t) andG(t) are de-
fined in (26). Note thatΩ(�T;0) =Y(�T). Note that it is not
numerically stable to calculateΩ(T;0) by integrating (37)for-
ward in time. SinceC(t) is not full rank, in general,Y(0) = In
can not be realized in solving (37). Please see the discussion at
the end of Section 2.

3. Computeu1(0) usingu1(0) =�ẋs(0).
4. v1(0) is an eigenvector ofΩ(�T;0) corresponding to the eigen-

value 1. To computev1(0), first compute an eigenvector of
Ω(�T;0) corresponding to the eigenvalue 1, then scale this
eigenvector so that

v1(0)
T C(0)u1(0) = 1 (38)

is satisfied. For some oscillators (encountered quite often in
practice), there can be “many” other eigenvalues ofΩ(�T;0)
with magnitudes very close to 1, and they may not benumer-
ically distinguishable from the eigenvalue that is theoretically
equal to 1. In this case, to choose the correct eigenvector of
Ω(�T;0) asv1(0), calculate the inner products of these eigen-
vectors withC(0)ẋs(0) and choose the vector which has the
largest inner product. Theoretically, the inner products of the
“wrong” eigenvectors withC(0)ẋs(0) are 0.

6Note the minus sign in front ofT.

5. Compute the periodic vectorv1(t) for 0� t � T by numerically
integrating the adjoint system backwards in time

CT(t)
d
dt

y�GT(t)y= 0 (39)

usingv1(0) = v1(T) as the initial condition. Note thatv1(t) is a
periodic steady-state solution of (39) corresponding to the Flo-
quet multiplier that is equal to 1. It is not numerically stable to
calculatev1(t) by numerically integrating (39)forward in time.

In implementing the above algorithm, one can increase the efficiency
by saving LU factored matrices that need to be calculated in Step 2
and reuse them in Step 5. One can also avoid calculating the full
n�n monodromy matrixΩ(�T;0) explicitly, and use iterative meth-
ods (which require only the computation of products ofΩ(�T;0) with
some vectors) at Step 4 to calculate the eigenvector ofΩ(�T;0) that
corresponds to the eigenvalue 1.

4 Stochastic characterization of the phase deviation
with colored noise sources

We now find the probabilistic characterisation of the phase deviation
α(t) (which satisfies the differential equation (35)) as a stochastic pro-
cess when the perturbationb(t) is a (one-dimensional) stationary, zero-
mean (E [b(t)] = 0), Gaussian colored stochastic process7. Let RN(τ)
be the autocovariance function, andSN( f ) be the power spectral den-
sity, of the stationary Gaussian stochastic processb(t):

RN(τ) = E [b(t + τ=2)b(t� τ=2)] (40)

SN( f ) = F fRN(τ)g=
Z ∞

�∞
RN(τ)exp(� j2π f τ)dτ (41)

Note that RN(τ) is a real and even function ofτ. Let v(t) =
vT

1 (t)B(xs(t)), which is a scalar (bothv1(:) andB(:) are vectors) that is
periodic int with periodT. Hence, (35) becomes

dα(t)
dt

= v(t +α(t))b(t); α(0) = 0 (42)

In this section, we will follow the below procedure to find an adequate
probabilistic characterization of the phase deviationα(t) due to the
colored noise sourceb(t) for our purposes:

1. We first derive apartial integro-differential equationfor
the time-varying marginalprobability density function(PDF)
pα(η;t) of α(t) defined as

pα(η;t) =
∂P (α(t)� η)

∂η
t � 0 (43)

whereP (:) denotes theprobability measure.
2. We then show that the PDF of a Gaussian random variable,

“asymptotically” with t, solves this partial integro-differential
equation. A Gaussian PDF is completely characterised by the
mean and the variance. We show thatα(t) becomes (under
some conditions onRN(τ) or SN( f )), for “large” (to be con-
cretized)t, a Gaussian random variable with a constant mean
and a variance that is given by

var(α(t)) = β
Z t

0

Z t

0
RN(t1� t2)dt1 dt2 (44)

Theorem 4.1 If b(t) is a stationary, zero-mean, Gaussian stochastic
process with autocovariance function RN(τ), and ifα(t) satisfies (42),
then the time-varying marginal PDF pα(η;t) of α satisfies

∂pα(η;t)
∂t

=�
∂

∂η

�
∂v(t +η)

∂η

Z t

0
v(τ+η)RN(t� τ)pα(η;t)dτ

�
+

∂2

∂η2

�
v(t +η)

Z t

0
v(τ+η)RN(t� τ)pα(η;t)dτ

�
(45)

7The extension to the case whenb(t) is a vector of uncorrelated white and colored noise
sources is discussed in Section 7. Noise sources in electronic devices usually have inde-
pendent physical origin, and hence they are modeled as uncorrelated stochastic processes.
Hence, we consider uncorrelated noise sources. However, the generalization of our results
to correlated noise sources is trivial.



with the initial/boundary condition for t= 0

pα(η;0) = δ(η) (46)

i.e., E [α(0)] = 0 and E

�
α2(0)

�
= 0.

The partial integro-differential equation (45) for the time-varying
marginal PDFpα(η;t) of α(t) is a generalization of a partial differ-
ential equation known as theFokker-Planck equation[7, 8] derived for
the PDF ofα(t) satisfying (42) whenb(t) is a white noise process,
which is given below

∂pα(η;t)
∂t

=�
∂

∂η

�
λ

∂v(t +η)
∂η

v(t +η)pα(η;t)
�
+

1
2

∂2

∂η2

�
v2(t +η)pα(η;t)

� (47)

where 0� λ� 1 depends on the definition of the stochastic integral [7]
used to interpret the stochastic differential equation in (42) withb(t)
as a white noise process. Ifb(t) is a white noise process, thenα(t) is
a Markov process. However, whenb(t) is colored,α(t), in general,
is not Markovian. (47) is valid for any initial/boundary condition. On
the other hand, (45) is valid only for initial/boundary conditions of the
type

pα(η;0) = δ(η�α0) (48)

for someα0.
We would like to solve (45) forpα(η;t). We do this by first solving

for thecharacteristic function F(ω;t) of α(t), which is defined by

F(ω;t) = E [exp( jωα(t))] =
Z ∞

�∞
exp( jωη) pα(η;t)dη

v(t) is T-periodic, hence we can expandv(t) into its Fourier series:

v(t) =
∞

∑
i=�∞

Vi exp( jiω0t); ω0 =
2π
T

Lemma 4.1 The characteristic function ofα(t), F(ω;t), satisfies

∂F(ω;t)
∂t

=
∞

∑
i=�∞

∞

∑
k=�∞

ViV
�
k exp( jω0it )

�
�ω0iω�ω2

�
Z t

0
RN(t� τ)exp(� jω0kτ)F(ω0(i�k)+ω;t)dτ

(49)

where� denotes complex conjugation.
Theorem 4.2 (49) has a solution that becomes (with time) the char-
acteristic function of a Gaussian random variable:

F(ω;t) = exp( jωµ(t)�
ω2σ2(t)

2
) (50)

solves (49) for t large enough such that

exp

�
�

1
2

ω2
0(i�k)2σ2(t)

�
�

�
1 i = k
0 i 6= k (51)

where

dµ(t)
dt

=
∞

∑
i=�∞

jω0i jVi j
2
Z t

0
RN(t� τ)exp( jω0i(t� τ))dτ (52)

dσ2(t)
dt

=
∞

∑
i=�∞

2jVi j
2
Z t

0
RN(t� τ)exp( jω0i(t� τ))dτ (53)

Assumption 4.1

Z t

0
RN(t� τ)exp( jω0i(t� τ))dτ�

( R t
0 RN(t� τ)dτ i = 0

0 i 6= 0
(54)

This is satisfied when thebandwidthof the colored noise source is
much lessthan the oscillation frequencyω0, or equivalently, thecor-
relation widthof the colored noise source in time is muchlarger than
the oscillation periodT = 2π=ω0. We will further comment on this
condition in Section 5, where we discuss the models for burst and 1= f
noise. With (54), (52) and (53) become

dµ(t)
dt

= 0
dσ2(t)

dt
= 2jV0j

2
Z t

0
RN(t� τ)dτ (55)

From (55)

σ2(t) = 2jV0j
2
Z t

0

Z t2

0
RN(t2� t1)dt1dt2 (56)

follows trivially. Since, the autocovarianceRN(τ) is an even function
of τ, (56) can be rewritten as

σ2(t) = jV0j
2
Z t

0

Z t

0
RN(t2� t1)dt1dt2 (57)

Thus, we obtained (44).

Lemma 4.2 The varianceσ2(t) of α(t) in (56) can be rewritten with
a single integral as follows:

σ2(t) = 2jV0j
2
Z t

0
(t� τ)RN(τ)dτ (58)

It can also be expressed in terms of the spectral density of the colored
noise source b(t) as follows:

σ2(t) = 2jV0j
2
Z ∞

�∞
SN( f )

(1�exp( j2π f t))
4π2 f 2 d f (59)

5 Models for burst (popcorn) and1= f (flicker) noise
Burst noise
The source of burst noise is not fully understood, although it has been
shown to be related to the presence of heavy-metal ion contamina-
tion [9]. For practical purposes, burst noise is usually modeled with a
colored stochastic process with Lorentzian spectrum, i.e., the spectral
density of a burst noise source is given by

Sburst( f ) = K
Ia

1+
�

f
fc

�2 (60)

whereK is a constant for a particular device,I is the current through
the device,a is a constant in the range 0:5 to 2, and fc is the 3 dB
bandwidth of the Lorentzian spectrum [9]. Burst noise often occurs
with multiple time constants, i.e., the spectral density is the summa-
tion of several Lorentzian spectra as given by (60) with different 3 dB
bandwidths.

A stationary colored stochastic process with spectral density

SNburst( f ) =
γ2

γ2+(2π f )2
(61)

has the autocorrelation function

RNburst(τ) =
γ
2

exp(�γ jτj) (62)

If the 3 dB bandwidthγ of (61) is much less than the oscillation fre-
quencyω0, or equivalently, the correlation width 1=γ of (62) is much
larger than the oscillation periodT = 2π=ω0, then (54) is satisfied.
1= f noise
1= f noise is ubiquitous in all physical systems (as a matter of fact,
in all kinds of systems). The origins of 1= f noise is varied. In IC
devices, it is believed to be caused mainly by traps associated with
contamination and crystal defects, which capture and release charge
carriers in a random fashion, and the time constants associated with



this process give rise to a noise signal with energy concentrated at low
frequencies. For practical purposes it is modeled with a “stationary”
and colored stochastic process with a spectral density given by

S1= f ( f ) = K
Ia

f
(63)

whereK is a constant for a particular device,I is the current through
the device, anda is a constant in the range 0:5 to 2. There is a lot of
controversy both about the origins and modeling of 1= f noise. The
spectral density in (63) is not a well-defined spectral density for a sta-
tionary stochastic process: It blows up atf = 0. Keshner in [10] argues
that 1= f noise isreally a nonstationary process, and when one tries to
model it as a stationary process, this nonphysical artifact arises. We
are not going to dwell into this further, which would fill up pages and
would not be too useful other than creating a lot of confusion. In-
stead, we will “postulate” a well-definedstationarystochastic process
model for 1= f noise: We will introduce a cut-off frequency in (63),
below which the spectrum deviates from 1= f and attains a finite value
at f = 0. To do this, we use the following integral representation [11]

1
j f j

= 4
Z ∞

0

1

γ2+(2π f )2
dγ (64)

We introduce the cut-off frequencyγc in (64), and use

SN1= f ( f ) = 4
Z ∞

γc

1

γ2+(2π f )2
dγ (65)

=
1
j f j

�4
arctan

�
γc

2π f

�
2π f

(66)

for the spectral density of a stationary stochastic process that models
1= f noise. The spectral density in (65) has a finite value atf = 0:

SN1= f (0) =
4
γc

(67)

The autocorrelation function that corresponds to the spectral density in
(65) is given by

RN1= f (τ) = 2E1(γcjτj) (68)

where the exponential integralE1(z) is defined as

E1(t) =
Z ∞

1

exp(�t z)
z

dz

The power in a 1= f noise source modeled with a stochastic process
with the spectral density (65) is concentrated at low frequencies, fre-
quencies much less than the oscillation frequency for practical oscilla-
tors. Hence, (54) is satisfied for 1= f noise sources.

6 Spectrum of an oscillator with phase noise due to
colored noise sources

Having obtained the stochastic characterization ofα(t) due to a col-
ored noise source in Section 4, we now compute the spectral density
of the oscillator output, i.e.,xs(t +α(t)). We first obtain an expression
for the non-stationary autocovariance functionR(t;τ) of xs(t +α(t)).
Next, we demonstrate that the autocovariance is independent oft for
“large” time. Finally, we calculate the spectral density ofxs(t +α(t))
by taking the Fourier transform of the stationary autocovariance func-
tion for xs(t +α(t)).

We start by calculating the autocovariance function ofxs(t+α(t)),
given by

RV(t;τ) = E [xs(t +α(t))x�s(t + τ+α(t + τ))] (69)

Definition 6.1 Define Xi to be the Fourier coefficients of xs(t):

xs(t) =
∞

∑
i=�∞

Xi exp( jiω0t)

The following simple Lemma establishes the basic form of the autoco-
variance:
Lemma 6.1

RV(t;τ) =
∞
∑

i=�∞

∞
∑

k=�∞
XiX

�
k exp( j(i�k)ω0t)exp(� jkω0τ)

E [exp( jω0(iα(t)�kα(t + τ)))]
(70)

The expectation in (70), i.e.,E [exp( jω0(iα(t)�kα(t + τ)))] is the
characteristic function ofiα(t)� kα(t + τ). This expectation is inde-
pendent oft for large time as established by the following theorem:
Theorem 6.1 If t is large enough such that

exp

�
�

1
2

ω2
0(i�k)2σ2(t)

�
�

�
1 i = k
0 i 6= k (71)

then iα(t)� kα(t + τ) is a Gaussian random variable and its charac-
teristic function, which is independent of t, is given by

E [exp( jω0(iα(t)�kα(t + τ)))]�
�

0 i 6= k
exp
�
� 1

2ω2
0i2σ2(jτj)

�
i = k

(72)

whereσ2(t) is as in (57), (58) or (59). Note that the condition (71) is
same as the condition (51) in Theorem 4.2.
We now obtain the stationary autocovariance function:
Corollary 6.1

RV(τ) =
∞

∑
i=�∞

XiX
�
i exp(� jiω0τ)exp

�
�

1
2

ω2
0i2σ2(jτj)

�
(73)

To obtain the spectral density ofxs(t +α(t)), we calculate the Fourier
transform of (73):

SV ( f ) =
∞
∑

i=�∞
XiX

�
i Si( f + i f0) (74)

whereω0 = 2π f0 and

Si( f ) = F fRi(τ)g (75)

= F

�
exp

�
�

1
2

ω2
0i2σ2(jτj)

��
(76)

The Fourier transform in (76) does not have a simple closed form.
Mullen and Middleton in [12] calculate various limiting forms for this
Fourier transform through approximating series expansions. We are
going to use some of their methods to calculate limiting forms for (76)
for different frequency ranges of interest, but before that, we would
like to establish some basic, general properties forσ2(t), Ri(τ) and
Si( f ).
Lemma 6.2

lim
t!∞

σ2(t)
t

= jV0j
2 SN(0) (77)

Corollary 6.2

lim
t!∞

σ2(t) =

( ∞ SN(0) 6= 0

σ2(∞) SN(0) = 0
(78)

whereσ2(∞)< ∞ is a finite nonnegative value.
For the models of burst and 1= f noise discussed in Section 5, we have

SNburst(0) = 1

from (61), and

SN1= f (0) =
4
γc



from (67). ThusSN(0) 6= 0, and hence, limt!∞ σ2(t) = ∞ are satisfied
for both.

Sinceσ2(0) = 0 we have

Ri(0) = 1 (79)

and hence Z ∞

�∞
Si( f )d f = 1 (80)

for any colored noise source. The total powerXiX�
i in the ith har-

monic of the spectrum is preserved. The distribution of the power in
frequency is given bySi( f ). If

lim
t!∞

σ2(t) = ∞ (81)

thenSi(0) is nonnegative andfinite, which is the case when the noise
source spectrum extends to DC. On the other hand, when the noise
source is bandpass, i.e., its spectrum does not extend to DC, then (81)
will not be satisfied, andSi( f ) will have aδ function component at
f = 0. Now, we concentrate on the case when (81) is satisfied, i.e.,
when the spectrum takes a finite value at the carrier frequency (and its
harmonics). Next, we proceed as Mullen and Middleton in [12, 13]
and calculate limiting forms to the Fourier transform in (76) through
approximating series:
Theorem 6.2 Let (81) be true. For f away from0, (76) can be ap-
proximated with

Si( f )� i2 jV0j
2 f 2

0

f 2 SN( f ) f � 0 (82)

whereω0 = 2π f0. For f around0, (76) can be approximated with

Si( f )� F

�
exp

�
�

1
2

ω2
0i2 jV0j

2SN(0)jτj
��

+

F

�
exp

�
�

1
2

ω2
0i2 jV0j

2SN(0)jτj
��

~

F

�
ω2

0i2 jV0j
2
�
jτj

Z ∞

jτj
RN(z)dz+

Z jτj

0
zRN(z)dz

��

�
f 2
0 i2
�
jV0j

2SN(0)
�

π2 f 4
0 i4
�
jV0j

2SN(0)
�2

+ f 2
+

f 2
0 i2
�
jV0j

2SN(0)
�

π2 f 4
0 i4
�
jV0j

2SN(0)
�2

+ f 2
~

F

�
ω2

0i2 jV0j
2
�
jτj

Z ∞

jτj
RN(z)dz+

Z
jτj

0
zRN(z)dz

��
f � 0

(83)

where~ denotes convolution. The first term in (83) is a Lorentzian
with corner frequency

π f 2
0 i2
�
jV0j

2SN(0)
�

and can be used as an approximation for (76) around f= 0by ignoring
the higher order second term. (83) contains the first two terms of a
series expansion for (76).

From (82), we observe that the frequency dependence ofSi( f ) is as
1= f 2 multiplied with the spectral densitySN( f ) of the noise source for
offset frequencies away from the carrier. This result matches with mea-
surement results for phase noise spectrum due to 1= f noise sources.

7 Phase noise and spectrum of an oscillator due to
white and colored noise sources

In [1], we considered the case where the perturbationb(t) is a vector of
(uncorrelated) stationary, white Gaussian noise processes and obtained
a stochastic characterization of the phase deviationα(t) and derived
the resulting oscillator output spectrum, as we did it here for a col-
ored noise source in Section 4 and Section 6. Now, we consider the

case when both white and colored noise sources are present and unify
our results. Let there bep white noise sources andM colored noise
sources:

d
dt

q(x)+g(x)+Bw(x)bw(t)+
M

∑
m=1

Bcm(x)bcm(t) (84)

whereBw(:) : IRn!IRn�p, Bcm(�) : IRn!IRn; m = 1; : : : ;M, bw(�) :
IR!IRp is a vector of (uncorrelated) stationary, white Gaussian noise
processes, andbcm(�) : IR!IR; m= 1; : : : ;M are zero-mean, Gaussian,
stationary colored stochastic processes (uncorrelated with each other,
and withbw(t)) with autocorrelation function/spectral density pairs

SNm( f ) = F fRNm(τ)g m= 1; : : : ;M

where

SNm(0) 6= 0 m= 1; : : : ;M

andRNm(τ) m= 1; : : : ;M are assumed to satisfy (54). In this case,
the phase errorα(t) satisfies the nonlinear differential equation

dα(t)
dt

= vT
1 (t +α(t))"

Bw(xs(t +α(t)))bw(t)+
M

∑
m=1

Bcm(xs(t +α(t)))bcm(t)

#
; α(0) = 0

(85)

wherev1(t) is the periodically time-varying Floquet vector of Sec-
tion 3. Let

cw =
1
T

Z T

0
vT

1 (τ)Bw(xs(τ))BT
w(xs(τ))v1(τ)dτ (86)

and

V0m =
1
T

Z T

0
vT

1 (τ)Bcm(xs(τ))dτ m= 1; : : : ;M (87)

Lemma 7.1 α(t) that satisfies (85) becomes a Gaussian random vari-
able with constant mean, and variance given by

σ2(t) = cwt +
M

∑
m=1

2jV0mj
2
Z t

0
(t� τ)RNm(τ)dτ

= cwt +
M

∑
m=1

2jV0mj
2
Z ∞

�∞
SNm( f )

(1�exp( j2π f t))
4π2 f 2 d f

for t large enough such that

exp

�
�

1
2

ω2
0(i�k)2σ2(t)

�
�

�
1 i = k
0 i 6= k (88)

Theorem 7.1 With α(t) characterized as above, the oscillator output
xs(t +α(t)) is a stationary process, and its spectral density is given by

SV ( f ) =
∞

∑
i=�∞

XiX
�
i Si( f + i f0) (89)

where Xi are the Fourier series coefficients of xs(t), and

Si( f ) =

8>><
>>:

f 2
0 i2(cw+∑M

m=1jV0mj
2SNm(0))

π2 f 4
0 i4(cw+∑M

m=1jV0mj
2SNm(0))

2
+ f 2

f � 0

i2 f 2
0

f 2

�
cw+∑M

m=1 jV0mj
2SNm( f )

�
f � 0

(90)

The full spectrum of the oscillator with white and colored noise sources
has the shape of a Lorentzian around the carrier, and away from the car-
rier, the white noise sources contribute a term that has a 1= f 2 frequency
dependence, and the colored noise sources contribute terms that have a
frequency dependence as 1= f 2 multiplied with the spectral density of
the colored noise source.



8 Examples
We have derived ananalyticalexpression, given by (89) and (90), for
the spectrum of the oscillator output with phase noise due to white
and colored noise sources. The analytical expression in (89) and (90)
contains some parameters to be computed:

� Xi : The Fourier series coefficients of the large-signalnoiseless
periodic waveformxs(t) of the oscillator output.

� cw = 1
T

R T
0 vT

1 (τ)Bw(xs(τ))BT
w(xs(τ))v1(τ)dτ: Scalar that char-

acterizes the contributions of the white noise sources.

� V0m = 1
T

R T
0 vT

1 (τ)Bcm(xs(τ))dτ m = 1; : : : ;M: Scalars that
characterize the contributions of the colored noise sources.

Once the periodic steady-statexs(t) of the oscillator and the scalarscw
andV0m; m= 1; : : : ;M are computed, we have an analytical expres-
sion that gives us the spectrum of the oscillator atany frequency f .
The computation of the spectrum isnotperformed separately for every
frequency of interest. We compute the whole spectrum as a function
of frequencyat once, which makes our technique very efficient. Using
the results of the theory developed in this work, an analysis and de-
sign tool for low phase noise oscillator design was implemented in an
in-house circuit simulator.

Oscillator with parallel RLC and a nonlinear current source
We now present simulation results in the phase noise characteriza-
tion of a simple oscillator in Figure 1(a). The resistor is assumed to
be noiseless, but we insert a stationary external current noise source
across the capacitor. The Floquet vectorv1(t) is a two-dimensional
vector, since the oscillator has two state variables, namely the capac-
itor voltage and the inductor current. Figure 1(b) shows the entry of
v1(t) corresponding to the capacitor voltage.

Now, let us assume that we have two current noise sources across
the capacitor, one of them a white stationary noise source, and the
other a colored stationary noise source with bandwidth much smaller
than the oscillation frequency. To calculate the spectrum of the capac-
itor voltage given by (89) and (90), we need to computecw in (86)
for the white noise source, andV0 in (87) for the colored noise source.
For stationary noise sources,Bw(t) in (86) andBc(t) in (87) are con-
stant functions of timet. Figure 1(c) showsvT

1 (t)BwBT
wv1(t) which is

a periodic function of timet. Note thatcw is the time-average of this
quantity.

From (87), we observe thatV0 is the time-average ofvT
1 (t)Bc. The

time-average ofv1(t) in Figure 1(b) for the capacitor voltage is 0!
Thus, we conclude that anystationary(with the modulationBc(t) a
constant function of time) colored noise source (with bandwidth much
smaller than the oscillation frequency) connected across the capacitor
has no contribution to the oscillator spectrum due to phase noise, be-
causeV0 = 0 for this noise source.

CMOS ring-oscillator
A ring-oscillator with CMOS inverter delay cells was simulated for its
phase noise spectrum. It oscillates at 2:86 GHz and burns 150 mW.
Figure 2 showsS1( f ) in (90) using the expression forf � 0. Contri-
butions of the thermal (white) and 1= f (colored) noise sources, as well
as the total spectrum, are plotted.
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