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Abstract

This paper presents a new method for the testing of the dat-
apath of DSP cores based on self-test program. During the
test, random patterns are loaded into the core, exercise di�er-
ent components of the core, and then are loaded out of the core
for observation under the control of the self-test programs. We
propose a systematic approach to generate the self-test program
based on two metrics. One is the structural coverage and the
other is the testability metric. Experimental results show the
self-test program obtained by this approach can reach very high
fault coverage in programmable core testing.

1. Introduction

1.1 Motivation

Design with cores has become popular recently. A core is a
highly complex block that is fully de�ned, predictable and
reusable in multiple design environments and di�erent tar-
get technologies. Designers do not have to know the internal
RTL structure of the cores, except their functions. Some ad-
vanced design tools such as hardware/software codesign tools
and retargetable compilers can map part of the system behav-
iors onto these cores. Currently, cores such as RISC proces-
sors, bus interface controllers, image compression functions,
oating-point processors are available in design libraries.
For design reuse, usually cores are programmable, for ex-

ample DSP microprocessors. Testing these cores in di�erent
design environments is a new research topic. Not only be-
cause testing of programmable processors is much di�erent
from that of ASICs, but also because there is a need for a
methodology which can be used in di�erent situations. DSP
cores are usually embedded in a system-on-chip together with
with other components, including other cores. The fact that
cores are usually embedded makes their testing more di�cult
due to accessibility problems. Our work is to develop a general
methodology for testing DSP programmable cores.
Unlike microprocessors which are normally used in general

purpose designs, embedded DSP cores are usually employed in
specialized designs and with di�erent technologies by di�erent
end users. Testing embedded DSP cores needs coordination
with testing other components in a system-on-chip. In most
situations, the process to propagate the faults in DSP cores is a
tedious procedure. So a good DSP core testing scheme should
have simple requirements on its neighboring components, and
moreover it should be general and easy for integration.

1.2 Related Work

Functional testing of processors has a long history [ChMc76]
[ThAb80] [BrAb84] [ShenSu88] [Tal89] [vGoor92]. However,
functional testing achieves low fault coverage compared to
structural testing because it does not consider the RTL struc-
ture and it is not based on a gate-level fault model (s-a-fault).
More recently, some researchers began to combine functional
testing with some information from the RTL structure to as-
semble self-test programs [LePa94] [LePa92] [Krug91] [BiMa95].

yThis work was partially supported by the Semiconductor
Research Corporation (SRC) under Contract No. DJ-527.

But all these techniques are not based on an accurate struc-
tural level testability analysis, and their approaches are more
appropriate to microprocessors rather than embedded cores.
There are several reasons that make testing of embedded

cores more di�cult than testing of microprocessors:

1. When the chip designers license the core from another
company, they usually do not have access to the internal
structure of the core. This is because the core company
wants to protect its intellectual property. This makes
core testing very di�cult. Thus the testing process can
only rely on the core's behavioral level information and
its brief architecture description. Also because of the in-
tellectual property reason, the �nal chip designers are not
able to modify the core to implement conventional testing
or incorporate any DFT.

2. As there are other heterogeneous cores on the chip, the
�nal chip testing should be coordinated with testing of
di�erent cores. Conventional testing schemes such as scan
need to consider the testing of di�erent components to-
gether. Usually this is very di�cult. A self-test scheme is
very attractive here because it has minimum requirement
on its neighboring components.

1.3 Our Work

To solve the above new challenges in embedded core test-
ing, we propose a general methodology for the testing of DSP
programmable cores based on behavioral and structural level
testability analysis. We develop self-test program consisting of
several sections, each targeting di�erent part of the core under
test, not from the point of view of functions, but structure.
supports peripheral random pattern generators and signature
registers. The test program guarantees that the input random
patterns are e�ciently used in the core, meaning that they can
be propagated as much as possible. Also it guarantees that the
responses from the cores have good enough observability.
The main contributions of this work is:

1. A testing scheme that needs only the core's instruction
set level information and brief architecture information.
No gate level information necessary.

2. The work is based on instruction level testability analysis.

3. Our approach is based on pseudorandom BIST method-
ology which can reach high fault coverage but under the
control of a self-test program.

2. Overview of Core Testing

Figure 1 shows the overall testing scheme which does not re-
quire any Design for Test (DFT) features of the DSP core
under test. A a random pattern generator, LFSR, can be
placed at the boundary of the core to provide pseudorandom
test patterns. This LFSR can also be used to test other RTL
components on the chip. A MISR can also be placed outside
the core for the responses analysis. During testing, random
patterns generated by the LFSR can be loaded into the core
to exercise di�erent part of the core, just as if the core ac-
cessed the external data. The responses are fed to the MISR
for analysis. This testing scheme imposes less requirements on
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Figure 1: Overview of Testing Scheme

its neighboring circuits, thus making it easy for system design-
ers to work out overall testing strategy for the whole system-
on-chip. Testing cost is reduced because our scheme does not
require much overhead and can be reused in many designs.
DSP cores usually have a Harvard architecture with sepa-

rate data bus and instruction bus, separate data memory and
instruction memory, [PattHenn96]. The data memory and in-
struction memory can be further classi�ed as on-core memory
and o�-core memory. In our discussion to follow, we assume
the core has the following inputs and outputs:
a) Data bus : Input/Output. b) Instruction Bus : Input.
Under pseudorandom test, random test patterns can be fed
into data input port rather than instruction port. Because
random patterns in instruction { i.e. \random op-codes"{ will
make the core's behavior very unpredictable. Some special
patterns may also lead the core to a so-called dead state which
will make the subsequent testing meaningless. In our scheme,
as shown in Figure 1, random patterns are only fed into the
data bus port and the carefully assembled self-test program
is fed to the instruction port to help the random patterns in
datapath reach high fault coverage.
We assume that the testing of the data memory can be done

using functional testing as well as BIST RAM test technology,
[Niko92]. Our approach is focused, but not limited to, the test-
ing of the core's datapath. Any results generated by the test
programs can indicate the faults not only within datapath, but
also the controller, buses and other components. The key issue
for testing cores is the self-test programs. From our discussion
above, the test programs will direct random patterns that are
applied to the core primary inputs to di�erent parts of the
core. After testing these parts, the result will be directed to
the primary outputs for analysis. In this paper we will focus
on the systematic synthesis of the core self-test programs.

3. Structural Coverage of Self-Testing

3.1 Structural Coverage

This notion indicates how many RTL components are covered
by the self-test program. Structural information of the core
is considered at the behavioral level, which means the self-
test program can be measured not only from the functions it
performs, but also from the number of structural components
it uses. This is a basic di�erence between our work and other
works in microprocessor-based testing.
In ASIC testing, structural coverage is not a problem. Most

ASICs are designed using high-level synthesis tools, starting
from a behavioral level description of the ASIC. For instance,
in [PaCa95], they proposed a test synthesis approach to test
the ASICs according to their behavioral descriptions. Because
the ASIC is synthesized according to its behavioral description,
using this behavior to drive the test can almost use all the RTL
components of the ASIC, thus a very high fault coverage can be
reached, [RoyAbr90]. But in DSP core testing, there are many
behaviors which can be mapped onto this core by changing
the DSP programs. Thus there will be bias or compromise if
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Figure 2: Instructions and Their RTL Components

certain application behavior is selected to drive the core during
testing. The following example shows the idea.
Suppose that we have a datapath as shown in Figure 2,

there are three instructions, addition, subtraction and mul-
tiplication. The RTL components of the datapath are the
ALU, multiplier, the registers, multiplexers and connecting
wires. Obviously, addition can only exercise the 2-function
ALU, the registers (R1, R2, R3), multiplexers (MUX3(part),
MUX4 (part)) and the relevant connecting wires. Multipli-
cation can only exercise the multiplier, R0, R1, and MUX1
(part) and MUX2 (part), and some connecting wires. During
testing, if we only execute one of the above instructions, there
will always be some RTL components which can not be tested.
So in testing, we need a program which will cover all RTL com-
ponents. In this special example, all these three instructions
should be included in the self-test program.
Exhaustively enumerating all instructions is infeasible and

unnecessary. First, exhaustive enumeration all instructions
will lead to a very long test program which means a very long
test session. Even for a simple DSP core which has 16 bit width
instruction, enumerating all instructions will lead to a program
with thousands of lines of instructions. Actually this lengthy
program is not necessary. From the example in Figure 2, we
know that both instructions will use R2 and its connecting
wire, so there are some components that can be tested by
more than one instruction. If a component is tested by one
instruction, it is not necessary to have another instruction to
test it again.
Based on the above analysis and observations, we know that

a structural coverage metric should make the self-test program
use as few as possible instructions to cover as many as possible
RTL components of the core under test. This will make the
self-test program e�cient and e�ective. The metric summa-
rizes the structural level information at behavioral level. The
self-test program is not only based on function, but also based
on structure.

Structural Coverage of a Program: The percentage of the
RTL components in a core under test that are exercised
by the instructions so that the faults within these com-
ponents can be propagated to the core observable output
port.

3.2 Reservation Table

We use a tabular data structure to bookkeep the structural
coverage of a program.

RTL Component and its Space: A core's RTL structure can
be divided into some basic components, each component
either is used completely or not at all by an instruction.
All these components constitute a space called RTL com-
ponent space of the core.

To illustrate this concept we will use the example in Figure
2. According to the above de�nition, a component is either
used or not used by an instruction. Table 1 lists all the ba-
sic RTL components in the RTL structure of Figure 2 in the
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�rst row, which includes functional units, registers, multiplex-
ers and connecting wires. In the second, third, and fourth row,
all the RTL components that are used by addition and mul-
tiplication instruction are listed. We calculate the structural
coverage of each instruction and the whole self-test program
as follows. Suppose:
S The RTL components space of the core under test
si The RTL component set used by instruction i
n The total number of instructions in a self-test program

SC The structural coverage of a self-test program
SCi The structural coverage of instruction i

The structural coverage of a self-test program SC can be
calculated by the following:

SC =
[
n
i=1 j si j �100

S
%

The above de�nition can also be extended to calculate the
structure coverage of one instruction as following:

SCi =
j si j �100

S
%

From the above, the structural coverage for the addition
and multiplication instructions in Figure 1 are 48%, 52%, re-
spectively And the self-test program which includes these two
instructions has a structural coverage 96%.
Sometimes, because of the complexity of the core architec-

ture, it is not so straight forward to calculate the structural
coverage. For example, in CISC microprocessor cores, some
instructions are implemented by a rather complex microin-
struction stream. Thus, analysis of structural coverage should
be further extended to the microinstruction or microopera-
tion level. Another di�cult situation is the involvement of the
controller and other auxiliary RTL components. In the above
discussion, we de�ne the structural coverage by counting the
RTL components that are used by an instruction. There are
ambiguities. For example, every instruction will use the Pro-
gram Counter(PC), but actually, the random patterns are not
applied to PC. So PC is not randomly tested by this instruc-
tion. This tells us that we need to further classify the term
"used by". Here, we only count those RTL components that
are exercised by random patterns in one instruction.
We use an example to show the previous idea in some de-

tail. Figure 2 shows an DSP core architecture. In Figure 3, on
the left side box, we have an instruction ow for this architec-
ture. In the middle is the CDFG (Control Data Flow Graph)
representing a fragment of this instruction ow. On the right
side, we have the corresponding microinstruction ow graph
(MIFG) Each node in MIFG represents a microinstruction, the
edges represent the dependences among the microinstructions.
PI and PO are the primary inputs and outputs.
In Figure 4, we have the MIFG on the left side. The bold

line shows the path from PI to PO. Here this path is like a sen-
sitized path in gate level stuck at fault testing. The RTL com-
ponents used by the instructions along this path are randomly
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tested by the random patterns. Not all microinstructions are
on this path. Only those microinstructions that process the
random patterns from PI to PO are on this path. So not all
the RTL components that are used by the instructions of the
self test program are being tested by the current test program.
We use theMIFG to distinguish these di�erences between all
the RTL components that are used, and the RTL components
that are tested by a self test program. MIFG is similar to the
SDG used in [LePa94]. The di�erence is that we only anno-
tate the structural information along the path through which
the random patterns ow. We actually keep the annotation
information in a reservation table as shown on the right hand
side of Figure 4. The boxes indicate which RTL components
are used by this self test program in which micro steps. Only
the light gray boxes are tested by this self-test program.
We use static and dynamic reservation tables in our ap-

proach. The static one is used by each individual instruction.
Actually, once the core's architecture is decided, the table can
be decided. As shown in Table 1, one row is the static reser-
vation table for one instruction. It indicates which RTL com-
ponents can be randomly tested by using this instruction. For
some instructions with variations, there will be more than one
entry in this table to indicate this di�erence. This table is
statically decided.
The second table is dynamically built by the self-test pro-

gram assembler during the assembly process. It is a run time
table maintained by the assembler during run time. Each col-
umn in dynamic table is an RTL component in the core, each
entry of this table is an instruction. Each row in the dynamic
table corresponds to one instruction or microinstruction as
shown in Figure 4. With the development of the instructions
in the self-test program, more and more RTL components will
be tested by the random patterns, and the structural coverage
will reach its highest. The structural coverage of a self-test
program can be easily calculated from this table by accumu-
lating the RTL components test by random patterns. The



dynamic reservation table is used as a guide in the process of
making the following two decisions:

1. Instruction to be added to the self-test program.

2. Where to stop the self-test program.

By using the reservation table, the intellectual property of
the core design company can be protected. The static reserva-
tion table can be generated by the core company and shipped
to the designer. Our approach can help the designers generate
a self-test program without accessing the internal RTL struc-
ture of the core. And the result it can reach is very close to
that of structural level testing approaches which depend on a
complete knowledge of the gate level netlist of the core.
The dynamic reservation table enables us not to assemble

one �xed self-test program for one core. Because di�erent de-
sign may have di�erent design considerations and di�erent test
requirements; leaving this to the �nal designers will provide
them more exibility. On the other hand, many cores are
now parameterized, helping di�erent designers who may need
di�erent con�gurations; this forces us to leave the testing de-
cision, retargetable self-test programs, to the �nal designers.

4. Testability Metrics

As we discussed in the previous section, we need to exercise
as many as possible RTL components to reach high fault cov-
erage. This leads us to the �rst type of metrics for self-test
program which is structural coverage. But a self-test program
with high structural coverage may not be able to detect the
faults and may not be able to propagate the faults perfectly.
This leads to the second type of metrics for self-test program
which concerns testability quality.
In our early works, we have developed two testability met-

rics, randomness and transparency, to evaluate the control-
lability and observability, respectively, of signals embedded
within a behavior. Speci�cally, randomness is a controllability
metric that quanti�es the quality of pseudorandom patterns
as they propagate through embedded modules. Also, trans-
parency is an observability metric which quanti�es the sensi-
tivity of embedded modules to erroneous value propagation
to an observable point. Reference [PaCa95] provides a com-
plete discussion about the basic concepts of these metrics and
their application to test synthesis of ASICs in the behavioral
domain. These two metrics have wide applications to analyze
behavioral level signals in terms of their controllability and ob-
servability properties. In our previous research, we used them
to analyze the behavioral descriptions of the design, usually
provided in VHDL. In this work, we apply them to analyze
the variables of a self-test program.
Recall that in section two, we discussed our overall test-

ing scheme. The self-test program will �rst load the random
patterns from the primary inputs to the registers, then it will
carry out some computations to exercise some parts of the core
under test, and then it will route the results to the primary
output for observation. Figure 5 continues to use the exam-
ple that we discussed in previous section to show the idea.
The self-test program is listed on the left hand side, its cor-
responding data-ow graph(DFG) is shown on the right hand
side. We use exactly the same testability metrics introduced in
[PaCa95] to analyze this section of the program. The results
are back-annotated on the DFG. We assume that the input
data have the maximum randomness because they are coming
from a LFSR, which can have perfect randomness if proper
seeds are given in practice. In Figure 5, R0,R1,R3, have per-
fect randomness and transparency because they are all LFSRs.
R2's randomness is 0.9621. Its transparency has two values.
One indicates its left input and another indicates its right in-
put, and the numbers are 0.8720 for the left, 0.8764 for the
right. As both values are not 1, so the faults with its left and
right inputs can not be propagated to the output which is R4.
About the details of the computation and de�nitions of these
metrics, interesting readers may refer to [PaCa95].
From this example, we can see that even if a self-test pro-

gram covers all the RTL components, it may still lead to low
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fault coverage because of the characteristics of some computa-
tions, like multiplications and some bit operations. They can
either generate results with very low randomness or block the
faults propagation. Our previous research in [PaCa95], sug-
gested some behavioral level transformation to improve these
metrics. In this work, there is no room for redesigning the core
to improve testability. An adaptation of our previous research
is to carefully organize the self-test program to improve testa-
bility of the core. From this point of view, a self-test program
is a core's test behaviors, expressing the behavior of the core
in test mode.
Figure 6 shows a better version of the above self-test pro-

gram. Table 2 lists each variable's testability metrics. The
table abides by the following two general rules which are used
in our systematical assembling of self-test program:

1. The inputs variables to each instruction should have the
best randomness (controllability).

2. If the output variables generated by some instruction have
low observability, they should be sent out for observation.

The �rst rule is similar to the controllable point insertion
and the second rule is similar to observable point insertion in
[PaCa95]. More details of this techniques can be found in the
same paper. This testability analysis is done \on-the-y" with
the assembling of instructions in the self-test program. When-
ever a new instruction is put into the self-test program during
assembling, the testability analysis will be invoked and the re-
sults are used to make further assembling decision, regarding
the next instruction. More details follow next.

Metrics R0 R1 R2 R3 R4 R5
Controllability 1.0 1.0 0.96 1.0 0.99 0.96

Observability (Left) 1.0 1.0 0.87 1.0 1.0 1.0

Observability (Right) 1.0 1.0 0.87 1.0 1.0 1.0

Table 2: Testability Metrics

5. Generation of Self-Test Program

We use heuristics to assemble a self-test program. These heuris-
tics will guarantee that the self-test program has both high
structural coverage and good testability metrics.

5.1 Organization of Self-Test Program

We do not need to build the test program from scratch. Actu-
ally there is a template for self-test program. Each template



MOV R0, @PI
MOV R1, @PI
MOV R2, @PI

ADD R1, R2, R3

AND R3, R2, R6
MUL R1, R0, R4

Initialization

MOV R3, @PO
MOV R4, @PO
MOV R6, @PO

Figure 7: Templates in Self-test Program

can be divided into three consecutive sections according to
di�erent functions as shown below:

1. LoadIn Section Instruction(s) loading the random pat-
terns from PI to where we want them to test the core.

2. Test Behavior Instructions to test di�erent parts of the
core. This is designed to achieve high structural coverage
and high testability metrics.

3. LoadOut Section Instruction(s) moving the results to
PO for observation and analysis.

The �rst section is composed of data transfer instructions.
Some destinations, usually registers and memory addresses are
necessary for this section of self-test program. The third sec-
tion is also composed of data transfer instructions. The desti-
nations are usually the PO buses.
The second section, which is called the test behavior, is

the key section of the self-test program that we will focus on.
Figure 7 shows the template idea. The whole self-test pro-

gram is composed of many of these instantiations of templates.
Each instantiation targets certain part of the core. Each in-
stantiation has good testability and all the instantiations to-
gether cover as many RTL components as possible.

5.2 Classi�cation of Instructions

We classify the instructions into several groups as a prepara-
tion for this assembling process. The purpose of this classi�-
cation is to help the assembler to pick up instructions which
target di�erent parts of the core under test. We also give
di�erent weights to di�erent instruction groups so that the
assembler will pick up instructions �rst from the group with
highest weight. To make the assembling process dynamic so
that the assembled instruction can also guide the selection of
next instruction, these weights can be adjusted after instruc-
tions are selected from each group. This mechanism will help
with assembler uses as few instructions as possible to cover as
many RTL components as possible.
We classify the instructions according to the principles:

1. Based on the major RTL components that will be exer-
cised. For example, ADDITION and SUBTRACTION
are all implemented by the ALU. So we put them in one
group.

2. The number of common RTL components that the in-
structions will use. For example, AND and OR instruc-
tions will mostly use the same RTL components.

The �rst principle is good for complex datapath-dominated
cores because there are more than more functional units. This
principle can make the classi�cation very simple, e�ective and

easy to use. The second principle is more generous. Actu-
ally it can be automatically generated if the static reservation
table of each instruction is available. The distance between
each instruction can be de�ned as the Hamming distance of
the vector of RTL components usage of each instruction. For
the three instructions in Table 1, we will have the following
distance between them:

Dmul;add = 25 Dadd;sub = 3 Dmul;sub = 23

Accordingly, the addition and subtraction will be in one
group. Multiplication will be in another group. So if the self-
test program �rst pick addition, it will avoid to pick up sub-
traction next because it has less chance to increase greatly in
structural coverage because it is in the same group as addition.
Once the distance is decided, many existing clustering al-

gorithms can be used to cluster them into di�erent groups.
In real practice, we assign weights to each RTL component in
the static reservation table, so the distance between di�erent
instructions can be a weighted Hamming distance.

5.3 Weights to Instructions and Instruction Groups

We assign weights to each instruction so that we can more
accurately link each instruction with the number of RTL com-
ponents that it can exercise and then number of faults it cov-
ers. By establishing this link, our assembler can know which
instruction is more important than others.
We still use the previous example to illustrate the idea. Fig-

ure 2 shows a partial datapath. Here we consider two instruc-
tions, one is addition and another is multiplication. The static
reservation table is shown in Table 1. For all the RTL com-
ponents, if we treat them equally, obviously, it is not fair.
Because some components, such as multiplier, have more po-
tential faults than the ALU(adder/subtracter). So for di�erent
instructions, because of their mapping to di�erent RTL com-
ponents, we assign di�erent weights to them, according to the
number of potential faults that these RTL components have.

5.4 Heuristics in Instruction Operand Fileds

After the random patterns are loaded into the on-core memory
or register �le, these data can be used to test the core. As for
the address, either the register address or the data memory ad-
dress can �ll the corresponding instruction �elds as the sources
of the instructions. And the results of the instruction can also
be stored in the register �le or data memory by specifying the
destination �eld in instructions.
The unused data loaded from LFSR is called \fresh" data.

We hope that all operations can use the \fresh" data as much
as possible. The loading of the data takes a lot of CPU time,
i.e. testing time. So we try to load less data and use the load
data as e�ciently as possible. In the course of the assembling,
we maintain a table for all the memory elements, to indicate
each element's testability metrics. The current instruction will
avoid using the \old" data whose testability metrics are not
good. They will always try to use the \fresh" data. If there
is no enough data for use, some instruction will be inserted to
load more fresh data into core's memory elements.
Figure 8 shows an example developed from the one in Fig-

ure 6. Figure 8 shows the variables' mapping onto the core's
memory elements. After the three instructions, the shaded
memory elements are already tested, the variable in R2 is not
good in testability metrics, so the later instructions should not
use this variable. R2 variable needs to be loaded out and a new
\fresh" data needs to be loaded in it. In addition, the further
instructions will try to use the unshaded memory elements.
This will guide the selection of operands �leds in assembling
of instructions.

5.5 Randomness in Instruction Operand Fields

We also keep a randomness mechanism to decide the instruc-
tion's operand �elds. The purpose is not only to test the dat-
apath, but also to test the controller, memory element, the
relevant connections and so on. But the random number �lled
to the operand �eld in this way should be under control and
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Figure 8: Heuristics to Guide the Selection of Operands
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Figure 9: Self-Test Program Assembling Procedure

valid. For each instruction, there will be a randomness space
for each �eld. Any random number should be in this space.
Also if there are several �elds for random number, their combi-
nations should also be in a bigger valid space. Here we try not
to generate an instruction which will lead the core to unstable
or uncontrollable states.

5.6 The Heuristic Assembly Algorithm

Figure 9 shows the ow chart of this assembly procedure. From
this ow chart, we can see that the two metrics for the self-
test program are guaranteed. If the structural coverage is not
met, the procedure will continue to select instructions to cover
more RTL components. In each assembling template, once the
testability metrics become bad, the procedure will stop to as-
semble new instructions but to insert some other instructions,
for example, to add LaodIn and LoadOut sections, to improve
the testability metrics of the program. The testability met-
rics controls the inner most loop, and the structural coverage
controls the whole assembling procedure. The �nal program
generated by this procedure will have both high structural cov-
erage and high testability metrics.

6. Experiments

6.1 Experimental Environment

Figure 10 shows the experimental environment. There are sev-
eral major tools that are involved in this experiment. The Self-
Test Program Assembler(SPA) is the procedure which will gen-
erate a program in its assembly code. SYNTEST [HPCN92]
is used for testability analysis [PaCa95], COMPASS [Comp94]
is used for core architecture compilation to generate the gate
level netlist and Gentest from AT&T for fault simulation.
There are mainly two ows in this experiments as shown by

the arrow line in the Figure 10. One is the hardware ow. The
other is the software ow. The hardware ow starts with the
VHDL description of the architecture of the core under test.
This is fed to COMPASS's ASIC synthesizer [Comp94] to get
netlist �le and then gate level VHDL descriptions.
The software ow starts with our assembling procedure, the

resultant assembly code of the self-test program or that of the
normal application programs as shown in Figure 10, is then fed
to the core's assembler to get the binary code. The VHDL gate
level description of the core and the self-test program's binary
code are �nally fed to Gentest for fault simulation. To ensure
that the binary code is correct and the fault simulator works

Core VHDL Code

GentestGate Level VHDL
COMPASS

ASIC Synthesizer

Assembler

COMPASS
Mixmode Simulator

Fault Coverage

Assembly Code

Binary Code

Self Test Program
Assembler

Verification

Applications
Normal

Figure 10: Experimental Test Environment
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Figure 11: DSP Core Architecture

properly, a veri�cation procedure is introduced to compare the
simulation results from the fault simulator and the COMPASS
simulator. Some software to link di�erent tools together are
developed in our lab to assist this experiment.

6.2 Experimental Core

We implemented a DSP core to test our approach. It has
19 instructions with some DSP features, such as multiplica-
tion and accumulation. Its architecture and instruction set
are shown in Figure 11 and Figure 12, respectively. Although
the instruction set is small, it is fully functional. Branch is
implemented after a compare instruction. The following word
has the branch taken address and the second following word
has the branch not taken address. Register read, operation
and write back to register will take two clock cycles. There
are totally 24444 transisitors in the core's datapath generated
by COMPASS ASIC synthesizer.

6.3 Analysis of Results

We compared the self-test program generated by our approach
with those normal application programs. By normal applica-
tions, we means that during the random testing, normal appli-
cation programs, for example, FFT and FIR �lter, are fed into
the core to control the core's behavior. The results are shown
in Table 3. We can see that the normal application programs,
because of their low structural coverage and low testability,
have ivery low fault coverage. This is simply because not only
there are a lot of RTL components that they do not exercise
but also because even they exercise some RTL components, the
faults within those RTL components cannot be propagated to
primary output for observation because of the bad testability
of the programs.
We also compared our approach with ATPG methods, one

is from [SaSA94] and another is Gentest from AT&T, to test



0000 + s1 + s2 => des
0001 - s1 - s2 => des
0010 and s1 and s2 => des
0011 or s1 or s2 => des
0100 xor s1 xor s2 => des
0101 not not s1 => des
0110 shl s1 <<(s2) => des
0111 shr s1 >>(s2) => des

=
/=
>
<
*
+ *

R0’=>des

s1 * s2 => des
s1 < s2 => status
s1 > s2 => status
s1 /= s2 => status
s1 = s2 => status1000

1001
1010
1011
1100
1101

1110 MOR s1 => des
ex: MOR 2 15 3

MOR s1 => Output Port
ex: MOR 2 0 15

BUS => des
ex: MOR 2 15 3

ALU => Output Port
ex: MOR 15 2 15

MUL => Output Port
ex: MOR 15 3 15

1111 MOV 

MOR

MOR

11101110

s1*s2=>R1’;
R0’+R1’=>R0’

Figure 12: Instruction Set of DSP Core
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(average/min)

Fault

Coverage

0.51253748
0.0

0.95507135
0.91424042
0.96574649
0.96546084

Table 3: Comparison of Experimental Results

the core. Our approach generates better results. It is because
ATPG treats all the inputs equally, no matter they are data
inputs or instruction inputs. It is very di�cult for ATPG pro-
grams to �nd out the right combinations in instruction inputs
and data inputs that can propagate certain faults. In this case,
there are 16 bit data input and 16 bit instruction input, the
search space is 232 which is huge. Obviously, ATPG neglects
the information provided by the instruction set treating them
the same as the data input. In addition, there are some faults
which need a sequence of instructions to set up certain bits.
These faults are regarded as sequential faults which are un-
detectable by ATPG. But in our testing scheme, the self-test
program makes use of the behavioral level information of the
chip, so the searching space is pruned according to this behav-
ioral level information. Also instructions has certain inherent
sequence which can set up certain bits so that some sequential
faults can be detected.

6.4 In Depth Study

We also carried out more experiments to show that a self-
test program is necessary. In the above experiments, we just
used one application program during the test and compared its
results with that of self-test program. We noticed that several
normal application programs maybe concatenate together so
that a lengthy program can be obtained. It will have better
structural coverage. Table 4 shows the results. Still, they are
quite far behind from that of the self-test program approach.
The program called comb1 is a concatenation of the eight

programs listed in Table 3 in alphabetic sequence. The pro-
gram comb2 is in reverse order of comb1, comb3 is in a ran-
dom order of these application programs.

Program Structure

Coverage

Testability 

Controllability Observability

Fault

Coverage

Comb1

Comb2

Comb3

79.81%

79.81%

79.81%

0.97
0
0.97
0
0.97
0

0.71
0
0.71
0
0.71
0

79.88%

79.87%

79.87%

Table 4: Results of In Depth Study

7. Conclusion and Future Work

In this paper, we proposed an approach to systematically as-
semble a self-test program for random test of embedded DSP
cores. This random testing scheme is very general and easy
to use in di�erent design situations. In this testing scheme,
as the end users of the core do not have to know the internal
structure of the core, it can protect the intellectual properties
of the core designer. The key issue of the testing scheme is
the self-testing program. Our approach, based on two met-
rics, structural coverage and testability metrics, can e�ciently
and e�ectively move the random patterns to di�erent parts of
the core and propagate them to the output port for observa-
tion. The experimental results show that our approach can
reach very high fault coverage which the other approaches and
methodology can not reach.
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