A Case Study in Embedded System Design: an Engine Control Unit

Tullio Cuatto, Politecnico di Torino, Italy
Claudio Passerone, Politecnico di Torino — Cadence Europeans Labs, Italy
Luciano Lavagno, Politecnico di Torino — Cadence Europeans Labs, Italy
Attila Jurecska, Magneti Marelli, Venaria Reale, Italy
Antonino Damiano, Magneti Marelli, Venaria Reale, Italy
Claudio Sansoe, Politecnico di Torino, Italy
Alberto Sangiovanni-Vincentelli, Dept. of EECS, University of California at Berkeley, USA

Abstract

A number of techniques and software tools for embedded sys-
tem design have been recently proposed. However, the cur-
rent practice in the designer community is heavily based on
manual techniques and on past experience rather than on a
rigorous approach to design. To advance the state of the art
it 18 tmportant to address a number of relevant design prob-
lems and solve them to demonstrate the power of the new
approaches.

We chose an industrial example in automotive electronics
to validate our design methodology: an existing commercially
avatlable Fngine Control Unit. We discuss in detail the spec-
tfication, the implementation philosophy, and the architec-
tural trade-off analysis. We analyze the results obtained with
our approach and compare them with the existing design un-
derlining the advantages offered by a systematic approach to
embedded system design in terms of performance and design
time.

1 Introduction

Hardware/software co-design and embedded system design
techniques, such as those presented in [6], advocate a formal
design procedure for embedded systems, based on unbiased
specification, simulation-based validation, various forms of
automated partitioning, and module and interface synthesis.

However, the design methodology followed in practice is
far from being at the sophistication level implied by the ap-
proaches listed above. The common resistance offered by
designers to innovation is made even stronger in the case of
embedded system design because of the safety concerns and
of the strict constraints on implementation costs. To demon-
strate the applicability of the design methodology and tools
that our group has proposed ([1]) we tackled an industrially
relevant design: an Engine Control Unit for a commercial
vehicle. The case study is relevant because it represents an
actual product and because of its complexity. In particu-
lar, we were able to compare the results obtained with our
design methodology with the present implementation show-
ing its advantages both in terms of performance and design
time.

The paper is organized as follows. In Section 2 we de-
scribe the specifications of our case study. In Section 3 we
show how architectural decisions, such as partitioning and
processor choice, are made for that example. In Section 4
we discuss some lessons learned in the course of this project,
about specification styles and trade-offs. In Section 5 we
draw some conclusions.

2 Specification of the ECU

In this paper we present an application of the POLIS [1] en-
vironment: the formal specification and hardware/software
partitioning analysis of a functional subset of an Engine
Control Unit (ECU), a typical automotive embedded sys-
tem. We used as a reference an already existing device from
Magneti Marelli, a worldwide supplier of automotive elec-
tronic components. Both a functional Structured Analysis
specification [4], and a target architecture were available for
this device, that was originally designed as a prototype to
experiment with On-Board Diagnosis control strategies.

An electronic Engine Control Unit (ECU) consists of a
set of sensors which periodically measure the engine status,
an electronic unit which processes data coming from the
sensors and drives the actuators, and the actuators them-
selves which execute the commands received from the con-
trol unit. A control strategy is implemented in the electronic
unit to optimize the fuel injection and ignition; in particular
it should minimize fuel consumption, minimize emissions of
polluting substances and maximize torque and power, when
possible. These requirements are usually competing, so the
algorithm must find the best compromise for each situation.

The two main tasks of an ECU are the control of injec-
tion and ignition. The control specifications for these two
tasks are as follows:

Injection : in order to burn completely and correctly the
fuel, the ratio between the air and the fuel which go
into each piston should be kept constant and close to
the value 14.7 (for a gasoline engine). This is achieved
by controlling the opening time of each injector.

Ignition : in order to give the fuel enough time to burn
completely, the spark should be fired in advance with
respect to the instant when the piston is at its highest
point. This parameter also affects consumption and
emissions, and it is basically computed from the engine

RPM.

Both injection and ignition can be adapted dynamically with
a very high precision, by processing the inputs signals com-
ing from the sensors.

35" Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50

DAC98 - 06/98 San Francisco, CA USA

A

A
SW
e
3 HW i
! V i
! !
3 ECU Hardware 1
! |
| |

Figure 1: Functional architecture of an ECU

The functional architecture of the ECU is represented
in Figure 1. The control layer implements the overall con-
trol strategy, aimed at satisfying the normative requirements
in an optimal way. The signal acquisition and actuation
layer transforms the raw data coming from the sensors (both
binary-valued and derived from an A/D conversion) into fil-
tered variables, scaled into the appropriate engineering units
(like RPM) used by the control layer, while handling pos-
sible sensor errors and failures. The same layer also con-
verts commands for the actuators, measured in engineering
units (like seconds) into the appropriate signals (e.g. pulse
streams) required by the actuation coils, lights and so on.
The device driver layer further separates the signal acquisi-
tion and actuation layer, to provide some level of processor
independence. The RTOS layer coordinates the overall func-
tionality, by managing time-triggered (e.g., fixed-rate sensor
sampling) and event-triggered (e.g., injection, triggered by
the piston position) tasks.

The architecture of the embedded controller as imple-
mented by Magneti Marelli contains a Motorola 68332 mi-
croprocessor (16 MHz), an ASIC implementing the PWM
functions, 33 KBytes of used RAM and 194 KBytes of used
ROM. The software written for the microcontroller con-
sists of 35,000 lines written in C. The design effort was 8
man/year.

3 Design of the ECU

3.1 High level functional specification

Starting from the functional description of the ECU men-
tioned in the previous section, we chose a subset of relevant
functionalities to implement using the POLIS environment.
The ECU we implemented can manage the basic control
operation of a 4 cylinder Multi-point Injection and Ignition
System. We eliminated secondary tasks such as the interac-
tions with the Catalytic Gas Sensor.

The control algorithm itself was taken from the original
specifications untouched. This corresponds to the present
organization of Magneti Marelli where two separate divi-
sions handle the control algorithms and the actual imple-
mentation in terms of software and hardware modules. This
separation favors some degree of architecture independence
and the sharing of control algorithms between systems de-
signed for different cars.

The specification has been partitioned into a hierarchical
network of functional blocks, each described using the Es-
TEREL language. At the top level of the specification there
are four main blocks:

1. acquisition of analog signals,
2. acquisition of frequency signals,

3. engine control strategies for the injection and ignition
subsystems

4. control of the actuators.

The acquisition blocks can handle several types of sen-
sors, including detection and recovery strategies in case of
faulty sensors. The most important ones are the battery
voltmeter, the intake manifold air pressure sensor, the throt-
tle position sensor, the air and water temperature sensors,
the position sensor of the phonic wheel and the camshaft
position sensor.

After measuring and filtering the above external signals,
the acquisition block calculates the values of system vari-
ables, such as RPM, air flow, derivatives of input signals,
and so on. These variables are used by the control strategy
layer, whose algorithm was taken from the original specifi-
cations almost untouched.

3.2 Functional simulation

Once the functionality of our system has been captured as
a set of interacting Extended Finite State Machines, we can
use POLIS to verify the behavior of the overall algorithm. In
this step, timing is not considered since the implementation
architecture has not been chosen, but instead a maximally
parallel solution is analyzed.

The top level of the simulation model contains the test-
bench, using special functional blocks that model (in a sim-
plified way, for reasons of performance) the engine and the
sensors, thus providing inputs and monitoring outputs of the
ECU.

The output of the simulation, as well as the state of
several internal variables for debugging purposes, was mon-
itored and compared with the expected data in order to
determine the functional correctness of the specification.

3.3 Architecture Selection and Mapping

One of the most important component of our methodology
is the architecture selection step. Part of the architecture
selection step is the decision on how to partition the func-
tional behavior into hardware and software. Another part is
the organization of several software modules into tasks, to
be executed together by the RTOS, based on expected input
event frequency and priority. One last aspect is the selec-
tion of the scheduling algorithm (cyclic or priority-based,
pre-emptive or non-pre-emptive, ...).

The performance of the simulation, in terms of simulated
clock cycles per second on an unloaded ULTRASparcl, is
described in Table 1. The column labeled “no graphics”
was obtained by eliminating the graphical displays. The

engine cycles/second
speed (RPM) | graphics | no graphics
1000 366K 433K
6666 116K 216K

Table 1: Simulation performance

relatively small difference between the cases with an en-
gine speed of 1000 RPM and 6666 RPM is due to the fact
that only some acquisition tasks are triggered by the engine
phase, while some are triggered by periodic timer interrupts.

While our system can perform an analysis of different ar-
chitectural choices involving a number of microcontrollers,
in this case, we selected the Motorola 68332 microcontroller,
running at 16 MHz, with an on-chip Time Processing Unit
(TPU [7]), to be able to compare our results with the al-
ready available ECU. Part of the TPU function was speci-
fied and simulated at the behavioral level, as described in [5].
The more complex functions implemented using the micro-
programming capabilities of the TPU, like recognizing the
engine phase from the phonic wheel sensor sample, were, on
the other hand, modeled in ESTEREL.

Partitioning was performed by starting from the func-
tional simulation model, in which every block has a delay of
1 clock cycle, and thus corresponds to a maximally parallel
hardware implementation. We then moved selected groups
of modules to software, based on the timing constraints and
feedback from the simulation.

POLIS models functional components as Finite State
Machines (extended with integer arithmetic capabilities) com-
municating via one-place buffers. Any time one of those
buffers is overwritten, this is often a sign that a deadline
has been violated, because the receiving FSM was too slow.
Missed deadlines (in the form of lost events) are logged to a
file, and can be used as a guidance for system performance
analysis.

Since the system i1s composed of three main functional
blocks, which in turn consist of several modules, we decided
to start the partitioning process by changing the implemen-
tation of each unit as a whole; only after several experiments
we had to refine our strategy by looking more closely at the
lower levels of the hierarchy, to identify the critical path.

1. The first experiment was a complete hardware imple-
mentation. This is equivalent to the functional verifi-
cation through simulation described in paragraph 3.1,
and yielded the expected results. The system at 16
MHz flawlessly performs its task, but the implemen-
tation 1s very expensive due to the presence of many
multipliers and dividers.

2. As a second step, the Analog Acquisition block was en-
tirely implemented as software. The simulation showed
that even with a slower CPU (i.e. 4 MHz), the results
were correct.

3. The driver blocks were therefore also implemented as
software, both for injection and ignition; however, the
Frequency Acquisitions unit was left in hardware, and
the low level counting task were assigned to the TPU.
Even with the engine running at the highest speed
(6600 RPM) no event was lost, and the algorithm al-
ways managed to correctly control the engine.

4. Except for the 68332 TPU, a full software implemen-
tation was then simulated. This time, even with the
engine at a moderate speed, a lot of events coming from

function code size
manual | synthesized
acquisition 18K 13K
actuation 12K 12K

Table 2: Code size comparison

the crankshaft position sensor were lost. We identified
two critical modules, those that filter the signals com-
ing from the engine, since they are scheduled at the
highest frequency in the entire system.

5. The next step was to implement one of the critical
modules as hardware, and the other as software, but
this again did not produce the desired result. By
closely examining a plot of the task schedule (in the
same form as shown in Figure 2), and comparing it
with the missed deadline log, we discovered that the
problem was the high latency introduced by the Round
Robin scheduler we were using.

6. The solution was therefore to drive the acquisition of
the signal coming from the engine through an inter-
rupt, thus stopping the ongoing computation to start
the Interrupt Service Routine. In this way, both criti-
cal modules can be implemented as software routines,
without losing any functionality.

A plot of the scheduling charts with the engine running at
full speed for the final partition is shown in Figure 2: the
bars which reach the value 1 are the two interrupt routines,
and the rest are all the other tasks.

The CPU load, due almost totally to the acquisition and
actuation layer, is about 40% in the final partition. This
number is close to the estimated load due to that layer in
the manual design, thus indicating that the (estimated) per-
formance of the synthesized code is very close to that of
hand-written code.

The total code size in bytes (for the 68332 microcon-
troller) in the final partition is compared with the manual
design in Table 2.

The entire partitioning process was performed within two
days. The tool lets the designer change the implementation
of each single block by just updating a parameter and then
running a new simulation. No further compilation is re-
quired. Also the scheduling charts and a log of the missed
deadlines are automatically generated, and were very helpful
to drive the partitioning process.

4 Lessons learned and design guidelines

During this project, we had to choose a method to trans-
late the existing formal functional specification, done with
Structured Analysis ([4, 3]) into an executable specification
using CFSMs. This required to solve a number of trade-offs
about the granularity of the CFSMs.

One main aspect of the compilation mechanism used
by ESTEREL (and hence by the POLIS front-end) is that
it fully abstracts the user-given specification. This means
that the control structure in the ESTEREL specification (e.g.,
loop and await statements) is translated into a Finite State
Machine. The transition function of each CFSM is then
represented as a Binary Decision Diagram [2], and the op-
timal sequence of if, goto and assignment statements is
computed [1]. This is a very expensive procedure, that
yields automatically results that are comparable with hand-
optimized code, but is sensitive to module size.

ECLE Ul softeare with paarites

FPraRrIErTIEIIRLIIES

Figure 2: Task scheduling chart for the final implementation

Small modules are easier to understand, and guaranteed
not to blow up at compilation time. However, the resulting
code, with one procedure per module, can impose an exces-
sive overhead in terms of code size and execution time on
the target processor, due to the procedure call and return
sequences of short procedures.

On the other hand, large modules offer better opportu-
nities for optimization as described above, but may require
too much memory or CPU time during compilation.

POLIS, however, provides the designer with several tech-
niques for exploring these trade-offs in an assisted manner.
In particular, it provides methods for

e chaining the execution of several modules, without re-
turning control to the Real Time Operating System,

e merging several CFSMs, by computing their synchro-
nous product, into a single CFSM.

The first technique is relatively cheap, does not cause any
potential blowup in code size, and is especially suitable for
data-intensive modules. The second technique is especially
useful for control-dominated modules with a high degree of
interaction, because it abstracts away all the internal com-
munication between the collapsed CFSMs, thus yielding a
dramatically simpler implementation in several cases.

For example, we applied the first technique to the sub-
module Test_Tens_Batt, which consists of two cascaded CF-
SMs. The first one checks the value of the battery voltage
and implements a recovery strategy, while the second one
computes the value of an internal variable. In this way we
speeded up the code by 11% while keeping the same code
size. We estimated that this kind of optimization can be
applied to about 20% of the modules of the design.

In another case, we resorted to the opposite transfor-
mation, that is splitting a single CFSM, that was updating
several variables concurrently, into four cascaded CFSMs,
reducing the total code size from 11 Kbytes to 1.5 Kbytes.

5 Conclusions

New methodologies are required in the design of digital elec-
tronic systems, due to the increased complexity and reduced
time-to-market. Moreover, a product should be flexible to
adapt to changes during its lifetime, which is best obtained

by using software, and must also meet tight timing con-
straints, which is most suitable for hardware components.
Partitioning between hardware and software is therefore a
critical step in the design flow, and CAD tools should help
the designer in making the right choices.

In this paper, we have shown how to perform partition-
ing by using fast co-simulation and software estimation. We
have also shown how to optimize the system with respect to
code size and running time, by selectively collapsing or di-
viding modules, and by moving the threshold between con-
trol and data-flow in conditional statements. The results
obtained are very promising, and were achieved on a real
design and in a relative short period of time.

References

[1] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh,
B. Tabbara, A. Jurecska, L. Lavagno, C. Passerone,
K. Suzuki, and A. Sangiovanni-Vincentelli. Hardware-
Software Co-design of Embedded Systems — The POLIS

experience. Kluwer Academic Publishers, 1997.

[2] R. Bryant. Graph-based algorithms for boolean func-
tion manipulation. [EFE Transactions on Computers,
C-35(8):677-691, August 1986.

[3] A. Damiano and P. Mortara. Problematiche software
nei sistemi elettronici per applicazioni automotive. Alta
Frequenza — Rivista di Elettronica, 7(3):10-16, May-June
1993.

[4] T. DeMarco. Structured Analysis and System Specifica-
tion. Yourdon Press, USA, 1988.

[5] H. Hsieh, L. Lavagno, C. Passerone, C. Sanso¢, and
A. Sangiovanni-Vincentelli. Modeling micro-controller
peripherals for high-level co-simulation and synthesis. In
Proceedings of the International Workshop on Hardware-
Software Codesign, March 1997.

[6] G. De Micheli and M. G. Sami, editors. Nato Advanced
Study Insitute on Hardware/Software Codesign. Kluwer
Academic, 1996.

[7] Motorola Inc. M68300 Family. TPU Time Processor
Unit. Reference Manual, 1990.

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

