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Abstract
Phase noise is a topic of theoretical and practical interest in electronic circuits,
as well as in other fields such as optics. Although progress has been made in
understanding the phenomenon, there still remain significant gaps, both in its
fundamental theory and in numerical techniques for its characterisation. In this
paper, we develop a solid foundation for phase noise that is valid for any oscil-
lator, regardless of operating mechanism. We establish novel results about the
dynamics of stable nonlinear oscillators in the presence of perturbations, both
deterministic and random. We obtain an exact, nonlinear equation for phase
error, which we solve without approximations for random perturbations. This
leads us to a precise characterisation of timing jitter and spectral dispersion,
for computing which we develop efficient numerical methods. We demonstrate
our techniques on practical electrical oscillators, and obtain good matches with
measurements even at frequencies close to the carrier, where previous tech-
niques break down.

1 Introduction
Oscillators are ubiquitous in physical systems, especially electronic
and optical ones. For example, in radio frequency (RF) communica-
tion systems, they are used for frequency translation of information
signals and for channel selection. Oscillators are also present in digital
electronic systems which require a time reference, i.e., a clock signal,
in order to synchronise operations.

Noise is of major concern in oscillators, because introducing even
small noise into an oscillator leads to dramatic changes in its frequency
spectrum and timing properties. This phenomenon, peculiar to os-
cillators, is known asphase noiseor timing jitter. A perfect oscilla-
tor would have localized tones at discrete frequencies (i.e., harmon-
ics), but any corrupting noise spreads these perfect tones, resulting in
high power levels at neigbouring frequencies. This effect is the major
contributor to undesired phenomena such as interchannel interference,
leading to increased bit-error-rates (BER) in RF communication sys-
tems. Another manifestation of the same phenomenon, jitter, is impor-
tant in clocked and sampled-data systems: uncertainties in switching
instants caused by noise lead to synchronisation problems. Charac-
terising how noise affects oscillators is therefore crucial for practical
applications. The problem is challenging, since oscillators constitute a
special class among noisy physical systems: theirautonomousnature
makes them unique in their response to perturbations.

Considerable effort has been expended over the years in under-
standing phase noise and in developing analytical, computational and
experimental techniques for its characterisation (see Section 3 for a
brief review). Despite the importance of the problem and the large
number of publications on the subject, a consistent and general treat-
ment, and computational techniques based on a sound theory, appear
to be still lacking. In this work, we provide a novel, rigorous theory
for phase noise and derive efficient numerical methods for its charac-
terisation. Our techniques and results are general; they are applicable
to any oscillatory system, electrical (resonant, ring, relaxation, etc.)
or otherwise (gravitational, optical, mechanical, biological, etc.). The
main ideas behind our approach, and our contributions, are outlined in
Section 2. We apply our numerical techniques to a variety of practical
oscillator designs and obtain good matches against measurements.

The paper is organised as follows. In Section 2, we present some
preliminaries and an overview of the main results of the paper, and in
Section 3, we give a brief review of the previous work. In Section 4, we
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consider the traditional approach (linearisation) to analysing perturbed
nonlinear systems, and show how this procedure is not consistent for
autonomous oscillators. In Section 5, we derive a nonlinear equation
that exactly captures how perturbations result in phase noise. In Sec-
tion 6, we solve this equation with random perturbations and arrive at
a stochastic description of phase deviation, from which we derive tim-
ing jitter. Next, in Section 7, we use this stochastic characterisation
to calculate the correct shape of the oscillator’s spectrum with phase
noise. In Section 8, we derive several quantities commonly used in
oscillator design to quantify jitter and spectral properties. In Section 9,
we address the problem of computing these quantities efficiently and
develop numerical methods that can easily be implemented in existing
simulators. Finally, in Section 10, we apply our methods to practical
electrical oscillators. All proofs and discussion of mathematical back-
ground are omitted due to space limitations.

2 Preliminaries and overview
The dynamics of any autonomous system without undesired perturba-
tions can be described by a system of differential equations:1

ẋ= f (x) (1)

where x 2 IRn and f (�) : IRn!IRn. We assume thatf (�) satisfies
the conditions of the Picard-Lindel˝of existence and uniqueness theo-
rem for initial value problems [2]. We consider systems that have an
asymptotically orbitally stable2 periodic solutionxs(t) (with periodT)
to (1), i.e., a stable limit cycle in then-dimensional solution space.
We are interested in the response of such systems to a small state-
dependent perturbation of the formB(x)b(t) whereB(�) : IRn

!IRn�p

andb(�) : IR!IRp. Hence the perturbed system is described by

ẋ= f (x)+B(x)b(t) (2)

Let the exact solution of the perturbed system in (2) bez(t).
Although our eventual intent is to understand the response of the

oscillator whenb(t) is random noise, it is useful to consider first the
case whenb(t) is a known deterministic signal. We carry out a rigorous
analysis of this case in Section 5 and obtain the following results:

1. the unperturbed oscillator’s periodic responsexs(t) is modified
to xs(t +α(t)) + y(t) by the perturbation, where:

(a) α(t) is a changing time shift, orphase deviation, in the
periodic output of the unperturbed oscillator.

(b) y(t) is an additive component, which we term theorbital
deviation, to the phase-shifted oscillator waveform.

2. α(t) andy(t) can always be chosen such that:

(a) α(t) will, in general, keep increasing with time even if the
perturbationb(t) is always small.

(b) the orbital deviationy(t), on the other hand, will always
remain small.

1For notational simplicity, we use the ODE formulation throughout the paper to de-
scribe the dynamics of an autonomous system. The results and the numerical methods
we present can be extended [1] for the MNA (Modified Nodal Analysis) formulation (i.e.,
DAE formulation) given byd=dt q(x)+ f (x) = 0.

2After any small disturbance that does not persist, the system asymptotically settles
back to the original limit cycle. See [2] for a precise definition of this stability notion.
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These results concretise existing intuition amongst designers about os-
cillator operation. Our proof of these facts is mathematically rigor-
ous; further, we derive equations forα(t) andy(t) which lead toqual-
itatively different resultsabout phase noise compared to previous at-
tempts. This is because our results are based on a new nonlinear per-
turbation analysis that is valid for oscillators, in contrast to previous
approaches that rely on linearisation. We show in Section 4 that analy-
sis based on linearisation is not consistent for oscillators and results in
non-physical predictions.

Next, we consider the case where the perturbationb(t) is random
noise – this situation is important for determining practical figures of
merit like zero-crossing jitter and spectral purity (i.e., spreading of the
power spectrum)3. Jitter and spectral spreading are in fact closely re-
lated, and both are determined by the manner in whichα(t), now also a
random process, spreads with time. We consider random perturbations
in detail in Sections 6 and 7, and establish that:

1. the average spread of the jitter (mean-square jitter) increases
preciselylinearly with time.

2. the power spectrum of the perturbed oscillator is aLorentzian4
about each harmonic.

3. asingle scalar constant cis sufficient to describe jitter and spec-
tral spreading in a noisy oscillator.

4. the oscillator’s output is astationarystochastic process.
These results have important implications. The Lorentzian shape of
the spectrum implies that the power spectral density at the carrier fre-
quency and its harmonics has a finite value, and that the total carrier
power is preserved despite spectral spreading due to noise. Previous
analyses based on linear time-invariant (LTI) or linear time-varying
(LTV) concepts erroneously predict infinite noise power density at the
carrier, as well as infinite total integrated power. That the oscillator
output is stationary is surprising at first sight, since oscillators are non-
linear systems with periodic swings, hence it might be expected that
output noise power would change periodically as in forced systems.
However, it must be remembered that while forced systems are sup-
plied with an external time reference (through the forcing), oscillators
are not. Cyclostationarity in the oscillator’s output would, by defini-
tion, imply a time reference. Hence the stationarity result reflects the
fundamental fact that noisy autonomous systems cannot provide a per-
fect time reference.
3 Previous work
A great deal of literature is available on the phase noise problem. Here
we mention only some selected works. Most investigations of elec-
tronic oscillators aim to provide insight into frequency-domain prop-
erties of phase noise, in order to develop rules for designing practi-
cal oscillators; well-known references include [4, 5, 6, 7, 8]. Usually,
these approaches apply linear time-invariant (LTI) analysis to high-
Q or quartz-crystal type oscillators designed using standard feedback
topologies. Arguments based on deterministic perturbations are used
to show that the spectrum of the oscillator response varies as 1= f 2

times the spectrum of the perturbation. While often of great practi-
cal importance, such analyses often require large simplifications of the
problem, and skirt fundamental issues such as why noisy oscillators
exhibit spectral dispersion whereas forced systems do not.

Attempts to improve on LTI analysis have borrowed from linear
time-varying (LTV) analysis methods for forced (nonoscillatory) sys-
tems (e.g., [9, 10, 11, 12]). LTV analyses can predict spectra more
accurately than LTI ones in some frequency ranges; however, LTV
techniques for forced systems retain nonphysical artifacts of LTI anal-
ysis (such as infinite output power) and provide no real insight into the
basic mechanism generating phase noise.

Possibly the most general and rigorous treatment of phase noise to
date has been that of K¨artner [13]. In this work, the oscillator response
is decomposed into phase and magnitude components, and a differen-
tial equation is obtained for phase error. By solving a linear, small-time
approximation to this equation with stochastic inputs, K¨artner obtains
the correct Lorentzian spectrum for the power spectral density due to
phase noise. Despite these advances, certain gaps remain, particularly
with respect to the derivation and solution of the differential equation
for phase error.

3The deterministic perturbation case is also of interest, for, e.g., phenomena such as
mode locking in forced oscillators. We consider this case elsewhere [3].

4A Lorentzian is the shape of the squared magnitude of a one-pole lowpass filter transfer
function.

Recently, Hajimiri [14] has proposed a phase noise analysis based
on a conjecture for decomposing perturbations into two (orthogonal)
components, generating purely phase and amplitude deviations respec-
tively. While this intuition is similar to Kärtner’s approach [13], other
aspects of Hajimiri’s treatment (e.g., stochastic characterisation for
phase deviation and the spectrum calculation) are essentially equiv-
alent to LTV analysis. Unfortunately, the conjecture for orthogonally
decomposing the perturbation into components that generate phase and
amplitude deviations, while intuitively appealing, can be shown to be
invalid [15]. Design intuition resulting from the conjecture about noise
source contributions can also be misleading.

In summary, the available literature often identifies basic and use-
ful facets of phase noise separately, but lacks a rigorous unifying the-
ory clarifying its fundamental mechanism. Furthermore, existing nu-
merical methods for phase noise are based on forced-system concepts
which are inappropriate for oscillators and can generate incorrect pre-
dictions.

4 Perturbation analysis using linearisation
The traditional approach to analysing perturbed nonlinear systems is
to linearise about the unperturbed solution, under the assumption that
the resultant deviation5 will be small. Let this deviation bew(t), i.e.,
z(t) = xs(t)+w(t). Substituting this expression forz(t) in (2), replac-
ing f (xs(t)+w(t)) by its first order Taylor series expansion, and ap-
proximatingB(x) with B(xs) (assumingw(t) “small”), we obtain

ẇ�
∂ f (x)

∂x

����
xs(t)

w(t)+B(xs(t))b(t) = A(t)w(t)+B(xs(t))b(t) (3)

where the JacobianA(t) = ∂ f (x)
∂x

���
xs(t)

is T-periodic. Here, we used the

fact thatxs(t) satisfies (1). Now, we would like to solve forw(t) in (3)
to see if our assumption that it is small is indeed justified. For this, we
use results from Floquet theory [2, 16] as follows6.

The state transition matrix for the homogeneous part of (3) is given
by

Φ(t;s) =U(t)exp(D(t�s))V(s) =
n

∑
i=1

ui(t)exp(µi(t�s))vT
i (s) (4)

whereU(t) is a T-periodic nonsingular matrix,V(t) = U�1(t) and
D = diag[µ1; : : : ;µn], whereµi are theFloquet (characteristic) expo-
nents. exp(µiT) are called thecharacteristic multipliers. ui(t) are the
columns ofU(t) andvT

i (t) are the rows ofV(t) =U�1(t).

Remark 4.1 fu1(t);u2(t); : : : ;un(t)g and fv1(t);v2(t); : : : ;vn(t)g
both span IRn and satisfy the biorthogonality conditions
vT

i (t)uj (t) = δi j for every t. Note that, in general, U(t) itself is
not an orthogonal matrix.

Let us first consider the homogeneous part of (3), the solution of which
is given by

wH(t) =
n

∑
i=1

ui(t)exp(µit)v
T
i (0)w(0) (5)

wherew(0) is the initial condition. Next, we will show that one of the
terms in the summation in (5) does not decay witht.

Lemma 4.1
� The unperturbed oscillator (1) has a non-trivial T-periodic so-

lution xs(t) if and only if the number1 is a characteristic multi-
plier of the homogeneous part of (3), or equivalently, one of the
Floquet exponents satisfiesexp(µiT) = 1.

� The time-derivative of the periodic solution xs(t) of (1), i.e.,
ẋs(t), is a solution of the homogeneous part of (3).

5By deviation we refer to the difference between the solutions of the perturbed and
unperturbed systems.

6The reader who is unfamiliar with Floquet theory is encouraged to review it before
continuing.



Remark 4.2 One can show that if1 is a characteristic multiplier,
and the remaining n�1 Floquet exponents satisfyjexp(µiT)j< 1; i =
2; : : : ;n, then the periodic solution xs(t) of (1) is asymptotically or-
bitally stable, and it has the asymptotic phase property [2].7 More-
over, if any of the Floquet exponents satisfyjexp(µiT)j > 1, then the
solution xs(t) is orbitally unstable.

Without loss of generality, we chooseµ1 = 0 andu1(t) = ẋs(t).

Remark 4.3 With u1(t) = ẋs(t), we have vT1 (t) ẋs(t) = 1 and
vT

1 (t)uj (t) = 0; j = 2; : : : ;n. v1(t) will play an important role in the
rest of our treatment.
Next, we obtain the particular solution of (3), given by

wP(t) =
n

∑
i=1

ui(t)
Z t

0
exp(µi(t� r))vT

i (r)B(xs(r))b(r)dr (6)

The first term in the above summation is given by
u1(t)

R t
0 vT

1 (r)B(xs(r))b(r)dr, since µ1 = 0. If the integrand has
a nonzero average value, then the deviationw(t) in (3) will grow
unbounded. Hence, the assumption thatw(t) is small becomes invalid
and the linearised perturbation analysis is inconsistent.

When the perturbationb(t) is a vector of uncorrelated white noise
sources, one can show that the variances of the entries ofw(t) can grow
unbounded. Thus, the assumption that the deviationw(t) stays small8

is also invalid for the stochastic perturbation case.

5 Nonlinear perturbation analysis for phase deviation
As seen in the previous section, traditional perturbation techniques do
not suffice for analysing oscillators. In this section, a novel nonlinear
perturbation analysis suitable for oscillators is presented.

The new analysis proceeds along the following lines:
1. Rewrite (2) with the (small) perturbationB(x)b(t) split into two

small partsb1(x;t) andb̃(x;t):

ẋ= f (x)+b1(x;t)+ b̃(x;t) (7)

2. Choose the first perturbation termb1(x;t) in such a way that its
effect is to create onlyphase errorsto the unperturbed solution.
In other words, show that the equation

ẋ= f (x)+b1(x;t) (8)

is solved byxp(t) = xs(t + α(t)) for a certain functionα(t),
called thephase deviation. It will be seen thatα(t) can grow un-
boundedly large with time even though the perturbationb1(x;t)
remains small.

3. Now treat the remaining term̃b(x;t) as a small perturbation to
(8), and perform a consistent traditional perturbation analysis
in which the resultant deviations fromxp(t) remain small. I.e.,
show thatz(t) = xs(t +α(t))+y(t) solves (7) for a certainy(t)
that remains smallfor all t. y(t) will be called theorbital devi-
ation.

We start by definingα(t) concretely through a differential equation.
Definition 5.1 Defineα(t) by

dα(t)
dt

= vT
1 (t +α(t))B(xs(t +α(t)))b(t); α(0) = 0 (9)

Remark 5.1 α(t) can grow unbounded even if b(t) remains small. For
example, consider the case where b(t) is a small positive constantε�
1, B� 1, and v1(t) is a constant k. Thenα(t) = kεt.

Having definedα(t), we are in a position to splitB(x)b(t) into b1(x;t)
andb̃(x;t):

7Note that this is a sufficient condition for asymptotic orbital stability, not a necessary
one. We assume that this sufficient condition is satisfied by the system and the periodic
solutionxs(t).

8The notion of “staying small” is quite different for a stochastic process than the one for
a deterministic function. For instance, a Gaussian random variable can take arbitrarily large
values with nonzero probability even when its variance is “small”. We say that a stochastic
process is “bounded” when its variance is bounded, even though some of its sample paths
(representing a nonzero probability) can grow unbounded.

Definition 5.2 Let

b1(x;t) = c1(x;t)u1(t +α(t)); and (10)

b̃(x;t) = B(x)b(t)�b1(x;t) =
n

∑
i=2

ci(x;t)ui(t +α(t)); (11)

where the scalars ci(x;t) = vT
i (t +α(t))B(x)b(t)

Note that b1(x;t) is obtained by projecting the original perturbation
along the time-varying direction u1(t + α(t)). ui ;vi are the Floquet
vectors in Remark 4.1.
Lemma 5.1 xp(t) = xs(t +α(t)) solves (8).

Lemma 5.1 states that theb1(x;t) component causes deviations only
along the limit cycle, i.e., phase deviations. Next, we show that the re-
maining perturbation componentb̃(x;t) perturbsxp(t) only by a small
amounty(t), providedb(t) is small.

Lemma 5.2 For b(t) sufficiently small, the mapping t7! t + α(t) is
invertible.
Definition 5.3 Let b(t) be small enough that̂t(t) = t +α(t) is invert-
ible. Then definêb(�) by b̂(t̂) = b(t), and y(t) by

y(t) =
n

∑
i=2

ui(t̂)
Z t̂

0
exp(µi(t̂� r))vT

i (r)B(xs(r))b̂(r)dr (12)

wheret̂ = t +α(t).
Remark 5.2 Note that the index of the summation in (12) starts from
2. Sincejexp(µiT)j< 1; i � 2 (due to asymptotic orbital stability), this
implies that y(t) is within a constant factor of b(t), hence small.

Theorem 5.1 If b(t) is small (implying that y(t) in Definition 5.3 is
also small), then z(t) = xp(t)+y(t) solves (7) to first order in y(t).

6 Stochastic characterisation of the phase deviationα
We now find the probabilistic characterisation of the phase deviation
α (Definition 5.1) as a stochastic process when the perturbationb(t) is
a vector of uncorrelated9 Gaussian white noise sources. We will treat
(9) as a stochastic differential equation [17, 18].

We will follow the below procedure to find an adequate probabilis-
tic characterisation of the phase deviationα for our purposes:

1. We first calculate the time-varyingprobability density function
(PDF) pα(η;t) of α defined as

pα(η;t) =
∂P (α(t)� η)

∂η
t � 0

where P (:) denotes theprobability measure, and show that it
becomes the PDF of a Gaussian random variable asymptoti-
cally with t. A Gaussian PDF is completely characterised by
the mean and the variance of the random variable. We show
that α(t) becomes, asymptotically with time, a Gaussian ran-
dom variable with a constant (as a function oft) mean and a
variance that is linearly increasing with time.10

2. The time-varying PDFpα(η;t) does not provide any correlation
information betweenα(t) and α(t + τ) that is needed for the
evaluation of its spectral characteristics. We then calculate this
correlation to be

E [α(t)α(t + τ)] = m2+cmin(t;t + τ)

wheremandc are scalar constants.
3. We then show thatα(t1) and α(t2) becomejointly Gaussian

asymptotically with time, which does not follow immediately
from the fact that they are individually Gaussian.

9The extension to correlated noise sources is trivial. We consider uncorrelated noise
sources for notational simplicity. Moreover, various noise sources in electronic devices
usually have independent physical origin, and hence they are modeled as uncorrelated
stochastic processes.

10The fact thatα(t) is a Gaussian random variable for everyt does not imply thatα is
a Gaussian stochastic process. Individually Gaussian random variables are not necessarily
jointly Gaussian.



Starting with the stochastic differential equation (9) forα, one can de-
rive a partial differential equation, known as theFokker-Planck equa-
tion [18, 19], for the time-varying PDFpα(η;t). The Fokker-Planck
equation forα(t) takes the form

∂pα(η;t)
∂t

=�
∂

∂η

�
λpα(η;t)

∂vT(t +η)
∂η

v(t +η)
�

+
1
2

∂2

∂η2

�
vT (t +η)v(t +η)pα(η;t)

� (13)

wherevT(t) = vT
1 (t)B(xs(t)), and 0� λ� 1 depends on the definition

of the stochastic integral [18] used to interpret the stochastic differen-
tial equation in (9). We would like to solve (13) forpα(η;t). It turns
out thatpα(η;t) becomes aGaussianPDF asymptotically withlinearly
increasing variance. We show this by first solving for thecharacteristic
function F(ω;t) of α(t), which is defined by

F(ω;t) = E [exp( jωα(t))] =
Z ∞

�∞
exp( jωη) pα(η;t)dη

Since bothvT
1 (:) andB(xs(:)) areT-periodic in their arguments,vT(:)

is also periodic in its argument with periodT. Hence we can expand
vT(t) into its Fourier series:vT(t) =∑∞

i=�∞ VT
i exp( jiω0t) whereω0 =

2π=T.

Lemma 6.1 The characteristic function ofα(t), F(ω;t), satisfies

∂F(ω;t)
∂t

=

∞

∑
i=�∞

∞

∑
k=�∞

VT
i V�k exp( jω0(i�k)t)

�
�λω0iω�

1
2

ω2
�

F(ω0(i�k)+ω;t)
(14)

where� denotes complex conjugation.
Theorem 6.1 (14) has a solution that becomes the characteristic func-
tion of a Gaussian random variable asymptotically with time:

lim
t!∞

F(ω;t) = exp( jωµ(t)�
ω2σ2(t)

2
) (15)

solves (14), where µ(t) = m is a constant, andσ2(t) = ct where

c=
1
T

Z T

0
vT(t)v(t)dt: (16)

The variance of this Gaussian random variable increases linearly with
time, exactly as in a Wiener process.

Remark 6.1 α(t) becomes, asymptotically with t, a Gaussian random
variable with mean µ(t) = m and varianceσ2(t) = ct.

Lemma 6.2

E [α(t)α(t + τ)] =
�

E

�
α2(t)

�
if τ � 0

E

�
α2(t + τ)

�
if τ < 0

Corollary 6.1 Asymptotically with t

E [α(t)α(t + τ)] = m2+cmin(t;t + τ)

Definition 6.1 Two real valued random variablesΨ1 and Ψ2 are
called jointly Gaussian if for all a1;a2 2 IR, the real random variable
a1Ψ1+a2Ψ2 is Gaussian.

Theorem 6.2 Asymptotically with time,α(t1) and α(t2) become
jointly Gaussian.

The stochastic characterisation of the phase deviationα we ob-
tained in this section can be summarized by Remark 6.1, Lemma 6.2,
Corollary 6.1 and Theorem 6.2. These provide adequate information
for a practical characterisation of the effect of phase deviationα on the
signal generated by an autonomous oscillator, e.g., its spectral proper-
ties, as we will see in Section 7 and Section 8.

7 Spectrum of an oscillator with phase noise
Having obtained the asymptotic stochastic characterisation ofα, we
now compute the power spectral density (PSD) ofxs(t +α(t)). We
first obtain an expression for the non-stationary autocorrelation func-
tion R(t;τ) of xs(t + α(t)). Next, we demonstrate that the autocor-
relation becomes independent oft asymptotically. This implies our
main result, that the autocorrelation of the oscillator output with phase
noise contains no non-trivial cyclostationary components, confirming
the intuitive expectation that a noisy autonomous system cannot have
periodic cyclostationary variations because it has no perfect time ref-
erence. Finally, we show that the PSD of the stationary component is
a summation of Lorentzian spectra, and that a single scalar constant,
namelyc in (16), is sufficient to characterize it.

We start by calculating the autocorrelation function ofxs(t+α(t)),
given by

R(t;τ) = E [xs(t +α(t))x�s(t + τ+α(t + τ))] (17)

Definition 7.1 Define Xi to be the Fourier coefficients of xs(t): xs(t) =
∑∞

i=�∞ Xi exp( jiω0t).

Lemma 7.1

R(t;τ) =
∞

∑
i=�∞

∞

∑
k=�∞

XiX
�

k exp( j(i�k)ω0t)exp(� jkω0τ)

E [exp( jω0βik(t;τ))]
(18)

whereβik(t;τ) = iα(t)�kα(t + τ).

To evaluate the expectation in the above Lemma, it is useful to consider
first the statistics ofβik(t;τ).

Lemma 7.2

lim
t!∞

E [βik(t;τ)] = (i�k)m (19)

lim
t!∞

E

h
(βik(t;τ))2

i
� (E [βik(t;τ)])2 =

(i�k)2ct+k2cτ
�2ikcmin(0;τ)

(20)

where m and c are defined in Theorem 6.1. Also,βik(t;τ) becomes
Gaussian asymptotically with t.

Using the asymptotically Gaussian nature ofβik(t;τ), we are now able
to obtain a form for the expectation in (18).

Lemma 7.3 If c > 0, the characteristic function ofβik(t;τ) is asymp-
totically independent of t and has the following form:

lim
t!∞

E [exp( jω0βik(t;τ))] =
�

0 if i 6= k
exp(� 1

2ω2
0k2cjτj) if i = k

(21)

Lemma 7.4

lim
t!∞

R(t;τ) =
∞
∑

i=�∞
XiX

�

i exp(� jiω0τ)exp(�
1
2

ω2
0i2cjτj) (22)

The spectrum ofxs(t +α(t)) can now be determined as follows:

Lemma 7.5 The spectrum of xs(t+α(t)) is determined by the asymp-
totic behaviour of R(t;τ) as t! ∞. All non-trivial cyclostationary
components are zero, while the stationary component of the spectrum
is given by:

S(ω) =

∞

∑
i=�∞

XiX
�

i
ω2

0i2c
1
4ω4

0i4c2+(ω+ iω0)
2

(23)

There is also a term X0X�0 δ(ω) due to the DC part of xs(t), which is
omitted in (23).



8 Phase noise/timing jitter characterisation
Single-sided spectral density and total power
The PSDS(ω) in (23) (defined for�∞<ω<∞, hence called a double-
sided density) is a real and even function ofω, because the periodic
steady-statexs(t) is real hence its Fourier series coefficientsXi in Def-
inition 7.1 satisfyXi = X�

�i . Thesingle-sidedspectral density (defined
for 0� f < ∞) is given by

Sss( f ) = 2S(2π f ) = 2
∞

∑
i=�∞

XiX
�

i
f 2
0 i2c

π2 f 4
0 i4c2+( f + i f0)

2
(24)

where we substitutedω = 2π f andω0 = 2π f0. The total power(i.e.
the integral of the PSD over the range of the frequencies it is defined
for) in Sss( f ) is the same as inS(2π f ), which is

Ptot = Total power inSss( f ) =
Z ∞

0
Sss( f )d f =

∞

∑
i=1

2 jXi j
2 (25)

Remark 8.1 The phase deviationα(t) does not change the total
power in the periodic signal xs(t), but it alters the power density in
frequency, i.e., the power spectral density. For the perfect periodic sig-
nal xs(t), the power spectral density hasδ functions located at discrete
frequencies (i.e., the harmonics). The phase deviationα(t) spreads
the power in theseδ functions in the form given in (24), which can be
experimentally observed with a spectrum analyzer.
Single-sideband phase noise spectrum in dBc=Hz
In practice, we are usually interested in the PSD around the first har-
monic, i.e.,Sss( f ) for f around f0. Thesingle-sidebandphase noise
L( fm) (in dBc=Hz) that is very widely used in practice is defined as

L( fm) = 10 log10

 
Sss( fo+ fm)

2 jX1j
2

!
(26)

For “small” values ofc, and for 0� fm� f0, (26) can be approximated
as

L( fm)� 10 log10

 
f 2
0 c

π2 f 4
0 c2+ f 2

m

!
(27)

Furthermore, forπ f 2
0 c� fm� f0, L( fm) can be approximated by

L( fm)� 10 log10

 �
f0
fm

�2

c

!
(28)

Notice that the approximation ofL( fm) in (28) blows up asfm!0. For
0� fm < π f 2

0 c, (28) is not accurate, in which case the approximation
in (27) should be used.
Timing jitter
In some applications, such as clock generation and recovery, one is
interested in a characterisation of the phase/time deviationα(t) itself
rather than the spectrum ofxs(t + α(t)) that was calculated in Sec-
tion 7. In these applications, an oscillator generates a square-wave like
waveform to be used as a clock. The effect of the phase deviationα(t)
on such a waveform is to createjitter in thezero-crossingor transition
times. In Section 6, we found out thatα(t) (for an autonomous oscil-
lator) becomes a Gaussian random variable with a linearly increasing
varianceσ2(t) = ct. Let us take one of the transitions (i.e., edges) of
a clock signal as a reference (i.e., trigger) transition and synchronize
it with t = 0. If the clock signal is perfectly periodic, then one will
see transitions exactly attk = kT; k = 1;2; : : : whereT is the period.
For a clock signal with a phase deviationα(t) that has a linearly in-
creasing variance as above, the timing of thekth transitiontk will have
a variance (i.e., mean-square error)E

�
(tk�kT)2

�
= ckT. The spec-

tral dispersion caused byα(t) in an oscillation signal can be observed
with a spectrum analyzer. Similarly, one can observe the timing jitter
caused byα(t) using a sampling oscilloscope. McNeill in [20] experi-
mentally observed the linearly increasing variance for the timing of the
transitions of a clock signal generated by an autonomous oscillator, as
predicted by our theory.

Noise source contributions
The scalar constantc appears in all of the characterisations we dis-
cussed above. It is given by

c=
1
T

Z T

0
vT

1 (τ)B(xs(τ))BT(xs(τ))v1(τ)dτ (29)

whereB(:) : IRn!IRn�p represents themodulationof the intensities of
the noise sources with the large-signal state. (29) can be rewritten as

c=
p

∑
i=1

1
T

Z T

0
[vT

1 (τ)Bi(τ)]2dτ =

p

∑
i=1

ci (30)

wherep is the number of the noise sources, i.e., the column dimension
of B(xs(:)), andBi(:) is theith column ofB(xs(:)) which maps theith
noise source to the equations of the system. Hence,ci represents the
contribution of theith noise source toc. Thus, the ratio

ci

c= ∑p
i=1 ci

(31)

can be used as afigure of meritrepresenting the contribution of theith
noise source to phase noise/timing jitter.
Phase noise sensitivity
One can define

c(k)s =
1
T

Z T

0
[vT

1 (τ)ek]
2dτ (32)

(where 1� k� n andek is thekth unit vector) as thephase noise/timing
jitter sensitivityof thekth equation (i.e., node), becauseek represents
a unit intensity noise source added to thekth equation (i.e., connected
to thekth node) in (1).

9 Numerical methods
From Section 6, Section 7 and Section 8, for various phase noise char-
acterisations of an oscillator, one needs to calculate the steady-state
periodic solutionxs(t), and the periodic vectorv1(t) in (29). Without
providing details, we will present the outline of a time-domain method
for computing the periodic vectorv1(t)11. The procedure for calculat-
ing v1(t) in the time domain is as follows:

1. Compute the large-signal periodic steady-state solutionxs(t) for
0� t � T by numerically integrating (1), possibly using a tech-
nique such as the shooting method [21].

2. Compute the state-transition matrixΦ(T;0) by numerically in-
tegratingẎ=A(t)Y; Y(0)= In from 0 toT, where the Jacobian
A(t) is defined in (3). Note thatΦ(T;0) =Y(T).

3. Computeu1(0) using u1(0) = ẋs(0). Note thatu1(0) is an
eigenvector ofΦ(T;0) corresponding to the eigenvalue 1.

4. v1(0) is an eigenvector ofΦT(T;0) corresponding to the eigen-
value 1. To computev1(0), first compute an eigenvector of
ΦT(T;0) corresponding to the eigenvalue 1, then scale this
eigenvector so thatv1(0)T u1(0) = 1 is satisfied.

5. Compute the periodic vectorv1(t) for 0� t � T by numerically
solving the adjoint system

ẏ=�AT(t)y (33)

usingv1(0) = v1(T) as the initial condition. Note thatv1(t) is a
periodic steady-state solution of (33) corresponding to the Flo-
quet exponent that is equal to 0, i.e.,µ1 = 0. It is not possible to
calculatev1(t) by numerically integrating (33)forward in time,
because the numerical errors in computing the solution and the
numerical errors in the initial conditionv1(0) will excite the
modesof the solution of (33) that grow without bound. How-
ever, one can integrate (33)backwardsin time with the “initial”
condition v1(T) = v1(0) to calculatev1(t) for 0� t � T in a
numerically stable way.

6. Then,c is calculated using (29).
11We also developed a frequency domain numerical method based on an harmonic bal-

ance formulation.



10 Examples
Oscillator with a bandpass filter and a nonlinearity [22]
This oscillator (Figure 1) consists of a Tow-Thomas second-order
bandpass filter and a comparator [22]. If the OpAmps are considered to
be ideal, it can be shown that this oscillator is equivalent (in the sense
of the differential equations that describe it) to a parallel RLC circuit in
parallel with a nonlinear voltage-controlled current source (or equiva-
lently a series RLC circuit in series with a nonlinear current-controlled
voltage source). In [22], authors breadboarded this circuit with an ex-
ternal white noise source (intensity of which was chosen such that its
effect is much larger than the other internal noise sources), and mea-
sured the PSD of the output with a spectrum analyzer. ForQ= 1 and
fo = 6:66 kHz, we performed a phase noise characterisation of this
oscillator using our numerical methods, and computed the periodic os-
cillation waveformxs(t) for the output andc = 7:56�10�8 sec2:Hz.
Figure 2(a) shows the PSD of the oscillator output computed using
(24), and Figure 2(b) shows the spectrum analyzer measurement12.
The single-sideband phase noise spectrum using both (27) and (28)
is in Figure 3 . Note that (28) can not predict the PSD accurately be-
low the cut-off frequencyfc = π f 2

0 c = 10:56 Hz (marked with a� in
Figure 3 ) of the Lorentzian.
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Figure 1: Band-pass filter and a comparator
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Figure 2: Computed and measured PSD
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Figure 3:L( fm) computed with both (27) and (28)

Ring oscillator
The ring oscillator circuit is a three stage oscillator with fully differ-
ential ECL buffer delay cells (differential pairs followed by emitter
followers). This circuit is from [20]. [20] and [23] use analytical
techniques to characterize the timing jitter/phase noise performance
of ring-oscillators with ECL type delay cells. Since they use analytical
techniques, they use a simplified model of the circuit and make sev-
eral approximations in their analysis. [20] and [23] use time-domain

12The PSDs are plotted in units of dBm.

Rc rb IEE fo c
(Ω) (Ω) (µA) (MHz) (sec2:Hz�10�15)

500 58 331 167.7 0.269
2000 58 331 74 0.149
500 1650 331 94.6 0.686
500 58 450 169.5 0.182
500 58 600 169.7 0.151
500 58 715 167.7 0.142

(a) Phase noise characterisation
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(b) Phase noise performance versusIEE

Figure 4: Ring-oscillator
Monte Carlo noise simulations to verify the results of their analytical
results. They obtain qualitative and some quantitative results, and offer
guidelines for the design of low phase noise ring-oscillators with ECL
type delay cells. However, their results are only valid for their spe-
cific oscillator circuits. We will compare their results with the results
we will obtain for the above ring-oscillator using the general phase
noise characterisation methodology we have proposed which makes
it possible to analyze a complicated oscillator circuit without simpli-
fications. We performed several phase noise characterisations of the
bipolar ring-oscillator. The results are shown in Figure 4(a), whereRc
is the collector load resistance for the differential pair (DP) in the delay
cell, rb is the zero bias base resistance for the BJTs in the DP,IEE is
the tail bias current for the DP, andfo is the oscillation frequency for
the three stage ring-oscillator. Note that the changes inRc andrb affect
the oscillation frequency, unlike the changes inIEE. Figure 4(b) shows
a plot of (2π fo)2 c versusIEE using the data from Figure 4(a). This
prediction of the dependence of phase noise/timing jitter performance
on the tail bias current is in agreement with the analysis and experi-
mental results presented in [20] and [23] for ring-oscillators with ECL
type delay cells. Note that larger values for(2π fo)2 c indicateworse
phase noise performance.
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