

Abstract – VHDL 1076.1 denotes an effort to enhance the
IEEE VHDL 1076 standard with analog and mixed-signal capa-
bilities. At the time of this writing (November 1995), the develop-
ment of the extensions is nearing completion. An IEEE ballot to
adopt the extensions as a new IEEE standard should happen in
Q1 97. This tutorial provides an overview of the proposed exten-
sions through a number of simple, but characteristic, examples.

I. I

NTRODUCTION

VHDL is an IEEE standard language for the description
and the simulation of digital hardware (IEEE Std 1076-
1993)[1][2]. Since its first release in 1987,

aka

 VHDL 87,
VHDL progressively took a central place in top-down hard-
ware design flows as well as in all major EDA environments
available in the market. It even went beyond its original goal
as its use has extended to support synthesis, formal verifica-
tion, and testing.

Since 1987, VHDL went through a first restandardization
phase that corrected some language inconsistencies and added
new language features. This culminated with a new version of
the standard known as VHDL 93 [3]. These modifications
have been done to satisfy a number of requirements coming
from users and tool developers based on their experience in
VHDL 87. Among these requirements, many of them were
asking to add analog and mixed-signal capabilities to the lan-
guage. Due to the complexity of the task, it has been decided
to develop such extensions in a separate effort that would not
preclude the restandardization of “digital” VHDL. A working
group was then formed under the auspices of the IEEE Design
Automation Standards Committee with the charter to develop
extensions to VHDL 1076 that support the description and the
simulation of systems with continuous behavior over ampli-
tude and time (PAR 1076.1)[4]

1

. The language design is now
nearing completion. A draft 1076.1 Language Reference Man-
ual is available, and a ballotable version is expected by the
end of 1996. The extended language has informally been

1

For more information on the working group activities and achieve-
ments, see http://www.vhdl.org/vi/analog/.

called VHDL-A, at the beginning, and then VHDL-AMS (for
“Analog and Mixed-Signal”), although the official name is
VHDL 1076.1.

The work within the 1076.1 working group is the result of
a collective effort from many individuals from industry and
academy. It has been supported by grants from European
JESSI and ESPRIT programs, and US Rome Laboratory. In
addition, EIAJ (Electronic Industries Association of Japan) is
today very active in the validation of the language design by
providing a feedback from a user perspective.

II. L

ANGUAGE

 O

VERVIEW

The VHDL 1076.1 language is designed to meet a set of
design objectives that have been documented in the 1076.1
Design Objective Document [5]. The objectives have been
formalized from requirements submitted to the working
group. They mainly ask the language to be built on two major
foundations: the VHDL 1076 language and the theory of dif-
ferential and algebraic equations.

The scope of the language is the description and the simu-
lation of continuous and mixed continuous/discrete systems at
different abstraction levels. This generalization to other disci-
plines of the support of analog and mixed-signal electrical
systems is readily possible since they all use the same para-
digms to describe system structure and behavior. The lan-
guage supports the modeling of lumped systems with
conservative and non-conservative (signal-flow) semantics.
Continuous behavior is described with differential and alge-
braic equations (DAEs) whose solution may include disconti-
nuities. Discrete behavior is described with the full
capabilities of VHDL 1076. Interactions between the continu-
ous part and the discrete part are supported at both the
description and the simulation levels in a flexible and efficient
way.

The solution of a continuous 1076.1 model is computed by
a conceptual agent referred to as the “analog solver”. The
VHDL 1076.1 language defines the system of equations that
are solved and the results the analog solver has to achieve, but

VHDL Analog and Mixed-Signal Extensions Through Examples

Alain Vachoux

Swiss Federal Institute of Technology (EPFL)
Dept. of Electrical Engineering
Integrated Systems Center (C3i)
CH-1015 Lausanne, Switzerland

Tel: +41 21 693 69 84
Fax: +41 21 693 46 63

e-mail: vachoux@leg.de.epfl.ch

ASP-DAC ’97
0-89791-851-7/$5.00 1997 IEEE

it does not define any algorithm to compute the solution. It is
assumed, in fair generality, that the solution of continuous
models cannot be computed exactly, so a mechanism to define
tolerances is included in the language. The language supports
time domain simulation and limited frequency domain simu-
lation. The latter is based on a small-signal model derived
from the (time domain) equations given in the text of the
model. Small-signal frequency domain and time domain noise
simulation are also supported.

The simulation of a discrete 1076.1 model strictly follows
the existing VHDL 1076 simulation cycle. The simulation of
mixed continuous/discrete models is supported by a new
mixed-mode simulation cycle that defines the synchronization
between the analog solver and the VHDL 1076 kernel process.
The analog solver establishes a sequence of solutions to the
DAEs referred to as “analog solution points” or ASPs at suit-
able times between the time of the current discrete event and
the time of the next event. A mechanism to limit the maximum
timestep size is defined in a way that is independent of any
simulation algorithm. Only time domain simulation is cur-
rently supported for mixed continuous/discrete models.

The VHDL 1076.1 language is required to be a superset of
VHDL 1076-1993. First of all, any legal VHDL 1076-1993
description is accepted and its simulation must produce the
same results as if the description was simulated with a VHDL
1076 simulator. A VHDL 1076.1 model may actually reuse all
model organization, structuring, and programming facilities in
VHDL 1076. It also extends some existing VHDL 1076 con-
structs and adds a few new language constructs and semantics
as we’ll see in the next section. Great care has been taken
however to keep the VHDL 1076 philosophy (e.g. scope and
visibility rules, declaration before use, strong typing, etc.)

III. VHDL 1076.1 T

HROUGH

 E

XAMPLES

This section intends to provide a practical introduction to
VHDL 1076.1 through a number of simple, but characteristic,
model examples.

A. Conservative Systems

The VHDL 1076.1 language defines special syntax and
semantics to support the description and the simulation of
conservative systems such as electrical systems satisfying
Kirchhoff’s laws. In VHDL 1076.1, the equations describing
the conservative aspects are implicitly defined (in the VHDL
sense), so only the so-called constitutive equations have to
appear explicitly in the text of the model.

Let us take the example of a simple large-signal diode
model whose constitutive equations are:

(1)

(2)

where

i

d

is the ideal diode current,

i

c

is the associated capaci-
tor current,

v

d

is the diode voltage, and the other uppercase
variables are SPICE2 diode model parameters [6]. A VHDL
1076.1 description of this diode model may be done as shown
in Example 1 (bold characters are VHDL 1076.1 reserved
keywords.) This example actually illustrates many of the new
capabilities introduced in VHDL 1076.1.

entity

 diode

is

generic

 (ISS, N, VT, TT, CJ0, VJ, RS: real);

port

 (

terminal

 p, m: electrical);

end

entity

 diode;

library

 IEEE;

use

 IEEE.math_real.

all

;

architecture

 level0

of

 diode

is

quantity

 vd

across

 id, ic

through

 p

to

 m;

quantity

 qc: real;

begin

qc == TT*id – 2.0*CJ0*sqrt(VJ**2 – VJ*vd);

ic == qc’dot;

id == ISS*(exp((vd–RS*id)/(N*VT)) – 1.0);

end

architecture

 level0;

Example 1:

VHDL 1076.1 diode model

The entity declaration defines the interface of the model.
As in VHDL 1076, generic parameters hold static values, i.e.
values that are known before the simulation actually begins
(Parameter IS is actually denoted as ISS as IS is a VHDL
reserved word.) The port declaration that follows defines two
interface objects called

terminals

 (more formally,

terminal
ports

), in this case a plus terminal

p

 (the anode) and a minus
terminal

m

 (the cathode). Terminals are central to the support
of conservative semantics. A terminal is a new object in
VHDL 1076.1 that does not bear any value. It rather defines
the kind of energy that it is flowing through it. Consequently,
a terminal does not have a type, but it belongs to a

nature

 that
represents a physical discipline. Example 1 deals with the
electrical discipline, so a nature called

electrical

 has been
defined somewhere else (possibly in some package).

Electrical circuit theory assumes that two quantities are
associated with any electrical terminal, namely a voltage and a
current. These quantities are then used in constitutive equa-
tions that define the electrical behavior between terminals.
They represent the unknowns of the set of DAEs that define
the behavior of the complete modeled system. The set of
DAEs is built from the constitutive equations, the equations
derived from the structural composition of design entities, and
the equations derived from the conservative semantics.id IS e

vd RS id⋅–() N VT⋅()⁄
1–

 ⋅=

ic TT id 2 CJ0 VJ
2

VJ vd⋅–⋅ ⋅–⋅=

The VHDL 1076.1 language does the same, although in a
more indirect way. It first introduces a new class of real-val-
ued objects called

quantities

 whose values are computed at
ASPs by the analog solver as solutions of the set of DAEs. A
special kind of quantities, called

branch quantities

, are
defined between two terminals, a plus terminal and a minus
terminal. An

across branch quantity

 represents an effort like
effect such as the voltage in electrical systems. A through
branch quantity represents a flow like effect such as the cur-
rent in electrical systems.

A nature in VHDL 1076.1, such as nature

electrical

(Example 2), defines the

types

 of the branch quantities that
may be associated with any terminal of that nature. As a
result, strong type checking does not allow to connect together
terminals of different natures.

subtype

 voltage

is

 real;

subtype

 current

is

 real;

nature

 electrical

is

voltage

across

 current

through

;

Example 2:

Definition of nature electrical

The declaration of nature

N

 implicitly defines a single

 ref-
erence terminal

 for that nature that is designated by

N’Ref-

erence

 (e.g., the ground for nature

electrical

).Then, the
declaration of a terminal

T

 of nature

N

 automatically creates
two branch quantities.

T’Reference is an across branch
quantity defined between T and N’Reference. T’Contri-
bution is a through branch quantity whose value is equal to
the sum of all through branch quantities that are associated
with terminal T (with appropriate sign). In Example 1,
p’reference represents the voltage potential of terminal p
with reference to the ground electrical’reference,
while p’contribution represents the terminal current that
flows at terminal p. The same definitions apply to terminal m,
mutatis mutandis.

The architecture body in Example 1 describes the diode
behavior by expressing the constitutive equations (1) and (2).
As physical quantities vd, id, and ic are defined relatively to the
two diode terminals, the VHDL 1076.1 model declares the
across branch quantity vd and the two through branch quanti-
ties id, and ic between the two interface terminals p and m.
The type of a branch quantity is derived from the nature of its
terminals (both terminals have to be of the same nature). The
branch quantity declaration also defines that

vd = p’reference – m’reference

and that id and ic are currents in two parallel branches flow-
ing from terminal p to terminal m.

The constitutive equations (1) and (2) are readily
expressed using a new class of statements introduced in
VHDL 1076.1 and called simultaneous statements. They
come in addition to the existing sequential and concurrent

statements and provide a notation for DAEs. Simultaneous
statements may appear anywhere a concurrent statement is
allowed. They come in several forms, the basic one being the
simple simultaneous statement:

[label:] expression == expression;

where expression may be any VHDL expression that evalu-
ates to a numeric value. The statement is symmetrical, so the
analog solver is responsible to compute the values of all
involved quantities at each ASP in such a way that both
expressions are approximately equal. How “approximately
equal” they are depends on tolerances that may be associated
to quantities and to simultaneous statements.

In Example 1, the constitutive equations are expressed
with three simple simultaneous statements. A third statement
is needed since VHDL 1076.1 does not allow to write the time
derivative of an expression. Hence, a second quantity declara-
tion declares a so-called free quantity qc that is not associated
with any terminal. Its role is to act as an intermediate
unknown to hold a charge expression. The capacitor current
ic is then expressed as the time derivative of the charge desig-
nated by the implicitly defined quantity qc’dot. Note that the
three simultaneous statements may be given in any order.
They will be gathered before simulation in the set of DAEs to
be solved by the analog solver. The conservative semantics
that are associated with terminals and branch quantities result
with the following additional implicitly defined equations:

p’contribution == id + ic
m’contribution == –(id + ic)

The mathematical functions sqrt and exp are taken from
the IEEE 1076.2 standard MATH_REAL package.

The application of the VHDL 1076.1 language is not lim-
ited to electrical systems only. Any conservative system for
which suitable nature and across plus through branch quanti-
ties may be defined may be described in VHDL 1076.1 (Table
1). The place is unfortunately missing in this paper to present
examples in other disciplines.

B. Signal-Flow Modelling

Signal-flow modeling deals with abstract descriptions of
continuous systems where conservative semantics are not
enforced. Example 3 gives a signal-flow description of an
adder-integrator.

Nature Across Through

Mechanical Velocity Force

Rotational Velocity Torque

Thermal Temperature Heat flow rate

Hydraulic Pressure Fluid flow rate

Table 1: Other possible disciplines in VHDL 1076.1

entity adder_integrator is

generic (k1, k2: real);

port (quantity in1, in2: in real;

 quantity si: out real);

end entity adder_integrator;

architecture sfg of adder_integrator is

quantity qs: real;

begin

qs == k1*in1 + k2*in2;

si == qs’integ;

end architecture sfg;

Example 3: Signal-flow model of an adder-integrator

The port list in the entity declaration defines interface
objects, called quantity ports, that do not carry any conserva-
tive semantics. Quantity ports have a mode that is restricted to
be in or out. The meaning of modes on quantity ports is dif-
ferent than from the one that exists for signal ports. They
define legal quantity port associations and they provide a sup-
port to perform solvability checks on the description. In the
latter case, mode out indicates that the architecture provides
an equation for this quantity, while mode in indicates that this
equation is provided in another block.

The architecture expresses the adder-integrator behavior
with two simple simultaneous statements. It declares a local
free quantity qs to hold the expression to be integrated over
time, i.e. the weighted sum of the two input quantities in1
and in2. In VHDL 1076.1, the integral over time, from time
zero to the current time, of a quantity q is an implicitly
declared quantity designated by q’integ. It is not allowed to
express the integral of an expression, so the local quantity qs
is required to make a reference to qs’integ.

Mixed conservative/signal-flow descriptions are possible
in VHDL-1076.1. For instance, Example 1 could be aug-
mented with another quantity port of mode out called power,
so the power consumption of the diode is computed with a
fourth simultaneous statement of the form:

power == vd * (id + ic);

C. Piecewise Defined Behaviour

The VHDL 1076.1 language provides a way to describe
behavior that may change according to the region of operation
the model is working in. Example 4 gives a simple behavior of
the gain stage of an OTA. It is assumed that gmnom denotes
the nominal transconductance, dvmax denotes the input satu-
ration voltage, and imax denotes the output saturation current.
All these values are statically determined before simulation.
Also, vinput is the input voltage, and gain_current is the
output current of the gain stage.

assert abs(gmnom*dvmax) = abs(imax);

if vinput > dvmax use

gain_current == imax;

else if vinput < dvmax use

gain_current == –imax;

else

gain_current == gmnom * vinput;

end use;

Example 4: OTA gain stage model

Example 4 shows the use of the new simultaneous if state-
ment to indicate which simple simultaneous statement to con-
sider depending on the value of the input voltage. In this case,
the analog solver will consider different sets of DAEs to solve
that change dynamically during simulation. Each conditional
branch may contain any number of simultaneous statements.
The concurrent assertion statement is here to avoid any dis-
continuity in the quantity gain_current.

The VHDL 1076.1 language also provides the simulta-
neous case statement for which the selection is performed
according to the evaluation of some expression.

D. Mixed-Signal Interactions

The VHDL 1076.1 language allows to write models with
mixed-signal interactions. An A/D interaction may occur
when a process is made sensitive to a threshold crossing in the
values of some quantities. A D/A interaction may occur when
the value of some signals are referred to in simple simulta-
neous statements.

Example 5 illustrates the A/D interaction with the model
of a simple comparator.

entity comparator is

generic (level: real := 2.5); -- threshold

port (terminal ain: electrical;

 signal dout: out bit);

end entity comparator;

architecture simple of comparator is

quantity vin across ain; -- to ground

begin

process begin

wait on vin’above(level);

if vin’above(level) then -- vin > level

dout <= ‘1’;

else -- vin < level

dout <= ‘0’;

end if;

end process;

end architecture simple;

Example 5: Simple comparator model

The entity declaration declares a port list with mixed con-
nection points. Note that the keyword signal is now expli-
citly required.

The architecture declares the across branch quantity vin
that senses the voltage between terminal ain and the (implic-
itly defined) electrical ground. Then, a process is made sensi-
tive to a threshold crossing with a new implicit signal in
VHDL 1076.1. For any quantity q, the boolean signal
q’above(level) is TRUE if q > level and FALSE if
q < level. An event occurs on the signal when the sign of
the expression q – level changes.

Note that the process must execute at the exact time of the
threshold crossing, which may not be representable with a
value of physical type Time. The VHDL 1076.1 language
introduces a unified formulation for simulation time that
addresses the requirements for both continuous and discrete
simulation. A common floating-point time is defined with
appropriate conversion functions to and from real-valued and
physical-valued times. Predefined function NOW is also over-
loaded to return the value of the current continuous simulation
time.

Example 6 illustrates the D/A interaction with the model
of a generic digital to analog converter.

entity dac is

generic (vmax: real := 5.0); -- max. voltage

port (terminal aout: electrical;

 signal din: in bit_vector);

end entity dac;

architecture simple of dac is

function bit_to_real (b: bit_vector)

return real is

variable wsum: integer := 0;

begin

for i in b'range loop

wsum := 2*wsum + bit'pos(b(i));

end loop;

return real(wsum)/2.0**b'length;

end function bit_to_real;

quantity vout across iout through aout;

begin

break on din; -- announce discontinuity

vout == vmax * bit_to_real(din);

end architecture simple;

Example 6: Generic D/A converter model

The architecture declares one across branch quantity vout
and one through branch quantity iout since the output stage
of the model is equivalent to an (ideal) voltage source between
terminal aout and the electrical ground.

Since values on signal din will change abruptly, disconti-
nuities are likely to appear in the time waveform denoted by

quantity vout. The VHDL 1076.1 language forces the mod-
eler to explicitly indicate that a discontinuity may occur with
the new break statement. The break statement schedules a
transaction on a new implicit signal break that will force the
analog solver to reevaluate the state of the continuous part of
the model. Example 6 uses the concurrent form of the break
statement to force the analog solver to resume each time an
event occurs on signal din.

E. Analog Discontinuities

Abstract models of physical systems are likely to exhibit
discontinuities in quantities. The VHDL 1076.1 language uses
its existing discrete event mechanism to handle discontinuities
that may be induced in the model. Example 7 illustrates this
case with the simple model of the dynamics of an infinitely
rigid ball that falls down from an initial height to an horizontal
ground and then bounces when it hits the ground.

library VHDL_AMS;

use VHDL_AMS.mechanical.all;

entity bouncer is

end entity bouncer;

architecture simple of bouncer is

quantity v: velocity := 0.0;

quantity s: displacement := 10.0;

constant G: real := 9.81;

constant Air_Res: real := 0.1;

begin

s’dot == v;

if v > 0.0 use

v’dot == –G – v**2*Air_Res;

else

v’dot == –G + v**2*Air_Res;

end use;

break v => –v when not s’above(0.0);

end architecture simple;

Example 7: Bouncing ball model

The entity declaration is reduced to its simplest form since
the model describes a closed system. The architecture defines
a signal-flow model using free quantities as unknowns. The
types velocity and displacement are floating-point types
defined in package mechanical (not shown here). Two con-
stitutive equations are needed to describe the system behavior.
The appropriate equation for the acceleration is dynamically
selected with a simultaneous if statement according to the sign
of the velocity. The break statement specifies a new initial
condition on quantity v to model an instantaneous change in
the ball direction. Note that there is not any discontinuity on
v’dot at crossover point v = 0.0 so no break is required by
the condition on v in the simultaneous if statement.

F. Initialization

All objects in a VHDL 1076.1 model must be given an ini-
tial value before the simulation actually begins, i.e. the value
at time 0.0. Constants, variables, and signals get their initial
values the same way as in VHDL 1076. Quantities, on the
other hand, may get their initial value in a different way. DAE
theory requires that all quantities in a model have a consistent
value at time 0.0 that is obtained through a special algorithm.
The VHDL 1076.1 language provides an initialization algo-
rithm that computes the quiescent state of the system. In elec-
trical systems, this solution is called the DC operating point.

Initial values on quantities are defined in their declaration.
In Example 7, the quantity s is given an initial value of 10.0.
A new rule that only holds for quantities is that their default
initial value is always 0.0. Initial values are used as starting
values for the computation of the quiescent state.

Initial conditions are given as separate equations derived
from a special use of the break statement. Example 8 illus-
trates the use of a break statement to define an initial condition
on a capacitor voltage.

entity capacitor is

generic (C: real; v0: real := 0.0);

port (terminal p, m: electrical);

end entity capacitor;

architecture bce of capacitor is

quantity vc across ic through p to m;

begin

ic == C * v’dot;

break v => v0 when v0 /= 0.0;

end architecture bce;

Example 8: Initial condition on a capacitor model

The generic parameter v0 is used here as a flag to decide
whether the initial condition must apply or not. The concur-
rent break statement is only activated during the initialization
phase since it is equivalent to a process having a wait state-
ment without any sensitivity clause. The effect of the break
statement is to replace the default implicit equation
v’dot == 0.0 by v – v0 == 0.0 during the DC operat-
ing point computation.

IV. OTHER VHDL 1076.1 FEATURES

The VHDL 1076.1 language offers other capabilities that
are briefly summarized here.

Mixed Netlists. Since VHDL 1076.1 provides three kinds
of ports, namely signal ports, terminal ports, and quantity
ports, there is a need to define how a structural hierarchy may
be built using design entities with arbitrary combinations of
ports. VHDL 1076.1 defines rules for the direct association

(port map) of terminal and quantity ports, provided that their
types match. All other possible direct port associations are not
allowed, so some explicit conversion block is required. Exam-
ples are A/D and D/A converters for mixed-signal conversion,
and transducers for mixed-nature conversion.

Solvability Checks. A necessary condition for the solv-
ability of a system of DAEs is that there are as many equations
as unknowns. In VHDL 1076.1, unknowns are represented by
quantities, and equations are derived from simultaneous state-
ments and from the structural composition of design entities.
Rules are then defined to check the solvability at the block
level using existing scoping rules in VHDL.

Frequency Domain. VHDL 1076.1 provides a support for
small-signal frequency analysis. Rules are defined to derive a
small-signal model from a time domain description. A way to
define small-signal stimulus is also provided without having
to use explicit complex numbers. A specific small-signal fre-
quency simulation phase is added.

Tolerances. The analog solver needs some information
about how accurately the DAEs must be solved. VHDL
1076.1 provides a way to define groups of quantities or simul-
taneous statements that belong to the same tolerance, but
without specifying a tolerance value, however. The model
remains neutral to any information that would be implementa-
tion dependent.

Timestep Control. VHDL 1076.1 provides a mechanism
to limit the maximum size of the timestep used by the analog
solver. This size may be dynamically adjusted during simula-
tion whenever needed.

V. CONCLUSIONS

This paper provided a tutorial introduction to the VHDL
1076.1 language that provides analog and mixed-signal exten-
sions to VHDL 1076. The language actually encompasses
more than that as it is designed to address more general con-
tinuous and mixed continuous/discrete problems. VHDL
1076.1 is scheduled to become an IEEE standard in 1997.

REFERENCES

[1] VHDL Language Reference Manual, ANSI/IEEE Standard
1076-1993, SH16840, IEEE Press, 1993.

[2] P. J. Ashenden, The Designer’s Guide to VHDL, Morgan
Kaufmann, 1996.

[3] J.-M. Bergé, A. Fonkoua, S. Maginot, J. Rouillard, VHDL ‘92,
Kluwer Academic Publishers, 1993.

[4] E. Christen, K. Bakalar, VHDL 1076.1 – Analog and Mixed-
Signal Extensions to VHDL, IEEE Proc. EURO-DAC’96 with
EURO-VHDL’96, pp. , Sept. 1996.

[5] VHDL 1076.1 Design Objective Document, version 2.3, 1076.1
Working Group, 1995.

[6] G. Massobrio, P. Antognetti, Semiconductor Device Modelling
with SPICE, 2nd ed., McGraw-Hill, 1993.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

