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Abstract| A fundamental issue in 
oorplanning is

in how to represent candidate solutions. Recently, a

representation called sequence-pair is proposed [1]. Seq-

pair is so general as to represent an area minimum

placement, and also e�cient because it does not rep-

resent any overlapping placement. However, seq-pair

is not expressive enough since channels are not repre-

sented. This paper gives a mapping from seq-pair to

rectangular dissection, which represents channels by

line segments. Consequently, candidate arrangements

of modules and channels are successfully represented

with the generality and the e�ciency inherited from

the seq-pair.

I. Introduction

In the �rst stage of VLSI physical design, it is required

to determine a rough arrangement of circuit components,

such as modules and channels. A stochastic algorithm,

such as simulated annealing or genetic algorithm, would

be a good choice as an optimization algorithm since the

problem is hard. To make a stochastic algorithm work ef-

fectively, a fundamental issue is in how to represent candi-

date arrangements, with enough generality and e�ciency

to cope with various design requirements.

Recently, Murata, Fujiyoshi, Nakatake, and Kajitani [1]

proposed a representation called sequence-pair , which is

a pair of module name sequences. For example, (abc; cab)

is a seq-pair for module set fa; b; cg. For a seq-pair, they

assigned a HV-relation-set (HVRS), which is a set of hori-
zontal (right of/left of) or vertical (above/below) relations

for every module pair. For example, seq-pair (abc; cab)

corresponds to HVRS fa is left of b, c is below a, c is

below bg. It is proved in the paper that a seq-pair always

corresponds to a realizable HVRS, and there is a seq-

pair whose HVRS can lead an area minimum placement.

However, HVRS alone is not su�cient as a representa-

tion of candidate arrangements of components. Channel

positions are also desired to be represented together.

A traditional method exists to represent channel po-

sitions together with module positions. It is the

rectangular-dissection. (sometimes called 
oorplan in the

literature [8].) However, known e�cient representation

techniques are limited for speci�c classes of rectangular-

dissections, such as slicing structure [6].

To combine the merits of seq-pair and rectangular-

dissection, it is desired to map a seq-pair to a rectangular-
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dissection. Observe from Fig. 2-(a) that a room with no

module assignment, called the empty room, is necessary

in the rectangular-dissection to keep the relational posi-

tions of modules. It worth to allow this empty room since

it is essentially needed to represent an area optimal place-

ment. However, introducing arbitrary many empty rooms

results in arbitrary many line segments, which represent

channels.

This paper gives a mapping from a seq-pair to a

rectangular-dissection whose number of rooms is mini-

mum among all the rectangular-dissections whose HVRSs

are equivalent to the HVRS of the given seq-pair. Conse-

quently, candidate arrangements of modules and channels

are successfully represented with the generality and the

e�ciency inherited from the seq-pair.

The organization of this paper is as follows. Section II

de�nes preliminary terms. Section III shows a necessary

and su�cient condition that a seq-pair is mapped to a

rectangular-dissection with no empty room. Section IV

presents a procedure to output a rectangular-dissection

with fewest empty rooms. Section V is for conclusion.

An early version of this paper is presented in [2].

II. Preliminary

A. HV-Relation-Set (HVRS)

A HV-relation-set for a set of modules is a set of hor-

izontal (right of / left of) or vertical (above/below) rela-

tions for all module pairs. For example,

fa is left of b, c is below a, c is below bg

is an HVRS for module set fa; b; cg. The cardinality of

an HVRS is
�
n

2

�
, where n is the number of modules. The

variety of HVRS is 4(
n

2).

A HVRS may or may not be realizable. The above ex-

ample is realizable. A non-realizable example is : fa is left
of b, b is left of c, c is left of ag. A branch and bound ap-

proach [4] can be used to eliminate non-realizable HVRSs.

B. Sequence-Pair

A seq-pair is an ordered pair of �+ and ��, where each

of �+ and �� is a sequence of names of given n modules.

For example, (�+;��) = (abcd; bdac) is a seq-pair of mod-

ule set fa; b; c; dg. If module x is the i'th module in �+,



we denote �+(i) = x, as well as ��1
+
(x) = i. Similar nota-

tion is used also for ��. To help intuitive understanding,
we use a notation such as

(�+;��) = (�� a ��b �� ; �� a ��b ��)

by which we mean

��1
+
(a) < ��1

+
(b) and ��1� (a) < ��1� (b):

A seq-pair corresponds to an HVRS as follows [1]. For
every module pair fa; bg, a is left of b (equivalently, b is
right of a) if

(�+;��) = (�� a ��b �� ; �� a ��b ��):

Similarly, a is below b (equivalently, b is above a) if

(�+;��) = (�� b ��a �� ; �� a ��b ��):

For example, seq-pair (abcd; bdac) implies HVRS: fb is
below a, b is left of d, d is below c, a is left of c, d is below
a, b is left of cg.
The variety of HVRS represented by the seq-pair equals

to the variety of the seq-pair, (n!)2, thus drastically re-

duced from the original variety 4(
n

2), where n is the num-
ber of modules. Furthermore, seq-pair has the following
property.

Property1 [1] The HVRS of every seq-pair is realizable.
For any non-overlapping placement, there is a seq-pair
whose HVRS is satis�ed by the placement. 2

The HVRS of a seq-pair of n modules can be graph-
ically understood by means of oblique-grid , de�ned as
follows. Let L+(1); L+(2); � � � ; L+(n) be n parallel lines
of slope +1 drawn on a plane, ordered from left. Let
L�(1); L�(2); � � � ; L�(n) be n parallel lines of slope �1
drawn on the plane, also ordered from left. These 2n lines
form a 45 degree oblique n � n grid, called the oblique-
gird . The oblique-grid-embedding of a seq-pair (�+;��)
is the oblique-grid with each module name x written at
the cross point of L+(�

�1

+
(x)) and L�(�

�1

� (x)). Fig. 1-(a)
shows the oblique-grid-embedding of seq-pair (abcd; bdac).
Using the oblique-grid-embedding, the HVRS of a seq-
pair can be re-de�ned as: for each module x, the modules
which are seen from x in the angle between �45 degree
and 45 degree are right of x, the modules in the angle
between 45 degree and 135 degree are above x, and so on.
The HVRS of a seq-pair is represented by a pair of

directed acyclic graphs, called horizontal-seq-pair-graph
(H-SPG) and vertical-seq-pair-graph (V-SPG), de�ned as
follows. For either graph, vertices uniquely correspond
to modules and have the corresponding module names.
The edge set of the H-SPG is constructed faithfully to
the horizontal relations, from left to right, but eliminat-
ing the transitive edges. The edge set of the V-SPG is
de�ned similarly from bottom to top. We sometime ab-
breviate the pair of H-SPG and V-SPG of a seq-pair to
\SPGs".
Oblique-grid-embedding of a seq-pair with arrows ad-

ditionally drawn corresponding to the edges of the SPGs
is called the oblique-grid-embedding of the SPGs. Fig. 1-
(b) shows an example, where the edges of the H-SPG are
drawn using solid lines, and the edges of the V-SPG are
drawn using dotted lines.
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Fig. 1. (a) Seq-Pair (abcd; bdac), (b) Horizontal-Seq-Pair-Graph
(H-SPG) and Vertical-Seq-Pair-Graph (V-SPG). The edges of

H-SPG are drawn in solid lines and the edges of V-SPG are drawn

in dotted lines.

C. Rectangular-Dissection

A rectangular-dissection is a dissection of a rectangle
into a set of rectangles, called rooms, with an injective
assignment of modules to rooms (no two modules share
a room.) An example is shown in Fig. 2-(a). Only T-
intersections are used to form the dissection except for
the four corners of the bounding rectangle. (Two T-
intersections may form a cross shape as a degenerate
case.) The bounding rectangle represents the chip, each
room represents an area which is assignable to a module,
and each line segment represents a channel. A room is
said to be occupied if a module is assigned to the room,
otherwise said to be empty . In Fig. 2-(a), the gray room
at the center is empty and the other rooms are occupied.
Empty rooms have been used to modify a rectangular-
dissection incrementally[7].
A rectangular-dissection speci�es relative positions of

modules and channels as follows: If the right side of a
room ra and the left side of a room rb are both on a same
vertical line segment lc, the module a assigned to the room
ra should be placed left of the channel c corresponding to
the line segment lc, and the module b assigned to the room
rb should be placed right of the channel c (horizontal re-
lation). Notice that a horizontal relation between module
pair a; b is transitively speci�ed as: module a should be
placed left of module b. Vertical relations are speci�ed
similarly using horizontal line segments.
The information of a rectangular-dissection is com-

monly represented by means of a pair of directed acyclic
graphs [9, 5, 8], a horizontal-rectangular-dissection-graph
(H-RDG) and a vertical-rectangular-dissection-graph (V-
RDG). Each vertical (horizontal) line segment corre-
sponds to a vertex in the H-RDG (V-RDG) and each room
corresponds to an edge (u; v) where u is the vertex corre-
sponding to the left (bottom) side of the room and v is the
vertex corresponding to the right (top) side of the room.
We sometime abuse the word RDGs to denote the pair
of H-RDG and V-RDG of a rectangular-dissection. Two
rectangular-dissections are said to be equivalent if their
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Fig. 2. (a) Rectangular-Dissection, (b)
Horizontal-Rectangular-Dissection-Graph (H-RDG) and

Vertical-Rectangular-Dissection-Graph (V-RDG). H-RDG is

drawn in solid lines and V-RDG is drawn in dotted lines.

RDGs (the two H-RDGs, as well as the two V-RDGs) are
same. Fig. 2-(b) illustrates the RDGs of the rectangular-
dissection shown in Fig. 2-(a). In the �gure, the edges
of H-RDG are drawn using solid lines, and the edges of
V-RDG are drawn using dotted lines. An empty room
corresponds to the anonymous edge in the �gure.

H-RDG as well as V-RDG is a directed acyclic planar
graph with possibly duplicated edges. Each RDG is polar,
i.e. a directed acyclic graph with single source and single
sink. Two polar graphs G1 and G2 are said to be in polar-
dual relation if G1 and G2 become dual when an undi-
rected edge from source to sink is added in each graph.
From the con�guration, the RDGs are in polar-dual rela-
tion. The reverse is also true since polar-dual graphs are
known to be mapped to a rectangular-dissection [5].

Property2 Given two polar graphs G1 and G2, there
exists a rectangular-dissection whose RDGs are G1 and
G2, if and only if G1 and G2 are in polar-dual relation. 2

When we construct a rectangular-dissection from H-
RDG Gh and V-RDG Gv, we use the following procedure.

Procedure ConstRD(Gh; Gv)
For a vertex u 2 V (Gh), x(u) denotes the ordinal number
of the vertex u in a topological order of the vertices in Gh.
(x(u) has a unique integer such that x(u) < x(u0) if there
exists a path from u to u0). Similarly, y(v) denotes the
ordinal number of the vertex v in a topological order of the
vertices in Gv. A pair of edges (eh; ev) is called a \cross"
if eh(2 E(Gh)) and ev(2 E(Gv)) are in a dual relation.
For each cross ((u1; u2); (v1; v2)), draw a rectangle whose
lower left corner is at (x(u1); y(v1)) and whose upper right
corner is at (x(u2); y(v2)). (Procedure ConstRD End)

It is easily seen that ConstRD runs in O(m) time, where
m = jE(Gh)j = jE(Gv)j which also equals to the number
of rooms in the resultant rectangular-dissection.

D. Seq-Pair and Rectangular-Dissection

The major merit of the seq-pair and that of the
rectangular-dissection is summarized as follows.

� The merit of the seq-pair is its e�ciency in enumer-
ating various HVRSs.

� The merit of the rectangular-dissection is its ability
of representing the channels.

To have the two merits at the same time, the target of
this paper is:

Target: To map a seq-pair to a rectangular-dissection.

The following three properties show a similarity of the
seq-pair and the rectangular-dissection.

Property3 Given a seq-pair, for any two modules a and
b, there is a path which connects a and b in H-SPG or in
V-SPG, and not in both. 2

Property4 In the H-RDG (V-RDG) of a rectangular-
dissection, if there is a path from edge a to edge b, then
the room a is left of (below) room b in the rectangular-
dissection. 2

Property5 Given a rectangular-dissection, for any two
rooms a; b, there is a path which connects a and b in H-
RDG or in V-RDG, and not in both. 2

Property 3 and 4 are easily understood. See appendix
for a proof of Property 5.
Property 4 and 5 imply that a rectangular-dissection,

as well as a seq-pair, uniquely corresponds to an HVRS.
Then, the correspondence between the seq-pair and the
rectangular-dissection is in question. Next property can
be easily derived from the result of [1].

Property6 For the HVRS T of any rectangular-
dissection, there is unique seq-pair S whose HVRS is T .

2

The reverse direction is essential to achieve our target.
We have following observations.

Observation1 There is a seq-pair whose HVRS can
only be represented by a rectangular-dissection with an
empty room. 2

(abcd; bdac) is an example of such seq-pair whose HVRS
can only be represented using an empty room. Fig. 1-(a)
and Fig. 2-(a) illustrate the seq-pair and the correspond-
ing rectangular-dissection.

Observation2 There is a set of modules whose area min-
imum placement can only be represented by a rectangular-
dissection with an empty room. 2

For instance, area minimum placement of four modules
of sizes 3�2, 2�3, 3�3 and 2�4, can be represented essen-
tially only by the rectangular-dissection shown in Fig. 2-
(a). From Observation 1 and 2, it is our constraint that:

Constraint: The HVRS of a seq-pair should be pre-
served by the targeted mapping.

Observation3 For an HVRS, rectangular-dissection is
not unique if arbitrary many empty rooms are allow to be
introduced. 2



Property7 For any rectangular-dissection, the number
of line segments is equal to the number of rooms plus
three. 2

Property 7 can be proved by counting the number of
room corners contributed by a line segment.
Recall that the line segments represent channels. Al-

though the goodness about the number of channels might
di�er in several routing schemes, fewer number of chan-
nels is most likely preferred to avoid too many wire bends.
Thus it is our criterion that:

Criterion: Minimize the number of rooms in the tar-
geted mapping.

For an extreme counter situation, if n2 rooms are ac-
ceptable for every seq-pair of n modules, it is known that
one speci�c (�xed) rectangular-dissection, called Bounded
Sliceline Grid (BSG), is su�cient to represent the HVRS
of an arbitrary seq-pair[3].

III. Rectangular-Dissection with No Empty

Room

This section gives a procedure which maps a seq-pair
to a rectangular-dissection without any empty room if the
given seq-pair satis�es a condition. Then, the condition is
revealed to be necessary and su�cient for eliminating the
introduction of empty room. To describe the condition,
we need to de�ne two terms, HV-cross and adjacent-cross.

A. HV-cross and Adjacent-cross

Four modules a; b; c; d are said to form a HV-cross in a
seq-pair S = (�+;��) if they satisfy the following three
conditions in (�+;��) or in (�+;�

0
�), where �0� is the

reverse of ��.

� (�� a ��b ��c ��d �� ; �� c ��a ��d ��b ��)

� There is no module x which satis�es

(�� a ��x ��d �� ; �� a ��x ��d ��):

� There is no module x which satis�es

(�� b ��x ��c �� ; �� c ��x ��b ��):

Fig. 3-(a) illustrates an HV-cross using oblique-grid.
There is no module in the dark region because of the
last two conditions in the de�nition. HV-cross is so called
because it corresponds to a crossing between an edge in
the H-SPG and an edge in the V-SPG in the oblique-grid-
embedding of the SPGs.
If four modules a; b; c; d form an HV-cross and b and c

are adjacent in �+, and a and d are adjacent in ��(�
0
�),

the HV-cross is also called the adjacent-cross. The con-
dition is illustrated in Fig. 3-(b).

Lemma1 If there is an HV-cross in a seq-pair S, then
an adjacent-cross also exists in S.
(proof) The proof is by contradiction. Without loss of
generality, let an HV-cross formed by four modules a; b; c
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Fig. 3. (a) HV-cross (no module is in the dark region). (b)

adjacent-cross (special case of HV-cross).
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Fig. 4. Figure used in the proof of Lemma 1

and d be S = (�+;��) = (�� a � �b � �c � �d � � ; � � c � �a � �d �
�b � �). (See Fig. 4.) We can assume further that: (i)
the distance between b and c in �+ is minimum over all
the HV-crosses in S; and (ii) among such HV-crosses, the
distance between a and d in �� is minimum.

If b and c are not adjacent in �+, there is a module in
between. Such modules are not between b and c in ��,
from the de�nition of HV-cross. In such modules, there
is module x which satis�es one of the two cases:

� S = (�� a ��b ��x ��c ��d �� ; �� x ��c ��a ��d ��b ��) and a; b; x; d

form an HV-cross, or

� S = (�� a ��b ��x ��c ��d �� ; �� c ��a ��d ��b ��x ��) and a; x; c; d

form an HV-cross.

(Fig. 4 illustrates an example for the former case.) Either
case contradicts to the assumption (i). Similarly, if a and
d are not adjacent in ��, a contradiction to the assump-
tion (ii) is derived. Hence, a; b; c; d form an adjacent-cross.

2



B. Procedure SeqPair{RDG

A procedure called SeqPair{RDG is presented to map a
seq-pair to a pair of RDGs. From the resultant RDGs, a
rectangular-dissection is obtained by the procedure Con-
stRD given in Section II. Fig. 5 illustrates the result of
each step for input seq-pair S = (abcde; becad). A hyper
directed edge is denoted (Vi; Vo), where Vi is the input
vertex set, and Vo is the output vertex set.

Procedure SeqPair{RDG

Input: Seq-pair S = (�+;��) which has no adjacent-
cross.

Output: H-RDG GHP and V-RDG GV P .

(Step 1) Add four new modules sh; th; sv; tv, called phan-
tom modules, to the input seq-pair S = (�+;��) and ob-
tain new seq-pair S? = (tvsh�+thsv; svsh��thtv). Con-
struct H-SPG GHSP and V-SPG GV SP from S?.

(Step 2) Construct a horizontal hyper graph GH and a
vertical hyper graph GV from GHSP and GV SP as follows.
The vertex set of GH and GV are both equivalent to the
vertex set of SPGs. A hyper edge (VL; VR) is in the edge
set E(GH) if and only if the subgraph of GHSP induced
by VL [ VR is a maximal bipartite. The edge set E(GV )
is similarly de�ned using GV SP .

(Step 3) For GH (also for GV ), construct a hyper graph
GHP (resp. GV P ) by converting all the hyper edges to
the vertices and by converting all the vertices, except for
the vertices corresponding to the phantom modules, to
the edges. (Procedure SeqPair{RDG End)

C. Proof of SeqPair{RDG

Theorem1 Let S be a seq-pair of n modules. If S does
not include adjacent-cross, procedure SeqPair{RDG maps
S to a pair of RDGs which correspond to a rectangular-
dissection with no empty room such that the HVRS of the
rectangular-dissection equals to the HVRS of S, in O(n2)
time. 2

From the resultant RDGs, a rectangular-dissection is
obtained by ConstRD in O(n) time. In the following, we
prove this theorem.

Lemma2 In (Step 1), each edge of GHSP (GV SP ) be-
longs to a unique maximal complete bipartite subgraph
of GHSP (GV SP ).
(proof) The proof is by contradiction. Assume an edge
(a1; b1) belongs to two maximal complete bipartite sub-
graphs G1(V 1

i
[ V 1

o
; E1) and G2(V 2

i
[ V 2

o
; E2). Since G1

andG2 are both maximal complete bipartite graphs, there
are two vertices a2 2 (V 1

i
[ V 2

i
) and b2 2 (V 1

o
[ V 2

o
) such

that there is no edge (a2; b2) in E(GHSP ). The edges
(a1; b1), (a1; b2) and (a2; b1) all exist in E(G

HSP
). If a1

and a2 are in horizontal relation, then (a1; b1) or (a2; b1)
becomes transitive. Hence a1 and a2 are in vertical rela-
tion. Without loss of generality, we assume a1 is above
a2, i.e. S = (�� a1 ��a2 �� ; �� a2 ��a1 ��). Since there are edges
(a1; b1) and (a2; b1), S = (�� a1 ��a2 ��b1 �� ; �� a2 ��a1 ��b1 ��).

t v

t hsh

s v

c

d

e

a

b

(a) GHSP (solid lines) and GV SP (dotted lines) obtained in Step 1

t v

t hsh

s v

c

d

e
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b

(b) GH (solid lines) and GV (dotted lines) obtained in Step 2

a

b
c

e

d

(c) GHP (solid lines) and GV P (dotted lines) obtained in Step 3

Fig. 5. Snapshot of the procedure SeqPair{RDG

.
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Fig. 6. Figure used in the proof of Lemma 2

Considering the fact that there is edge (a1; b2), the po-
sition of b2 are exhaustively examined in the following.
(See Fig. 6).

(i) S = (�� a1 ��b2 ��a2 ��b1 �� ; �� a2 ��a1 ��b1 ��b2 ��)

In GV SP , there is a path from a2 to b2. An edge
in the path crosses to the edge (a1; b1) 2 E(GHSP ),
thus there is an HV-cross in S. This contradicts to
the fact that S has no adjacent-cross (thus no HV-
cross by Lemma 1).

(ii) S = (�� a1 ��a2 ��b2 ��b1; �� a2 ��a1 ��b1 ��b2 ��)

Since edge (a2; b2) does not exist in E(GHSP ), there
is a vertex x which satis�es S = (�� a1 ��a2 ��x ��b2 �
�b1; �� a2 ��x ��a1 ��b1 ��b2) or S = (�� a1 ��a2 ��x ��b2 ��b1; ��
a2 ��a1 ��b1 ��x ��b2). The former case results in (a2; b1)
being transitive, and the latter results in (a1; b2) be-
ing transitive, either contradicts to the de�nition of
GHSP .

(iii) S = (�� a1 ��a2 ��b1 ��b2 �� ; �� a2 ��a1 ��b2 ��b1 ��)

Since there is no edge (a2; b2), there is module x

which satis�es S = (�� b1 ��x ��b2 �� ; �� a2 ��x ��a1). Then,
there is a path from x to a1 in GV SP . An edge in the
path crosses to the edge (a2; b1) 2 E(GHSP ), which
is a contradiction.

(iv) The other cases are trivially impossible.

Hence, an edge in G
HSP

belongs to a unique maximal
bipartite subgraph of GHSP . Similarly, the claim also
holds for GV SP . 2

Lemma3 The pair of graphs GHP and GV P obtained by
SeqPair{RDG are the RDGs.
(proof) In the following, we show the output is a pair
of RDGs by converting the oblique-grid-embedding of S?.
The modules in S are called real modules in contrast to
the phantom modules.
In the oblique-grid embedding of S? which is obtained

in (Step 1), any horizontal edge and vertical edge do not

cross each other because S? does not have HV-cross. (A
cross between horizontal edges, or between vertical edges,
is possible.)

In the HVRS of S?, phantom module sh (th; sv; tv) is
left of (right of, below, above, respectively) every real
module. Hence all the vertices corresponding to real mod-
ules have at least one input edge and one output edge,
both in GHSP and in GV SP .

In the hyper directed graphs GH and GV obtained in
(Step 2), the input degree and the output degree of each
vertex are 0 or 1. From Lemma 2, the input degree and
the output degree of the vertices which correspond to real
modules are both 1, in either hyper graph. Further, any
two edges do not cross each other if they are taken from
distinct maximal complete bipartite subgraphs. Hence,
GH and GV can be drawn without any crossing, as shown
in Fig. 5-(b).

In (Step 3), the conversion between hyper edges and
vertices preserves the planarity, thus GHP and GV P are
planar. The input degree and the output degree of GHP

and GV P are 1. Hence, the two hyper graphs GHP and
GV P are both ordinary graphs. Consequently, GHP and
GV P are in polar-dual relation. From Property 2, they
are RDGs. 2

Lemma4 The HVRS of the RDGs obtained by SeqPair{
RDG is equivalent to the HVRS of the input seq-pair.

(proof) In (Step 1), a horizontal (vertical) relation
is represented as a path between two vertices in GHSP

(GV SP ). For each path in GHSP (GV SP ), the correspond-
ing path exists in the hyper graph GH (GV ) in (Step 2),
and also in the in GHP (GV P ) in (Step 3). No new rela-
tion is introduced in the resultant RDGs since the RDGs
can not represent both horizontal and vertical relation for
a module pair (Property 5). 2

(Proof of Theorem 1)

Only the speed is proved in the following since other
claims are already proved by Lemma 3 and 4.

In (Step 1), SPGs are constructed faithfully to the
HVRS, but eliminating the transitive edges, by its def-
inition. For a module a, the set of all the modules
fx1; x2; . . . ; xmg that are non-transitively right of mod-
ule a can be computed in O(n) time using the fact that
they are in the form:

(�� xm ��x2 ��x1 �� ; �� a ��x1 ��x2 ��xm):

Hence, SPGs can be constructed by O(n2) time.

(Step 2) can be done also in O(n2) time, proportional
to the number of edges in SPGs, because each edge in
SPGs belongs to a unique maximal bipartite in SPGs
(Lemma 2).

It is obvious that the sum of the cardinality of the input
vertex set and that of the output vertex set of all the hyper
edges in GH (GV ) is O(n). Hence, (Step 3) can be done
in O(n) time.

Consequently, SeqPair{RDG can be done in O(n2) time.
2



D. Necessary and Su�cient Condition

Theorem 1 shows that the absence of the adjacent-cross
is su�cient for a seq-pair to be mapped to a rectangular-
dissection without empty room. It is also necessary as
follows.

Theorem2 A seq-pair can be mapped to a rectangular-
dissection without introducing any empty room if and
only if the seq-pair does not have an adjacent-cross.
(Proof) The condition is su�cient by Theorem 1. Let
S be a seq-pair of n modules and S includes one or more
adjacent-crosses. In the following, we show the HVRS
of S is not equivalent to the HVRS of any rectangular-
dissection with n rooms.
Let four modules a; b; c; d form an adjacent-cross in S.

Without loss of generality, Let S = (��a��bc��d�� ; �� b��da��c��).
The proof is by contradiction. Assume the relative mod-
ule position of S is represented by a rectangular-dissection
F without any empty room.
In the H-RDG of F , there are three paths;

(i) the path from the edge a to the edge c,

(ii) the path from the edge b to the edge c, and

(iii) the path from the edge b to the edge d.

For the path (ii), from the two facts \b and c are adja-
cent in �+, and there is no anonymous edge in the H-RDG
of F .", it is understood that edge b and edge c are directly
connected by a vertex v. It implies that the vertex v is in
the path (i) and also in the path (iii). Hence, there is a
path from a to d (via v) in the H-RDG. This contradicts
to the fact: a and d are in the vertical relation in the
HVRS of S, thus not in the horizontal relation. 2

IV. Rectangular-Dissection with Fewest Empty

Rooms

In this section, we give a procedure which maps a seq-
pair to a rectangular-dissection with fewest empty rooms.
The maximum possible number of empty rooms is also
presented.

A. Procedure RmAdjCross

Let S = (�+;��) be a seq-pair of nmodules, which pos-
sibly includes adjacent-crosses. Inserting dummy module
x into S is to add a new module x into �+ and into
��. \Adjacent-cross ab=cd" denotes an adjacent-cross
such that a and b are adjacent in �+ and c and d are
adjacent in ��. For example, (�� d ��ab ��c �� ; �� a ��cd ��b ��)
and (�� c ��ab ��d �� ; �� b ��cd ��a ��) are such cases.
For a seq-pair which includes an adjacent-cross ab=cd,

inserting a dummy module x at the cross-point of ab=cd
indicates that inserting x between a and b in �+ and
between c and d in ��. For example, when inserting
dummy module x into (� � d � �ab � �c � � ; � � a � �cd � �b � �) at
the cross-point of ab=cd, the resultant seq-pair will be
(�� d ��axb ��c �� ; �� a ��cxd ��b ��).

Procedure RmAdjCross

Fig. 7. E�ect of the procedure RmAdjCross. Dummy modules

(black dots) are inserted at the cross-points (dark region) of

adjacent-crosses.

Input: seq-pair S = (�+;��) which possibly has
adjacent-crosses.

Output: seq-pair S which does not have adjacent-cross.

(Step 1) Find an adjacent-cross ab=cd in S. Insert
dummy module x at the cross-point of ab=cd. Re-
peat the above process until no adjacent-cross exists.

(Procedure RmAdjCross End)
Fig. 7 illustrates the e�ect of the procedure. In the

�gure, white circles indicate the modules in the given seq-
pair, which has three adjacent-crosses whose cross-points
are remarked by dark color. The black dots indicates the
dummy modules inserted by the procedure. It can be
examined that the resultant seq-pair does not have any
adjacent-cross.

B. Proof of RmAdjCross

Using the procedure RmAdjCross, the following theorem
is proved in this section.

Theorem3 Let S be a seq-pair. Let F be a rectangular-
dissection whose number of rooms is minimum over the
rectangular-dissections whose HVRS is same to the HVRS
of S. Such an F can be obtained by RmAdjCross followed
by SeqPair{RDG and ConstRD, totally in O(n4) time. 2

Lemma5 Let S be a seq-pair and k be the number of
adjacent-crosses in S.

(1) RmAdjCross inserts k dummy modules and the num-
ber of adjacent-cross is made zero.

(2) The number of adjacent-cross can not be made zero
by k � 1 or less dummy modules.

(proof)
(1) Suppose a dummy module x is inserted at the

cross-point of adjacent-cross ab=cd in S. Let the resultant



seq-pair be S0. Then a; b; c; d do not form an adjacent-
cross in S0. (The adjacent-cross is said to be removed.)
Assume a new adjacent-cross is created in S0. One of

the four modules which form the new adjacent-cross is x.
One of the other three modules is a; b; c or d. Without loss
of generality, let a is the one. Let the other two be y and
z. Neither of y nor z is a; b; c or d. The new adjacent-cross
is then xa=yz. For the adjacent-cross xa=yz in S0, there
is an adjacent-cross ab=yz in S and it is removed in S0.
If there are more new created adjacent-crosses (xa=yz),
individual adjacent-crosses are removed (ab=yz). There-
fore, the number of adjacent-crosses can be decreased by
one by inserting a dummy module at the cross-point of
an arbitrary adjacent-cross, which is exactly executed by
RmAdjCross.
(2) Suppose there is a seq-pair Sy which does not

include any adjacent-cross but includes only k � 1 or less
dummy modules. If we remove all the dummy modules
from Sy, the resultant seq-pair coincides with S. We re-
move the dummy modules one by one from Sy, and stop
when the number of adjacent-crosses is increased by two
or more by removing the dummy module x. Then, if we
insert x exactly at the position it has been existed, the
number of adjacent-crosses should be decreased by two or
more. We show this can not be happened, in the follow-
ing.
Let a dummy module x be inserted to S and m

adjacent-crosses be removed. When an adjacent-cross
ab=cd is removed, (i) x is inserted between a and b in
�+, or (ii) x is inserted between c and d in ��. Both
of the conditions are true at most for one adjacent-cross.
Thus at least m � 1 adjacent-crosses satisfy either (i) or
(ii). Let adjacent-cross ab=cd be one of those adjacent-
crosses. Then, x and three modules from a; b; c; d form
a new adjacent-cross in S0 (such as xb=cd). This new
created adjacent-cross (xb=cd) exists individually for all
m � 1 adjacent-crosses. Thus, the number of adjacent-
crosses can be decreased at most by one by inserting one
dummy module. 2

Lemma6 Let S be a seq-pair. Let F be a rectangular-
dissection whose number of rooms is minimum over the
rectangular-dissections whose HVRS is same to the HVRS
of S. Such an F can be obtained by RmAdjCross, followed
by SeqPair{RDG and ConstRD
(proof) Since the seq-pair obtained by RmAdjCross does
not include adjacent-cross, a rectangular-dissection F 0 is
obtained by SeqPair{RDG and ConstRD. In the following,
we show the number of rooms in F 0 equals to that of F .
From Property 6, any rectangular-dissection with n mod-
ules, possibly has empty rooms, corresponds to unique
seq-pair of n module names, preserving the HVRS. Then
if we assign dummy modules to all the empty rooms in F ,
we have a unique seq-pair S0 with modules corresponding
to all the rooms including the empty rooms. From Theo-
rem 2, S0 does not have an adjacent-cross. The HVRSs of
S and S0 (with respect to the pre-existing modules) are
same because they are same to the HVRS of F . Thus if
we remove all the dummy modules from S0, it coincides
with S. Since the number of dummy modules inserted by
RmAdjCross is minimum to remove all the dummy mod-
ules (Lemma 6), the number of rooms in F and that of

F 0 is same. 2

(Proof of Theorem 3)
Only the time complexity is proved in the following

since the other claims are already proved by Lemma 6.
It is separately shown in the next section that the max-

imum number of adjacent-crosses is O(n2). For each
adjacent-cross, RmAdjCross can identify the adjacent-
cross in O(n2) time, and insert a dummy module in O(n)
time. Thus, RmAdjCross can be done in O(n4) time. Since
the number of modules in the resultant seq-pair is O(n2),
SeqPair{RDG runs in O(n4) time, and ConstRD runs in
O(n2) time. 2

The complexity of RmAdjCross can be improved to
O(n2) if carefully implemented. However, the overall com-
plexity is not improved because SeqPair{RDG dominates
the total complexity.

C. Maximum Number of Empty Rooms

Theorem4 Let S be a seq-pair of n modules. Let F

be a rectangular-dissection whose number of rooms is
minimum over the rectangular-dissections whose HVRS
is same to the HVRS of S. The maximum possible num-
ber of empty rooms in F is

�
n� 2

2

��
n� 2

2

�
:

(Proof) The proposition is true for n � 3. (No empty
rooms are needed.) We assume n � 4 in the following.
Without loss of generality, we assume �+ =

(1; 2; 3; . . . ; n) and �� = (a1; a2; a3; . . . ; an). A neces-
sary condition to form an adjacent-cross ab=cd is, a and
b are adjacent in �+, c < min(a; b), d > max(a; b), and

��1� (c) < ��1� (d) if b < a, ��1� (c) > ��1� (d) otherwise.
Thus, the number of empty rooms can not exceed

nX
i=2

min(i� 2; n� i) =

�
n� 2

2

��
n� 2

2

�
:

Given n, the sequence-pair constructed as follows has
exactly d(n � 2)=2eb(n � 2)=2c adjacent-crosses. �+ is
constructed as (1; 2; 3; �� ; n). If n is even, then �� is con-
structed as

��(i) =

�
n+1

2
+ (�1)i(i� 1

2
) if i � n

2

n+1

2
+ (�1)i(n+ 1

2
� i) otherwise

:

If n = 4k + 1 for some k, then

��(i) =

�
n

2
+ (�1)i(i� 1

2
) if i � n�1

2

n

2
+ 1 + (�1)i(n+ 1

2
� i) otherwise

:

If n = 4k + 3 for some k, then

��(i) =

�
n

2
+ (�1)i(i� 1

2
) if i � n+1

2

n

2
+ 1 + (�1)i(n+ 1

2
� i) otherwise

:

It is easily examined that the resultant seq-pair has d(n�
2)=2eb(n� 2)=2c adjacent-crosses. 2
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Fig. 8. Seq-pair with maximum adjacent-crosses (left) and its

corresponding rectangular-dissection (right)

For example, for n = 10, the above construction results
in:

(�+;��) = (1 2 3 4 5 6 7 8 9 10, 5 7 3 9 1 10 2 8 4 6):

Fig. 8 shows the corresponding oblique-grid-embedding of
the seq-pair and the corresponding rectangular-dissection
with 16 empty rooms.

V. Conclusion

Recently, an elegant representation called sequence-
pair [1] is proposed to represent candidate solutions for
a placement problem. In spite of its e�ciency in repre-
senting the modules positions, no information is provided
for the channel positions. Such a channel information
is added by this paper by giving a mapping from a seq-
pair to a rectangular-dissection, which has been used to
represent the channel positions together with the module
positions.
The results of this paper is summarized as follows.

� Channels are additionally represented, without
changing the information about module positions,
thus the following two properties of the seq-pair
are remain e�ective; an area minimum placement is
represented, and no overlapping placement is repre-
sented.

� The number of channels are exactly minimized, which
most likely minimizes the number of wire bends, later
in the routing stage.

� The maximum possible number of empty rooms,
which linearly corresponds to the maximum possible
number of introduced channels, is presented.

� A necessary and su�cient condition of the seq-pair
for not introducing any empty-room is presented.

Although the channels are represented, this paper does
not give a technique to assign width to each channel. How
to assign adequate widths to the channels remains hard,
and would be solved heuristically.

Recent VLSI manufacturing technology increases the
number of routing layers, consequently increases the im-
portance of an \area router". Area routers typically do
not require channels, however, they would still need some
resources to control the wiring congestion. How to rep-
resent such a routing resources in the placement stage is
another interesting problem.
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Appendix

Proof of Property 5

Let two graphs G and G0 be polar-dual each other. Let source

and sink of G(G0) be s(s0) and t(t0), respectively. A full-path of

G(G0) is a path from s(s0) to t(t0) in G(G0).

For any two edges a and b, a full-path which includes both a and

b exists either in G or G0, and not exists in both G and G0.

(Proof)

Since G and G0 are in polar-dual relation, the edge set of a full-
path of G(G0) has one to one correspondence with a cut set of

G0(G).

If G has a full-path which includes both a and b, there is a cut

set in G0 which includes both a and b, hence G0 does not have a

full-path which includes both a and b.

In the following, we consider the case G does not have a full-path

which includes both a and b. Let VR be the subset of vertices in G

consists of the vertices which is reachable from the outgoing vertex

of a or the outgoing vertex of b. Let V
R

be the rest. Since G is a

directed acyclic graph, the incoming vertex of G and the incoming

vertex of G0 are both in V
R
. There is no edge from a vertex in VR

to a vertex in V
R
, hence the set of edges from a vertex in V

R
to a

vertex in VR is a cut, and the cut includes both a and b. Therefore,

G0 has a full-path which includes both a and b. 2
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