
On Synthesis of Speed-Independent Circuits at STG Level

Kuan-Jen Lin and Chi-Wen Kuo

Department of Electrical Engineering
Chinese Junior College of Technology and Commerce

Taipei, Taiwan, R.O.C.

Abstract: Synthesizing hazard-free asynchronous circuits di-
rectly at Signal Transition Graph (STG) level has been shown to
need significantly less CPU time than approaches at the state-
graph[10, 16, 4]. However, all previous methods at STG level
were based on sufficient conditions only. Hence, the synthesized
circuit results generally are inferior, due to the incomplete trans-
formation. In this paper, we present a new Characteristic Graph
(CG) to encapsulate all feasible solutions of the original STG in
reduced size, which compares favorably with the state graph ap-
proach. The requirements of speed independent circuits can then
be completely transformed into the CG. Furthermore, we derive
a necessary and sufficient condition for speed independent imple-
mentation based on a predefined general circuit model, which has
not yet been reported. With CGs and this condition, we develop
a heuristic synthesis algorithm which derives solutions similar to
the state-graph approach while requiring significantly less CPU
time.

1 Introduction
Asynchronous circuit design has received much attention in re-
cent years. There are two reasons for the revival of interest.
First, asynchronouscircuits feature the advantagesof clock-skew-
freeness as well as low peak power as compared to synchronous
circuits. These advantages are expected to become more signifi-
cant asprogress in semiconductor technology leads to evendenser
and morecomplex circuits. Recently,attractive designshave been
reported in [11, 14, 15]. These designsshow the potential of asyn-
chronous circuits. Secondly, new formal methods have been de-
veloped to automatically synthesize asynchronous circuits which
are able to handle circuits of larger size with far less restriction
than can classical methods. Synthesis of asynchronous circuits is
the main concern of this paper.

Among the newly developed methodologies, the STG ap-
proach is one of the most attractive approaches. Many synthe-
sis methods have been proposed to derive asynchronous circuits
for STGs. These methods, due to the different intermediate repre-
sentationsduring synthesis, can be classified into two approaches:
the state graph approach and the STG-level approach. The state
graph approach[3, 9, 1, 7], derives asynchronous circuits from
the corresponding state graph of STG. The appealing feature of
such an approach is that well-known logic synthesis tools can be
modified for such a purpose. However, the complexity of the syn-
thesis process then depends on the state graph, the size of which
is exponential with respect to the number of signals in an STG.
Alternatively, [10, 16, 4] proposed deriving circuits directly from
STGs without explicitly or implicitly using the state graph. As
a result, they have reported significant improvement in synthe-
sis time. However, they generally need more restrictions on the
STG specification than the state-graph approach. Furthermore,

all problem transformations from the state graph to the models at
the STG level were based on sufficient conditions only. Hence,
the synthesized circuit results generally are inferior.

In this paper, we will present a synthesis method which ac-
cepts specification in STGs and results in speed independen-
t asynchronous circuits. The realized circuits can operate cor-
rectly under the assumption that the unbounded delays are con-
centrated on the gates and the delay difference between fork lines
is less than one gate delay, i.e., does not violate the isochronic
fork assumption[13]. The automatic synthesis is based on the
new Characteristic Graph (CG) which can encapsulate all feasi-
ble solutions of the original STG in reduced size, which com-
pares favorably with the state graph approach. The requirements
of hazard-freeness can then be completely transformed into the
CG. Furthermore, we derive a necessary and sufficient condition
for speed independent implementation based on a predefined gen-
eral circuit model. With CGs and this condition, we develop a
synthesis algorithm which results in solutions comparable to the
state-graph approach while requiring significantly less CPU time.

The remainder of this paper is organized as follows. Section
2 briefly reviews relevant results for the STG approach. Sec-
tion 3 defines our realization circuit model. Section 4 defines the
new CG and shows how to completely transform requirements
of speed independent circuits into the CG. A necessary and suffi-
cient condition of hazard-free realization is described in Section 5,
which decides the least area upper bound. In Section 6, a heuris-
tic method for circuit realization is proposed and evaluated using
examples fromsis[3] and a set of STGs with thousands of states.
Finally, a conclusion is given.

2 Signal Transition Graph
A Signal Transition Graph, STG, can be viewed as an interpreted
Petri net in which each transition is interpreted as a physical signal
transition of asynchronousbehavior[2]. In an STG, the transitions
of a signalx, denoted byx+ andx�, are the rising (0! 1) and
falling (1 ! 0) transitions, respectively. If the complement sig-
nal x is used,x+ andx� are its falling- and rising-transitions,
respectively. If a signal contains only two transitions, then it is
single-cycle; otherwise, it ismulti-cycle. For a multi-cycle sig-
nal, /number is used to distinguish its individual transitions having
the same direction (i.e.,x+/j represents thej-th rising transition of
signalx). Henceforth, the notationx� will denote a certain tran-
sition of signalx (i.e., either anx+ or anx�) andx� its inverse
transition(i.e., either anx� or anx+).

According to the complexity of the underlying Petri net, STGs
under our consideration are classified into two classes: STG/MG
(Marked Graph) and STG/FC (Free-Choice Petri net). In an
STG/FC, the relations among transitions can be classified into
three types:concurrent, orderedandin conflict. If two transitions

ASP-DAC ’97
0-89791-851-7/$5.00 1997 IEEE

x+

z+ y-

x-

z-

y+

(a)

xyz/yz

(m0)

(b)
z-

x-

z+

y-

y-
z+

x+

y+

000/10

001/00

101/01

100/01111/01

110/01

010/10

(c)

y+

z-

x+

x+

z+ y-

z-

y+

1

1 1

1

1

2

2 2

m0

y-z+

2x-

2

2

x-1

p -x

xp +

p -y

zp -

yp +

zp + (d)

x+

x+
x-

x+

x+
x-

x-
y+
y-

y-

1 y-1
y+

y+

1 y-

z+

z-
z+

z-
z+

z-
z+

z-

x-

1

2

1
1

2
1

2
2

2
1

2
2

2

y+

1

1
1

1
2

2
2

2

Figure 1: (a) A simple STG example, (b) its corresponding
state graph, (c) two periods of its unfolding and (d) its cor-
responding CG (A bidirectional arcx� $ y� means both
x� ! y� andy� ! x� exist).

both can be covered by some MG-component and enabled at the
sametime, they are concurrent. For two nonconcurrent transition-
s, if they both can be covered by some MG-component, then they
are ordered. Otherwise, they are in conflict. For the STG class
under consideration (having a live, safe and strongly connected
underlying net), we usex1�) x2 � :::) xk� to denote that
x1�; x2�; :::xk� are ordered with each other and occur in a cy-
cle asx1�; x2�; :::xk�; x1�; x2�; :::within the MG-component
covering them. Clearly,x1�) x2 � :::) xk� is exactly the
same asxk�) x1 � :::) xk�1�. In an STG/FC, an arc be-
tween two ordered transitions may be redundant. Specifically, an
arcxi� ! xj� is not redundant only if there exists a marking
in which all input arcs toxj� already carry tokens except for the
arc. Under such a marking, ifxi� is fired,xj� can be enabled
immediately. We callxi� an enabling transition ofxj� andxi an
enabling signal. Obviously, an enabling signal ofxj� is an input
signal used to generatexj in the circuit. In Fig. 2(a),a-/1 and
d+ both are the enabling transitions ofb�, anda-/2 is the unique
enabling transition ofe�.

The STG has an equivalent finite-state-machine representation

called State Graph (SG). The SG represents the STG concurren-
cy as an interleaving of transitions. As with the total-state model
in the classical asynchronous design, all the signals are directly
considered as state variables, and their boolean values are used to
encode states. To ensure that the state-assignment is consistent, a
transitionx + (x�) can be enabled only in a state whose code
for x is 0 (1). The following requirement was proposed by [2] for
an STG to have consistent state-assignment and extended by [3].

Definition 1 (Liveness): An STG is live iff
(1) the underlying Petri net is live and safe;
(2) for each signalx, there is at least one SM-component initially
marked with one token such that (a) it contains all the transitions
of x, and (b)x+ andx� occur alternately in the SM-component.

The SG of the live STG in Fig. 1(a) is shown in Fig. 1(b). One can
see that it has consistent state-assignment. From the consistently
encoded SG of a live STG, we can derive theoutput function(or
next-state function in [3]) for each non-input signal. The part be-
low the slash in each vertex of encoded state graph in Fig. 1(b) is
the output function of the STG in Fig. 1(a). To ensure that each
state-code (input vector) predicts a deterministic output-value, the
following property is required.

Definition 2 (Complete State Coding (CSC))[2, 9]: A live STG
has the CSC property iff any two states which enable different
sets of non-input signal transitions have distinct state-codings.

For a live STG with the CSC property, we can derive the logic
implementation of the output function for each non-input signal.
We want to find a set of cubes to cover the on-set of the considered
signal and not to intersect any state-code in its off-set. A cubec is
said to be covered by another cubec 0 if literal xi 2 c0 thenxi 2 c
and vice-versa. A state is said to be covered by some cube or in
some cube if its state-code is covered by the cube. When a state
covered by some cube is reached, we say that the cube isset on.
After a cube is set on, when a state not in this cube is reached,
it is set off. To enable a transition, some cube must be on. The
following definition describes such a cube.

Definition 3 (Enabling Cube): Let x1�; x2�; :::; andxn� be al-
l the enabling transitions of a transitionf� in a live STG. Let
cubeC = c1c2:::cn, where ifxi� is anxi+, ci = xi; otherwise,
ci = xi, i = 1; :::; n. A cube is anenabling cubeof f� if (1) it
covers all the states enablingf�, and (2) it is covered by cubeC.

For transitiona+/1 in Fig. 2(a), the smallest enabling cube is
abed, and the largest onee.

3 Realization Circuit Model
Our hazard-free implementation is based on a practical architec-
ture, consistingof two-level combinational logic implementations
and an asynchronous memory-element (C-element) for each sig-
nal. Under this architecture, we introduce a realization circuit
model which ensures that the circuit implementation is functional
correct and hazard-free.

The realized circuit model introduced here is an extended ver-
sion of our previous work, called thesingle-cube realization
circuit model (SCRCM)[4], in which we primarily focused on
polynomial-time heuristic realization without tackling complete
transformation problem and gate sharing. The following defini-
tion describes the construction principles of the extended realiza-
tion circuit model.

e-

a+/1 c-

b+

a-/1

b-

d+

d-a+/2

a-/2

c+

e+

(a)

(b)

(c)

a-/2,
a+/1

a-/1,
a+/2

c-,c+

e-,e+

d+,d-

b+,b-

a+/1,
a-/1

a+/2,
a-/2

b+,b- e+,e-

Figure 2: (a) An STG/MGG with multi-cycle sig-
nals. (b) The Cg(G; abcde,a-/2) of G. (c) The
Cg(G; abe; fa+/1, a+/2g).

Definition 4 (Extended SCRCM):The ESCRCM for a non-input
signalf in a live STG has the circuit configuration shown in Fig.
3(a). Eachf + (f�) is activated by exactly one AND gate in the
set (reset) subcircuit. Two OR gates collect all AND outputs for
rising transitions and falling transitions to set and reset the memo-
ry element, respectively. Each AND gate, possibly having invert-
ers attached to its input terminals, implements a cube,ANDT ,
responsible for a transition setT of f . ANDT must satisfy the
following requirements:
(1)ANDT is an enabling cube for eachf� in T .
(2) Each time, after anf� in T is enabled,ANDT must be set off
before any nextf� is enabled.
(3) OnceANDT is set off, it remains off until anyf� in T is
enabled again.

The requirements are intended to qualify the required wave-
form for pulses produced by the AND gate. SinceANDT is an
enabling cube for anyf� 2 T , it turns on when anyf� 2 T is en-
abled. Then, by (2), it turns off before a subsequentf� is enabled
and then turns on again only when anotherf� 2 T or itself is en-
abled. Recently, Kondratyevet al.[7] also proposed a synthesis
systembased on the same circuit architecture as ESCRCM and al-
so assumed that each transition was triggered by exactly one AND
gate. They proposed theMonotonous Coveringrequirement for
cubes, which requires the cube: (1) covers all enabling states;
(2) changes at most once inside the associated excitation and qui-
escent region and; (3) does not cover any state outside the two
regions. This is a sufficient condition for our ESCRCM because
it does not allow gate sharing between different transitions for a
signal as in ESCRCM. Except for gate sharing, the Monotonous

f+/1

f+/2

f-/1

f-/2

S

f

R

C

(a)

a+/1,
a+/2

a

a

b

e

a

b

e

b

e

a

c

d

c a-/2

a-/1
C

(b)

Figure 3: (a) The circuit template of ESCRCM. (b) The
canonical implementation of signala in Fig 2(a).

Covering requirement and our three requirements for cubesare es-
sentially the same. However, our requirements are defined with
the specific intention of capturing the required pulse waveform
for synthesis at STG level, rather than on the state graph as in
[7]. We will further propose a necessary and sufficient condition
for an STG to have ESCRCM implementation. Another work [1]
allows multi-level logic implementation synthesized at the state
graph. However, the sufficient and necessary realization condi-
tion is lacking in their approach.

The desirable property of ESCRCM is shown below.

Lemma 1[5]: The ESCRCM implementation of a signal is speed
independent (i.e., hazard-free under the unbounded gate-delay
model)[5].

4 Characteristic Graph
Our circuit synthesisof an STG is transformed onto the newChar-
acteristic Graph (CG), without restoring to the exponential-size
state graph. The CG encapsulates the whole solution space for
ESCRCM, whose size is linearly proportional to the number of
transition pairs in the original STG. To implement a signal with
ESCRCM, it is rather straightforward to derive an enabling cube
for a transition, but it is not trivial to find such a cube which can
turn off at the correct time and remains off for a proper period. On
the CG, we can efficiently verify and identify such a cube for ES-
CRCM. It will be shown that a strongly connectedsubgraph in CG
identifies a permissible cube for ESCRCM. In this section, after
introducing the CG, we will describe how the ESCRCM require-
ments are transformed into graph properties in the CG, which can
then be easily verified.

The following definition shows the construction principles of
a CG. Note that although a CG is defined only for an STG/MG,
based on the MG-decomposition in the previous section it can be
applied for STG/FC in synthesis.

Definition 5 (Characteristic Graph (CG)): The CG of a live
STG/MG with initial markingm0 is constructed by the follow-
ing steps:
I1. Fromm0, unfold the STG/MG into an acyclic graph ASTG
by traversing STG/MG twice.
2. Derive precedence relations for any two transitions in the AST-
G.
3. For each signalf with k transitions in the ASTG, there are
k + 1 vertices in the CG:k � 1 vertices are labeled withk � 1
pairs of two successive transitions off , another vertex is labeled
with a pseudo transition preceding all transitions in the ASTG
and the first transition off reached fromm0, and one last ver-
tex is labeled with the last transition off and a pseudo transition
succeeding all the transitions in the ASTG. The pseudo transition
Pf� represents an inverse transition of the first (last) transition.
4. A directed arc exists between two vertices in the CG,v1 ! v2,
if the first transition inv1 is always fired before the second tran-
sition inv2 fromm0.

Basically, our first two steps in creating a CG are as follows [6].
After all the precedence relations are derived, through a table
look-up mechanism, we can construct a CG inO(N 2

) time. Let
xi+/p be a transition in the original STG/MG. We denote its k-th
occurrence in the unfolding askxi+/p. An example of unfold-
ing the STG in Fig. 1(a) is shown in Fig. 1(c). Its resultant
CG is shown in Fig. 1(d). For example, the arc(

2x+;2x�) !

(
1y+;2y�) means that2x+ is always fired before2y� fromm0.

For conciseness, some trivial arcs are not shown since the rela-
tions to vertices representing the transitions of the same signal
have the transitive property, e.g.(1x+;1x�)! (

1y�;1 y+) im-
plies (1x+;1 x�) ! (

1y+;2 y�), (1x+;1x�) ! (
2y�;2 y+)

and(1x+;1x�)! (
2y+; Py�).

Toderive and verify the ESCRCM circuit for some signal in an
STG/MG, we will need two induced subgraphs of the CG, where
a subgraphG0

(V 0; E0

) of a graphG(V; E) is said to beinduced
by vertex setV 0; V 0

� V , if E0 contains only those arcs inE
whose terminals all are inV 0. In the following, we will define the
construction rules of such subgraphs.

Definition 6-1:
Given a nonempty transition setT of signalf in a live STG/MG
G and a cubex1:::xn,
Cg(G;x1x2:::xn; T) is a subgraph of CG ofG induced by the
vertex setV 0 derived as follows:
(Let 1f+/p be the first enabled transition in T when unfoldingG
from initial marking.)

(1) If x1x2:::xn is not an enabling cube forT , V 0

= ; (i.e. Cg is
empty).
(2) Otherwise,V 0 is the vertex set in CG which contains those
and only those vertices labeled with transition pairs(xi�; xi+)

occurring between1f+/p and2f+/p, i = 1,...,n.
(If xi is f, xi� is considered as falling between1f+/p and 2f+/p
since its effect onf is a result of the firing of1f+/p.)

Definition 6-2: Given a cubex1x2:::xn and a live STG/MGG,
Cg(G;x1x2:::xn; ;) is a subgraph of CG ofG induced by the ver-
tex setV 0, which contains those and only those vertices labeled
with transition pairs(xi�; xi+); i = 1; :::;n, wherexi� (xi+)

can be a pseudo transition.

Let us examine theCg(G; xzy; z�) for STG G in Fig. 1(a).
The transition pairs offx; z; yg occurring between1z� and
2z� aref(2x+;2x�) ; (1y+;2 y�), (1z�;2 z+)g. The subgraph
induced by the vertex set labeled by these transition pairs is
strongly connected. This also implies that cubexzy satisfies
the ESCRCM requirements forz�, as shown in the next sub-
section. An example for Definition 6-2,Cg(G; xyz; ;), has the
following vertex set: f(1x+;1x�); (2x+;2x�); (1y�;1 y+);

(
2y�;2 y+); (Pz�;

1 z+) ; (1z�;2 z+); (2z�; Pz+)g. By defini-
tion, since the first transition ofz afterm0 is anz+ (i.e, z is 0
in m0), the vertices with pseudo transitions will be included. The
subgraph induced by this set is also strongly connected. In the
next subsection, we will show that the connectness implies that
xyz is always off in the STG. Note that in Definition 6-1, if sig-
nal xi is m-cycles in the STG, Cg contains m vertices labeled
with (xi�/j,xi+/j), j= 1,..., m. Two Cg examples derived from
the STG with multi-cycle signals in Fig. 2(a) are shown in Fig.
2(b) and (c), where transitionkx� is simplified asx� since1x�

and2x� do not occur simultaneously in a Cg. The two examples
will be used to illustrate circuit realization.

The relationship between the above subgraphs and the require-
ments of ESCRCM will be established in the following two the-
orems.

Theorem 1[5]: Let f be a signal in a live STG/MGG andT
be a set of transitions off . A cubex1x2:::xn(ANDT) satis-
fies all the requirements of ESCRCM forT if and only if: (a)
for each transitiont 2 T , ANDT contains at least one literal
xi with t) xi�) t, wheret is the nearest transition of sig-
nal f succeedingt; (b) for each transitiont 2 T , the vertices of
nonemptyCg(G; ANDT ; T) labeled with the transition set of
signalsx1; :::; xn occurring betweent and the nearest transition
2 T succeedingt are strongly connected.

In this lemma, ifxi is f(f) itself, its firing xi � (xi+) is con-
sidered as coming afterf � (f+) since its effect onf is a result
of the firing off � (f+).

Let us check whetherabcde satisfies the ESCRCM require-
ments fora-/2 in Fig. 2(a). This cube containse and a-/2
) e�) a+/1, so condition (a) is satisfied. The check of condi-
tion (b) isCg(G;abcde; a-/2) as shown in Fig. 2(b). It is strong-
ly connected, so condition (b) is also satisfied. Both conditions
are satisfied, soabcde can be used to activatea-/2 in the ESCR-
CM implementation ofa. Another example is to checkabe for
fa+/1,a+/2g. Similarly, the first condition is satisfied. Condi-
tion (b) is Cg(G;abe; fa+/1,a+/2g) as shown in Fig. 2(c). We
have two vertex subsets:f(a+/1,a-/1), (b+,b-)g andf(a+/2,a-/2),
(e+,e-)g. Both are strongly connected, so condition (b) is also sat-
isfied. Hence,abe can be used to activatea+/1 anda+/2 in the
ESCRCM implementation ofa.

While exploring for the optimal circuit realization,ANDT can
be expanded as large as possible while continuing to satisfy these
two conditions satisfied. Here, we will show another applica-
tion of CG to check whether a cube is always off or always on
in an STG/MG. Such checks are required when applying MG-
decomposition for STG/FCs.

Theorem2[5]: Given a cubex1x2:::xn for a live STG/MGG, (1)
it is always on inG iff all signalsx1; x2; :::; xn, stay 1-stable in
G; (2) it is always off inG iff at least one signal ofx1; x2; :::; xn,
stays 0-stable inG or Cg(G;x1x2:::xn; ;) is not empty and is
strongly connected.

In the STG G of Fig 1(a), xyz is always off. The
Cg(G;xyz;;) is strongly connected. However, forx y z,
theCg(STG;x y z; ;) consisting off(1x+;1 x�); (2x+;2x�);

(Py+;
1 y�); (1y+;2 y�);

(
2y+;Py�); (1z+;1 z�); (2z+;2 z�)g is not strongly connected,

and the cube will be on in state 000.

5 A Necessary and Sufficient Realiza-
tion Condition

The necessary and sufficient condition is based on the canonical
implementation, which is unique for a signal in the given STG.

Definition 7 (Canonical implementation): The canonical im-
plementation for a noninput signalf in a live STG has the circuit
configuration of ESCRCM whileAND gates are constructed ac-
cording to the following steps with set and reset subcircuits de-
rived separately:
(1) Use the smallest enabling cube for eachf� asAND f� gate.
(2) If the intersection of any two cubes covers a valid state, then
the smallest cube covering them is used to activate their associat-
ed transitions, and the original cubes are removed.
(3) Repeat step 2 until no such intersection exists.

Let us examine the canonical implementation of signala in Fig.
2(a). The two smallest enabling cubes fora+/1 anda+/2 areab de
andabc e. These two cubes intersect in a valid state whose code
is abcde, so the smallest cube covering them,abe, is used in the
set subcircuit. For the reset subcircuits, we getabc e for a-/1and
abcde for a-/2. The complete canonical implementation is shown
in Fig. 3(b). The canonical implementation in general is not an
optimal implementation. Furthermore, it may not satisfy all the
ESCRCM requirements. However, it can serve as a necessaryand
sifficient condition as established in the following theorem.

Theorem 3[5]: Signal f in a live STG/FCG has hazard-free
implementation based on ESCRCM if and only if its canonical
implementation is an ESCRCM implementation.

The theorem has two major implications. First, if the canonical
implementation meets the requirements of ESCRCM, it provides
the least area upper-bound for all feasible ESCRCM implementa-
tions. Another possible solution which uses the largest enabling
cubesasANDT gives the arealower-bound; however, it may not
be hazard-free. Both can serve as a good starting point for explor-
ing for the exactly optimal solution[5]. Secondly, if a signal in the
original STG cannot be implemented with ESCRCM, then we on-
ly need to rectify the STG to have its canonical implementation
to meet the requirements of ESCRCM. We have a preliminary re-
sult on the rectification strategy. The key idea is that the canonical
implementation of a noninput signal in a live STG/FC with CSC
property always meets the requirements of ESCRCM if each of
its transitions has no concurrent transition. Given a live STG with
CSC property, insertion of arcs only (the reduction of states) is e-
nough to rectify the STG. Such rectification is different from [13],
which only uses the signal insertion. The rectification result will
be included in our future work.

6 Circuit Realization and Results

Our preliminary result has proved that
the exact gate-minimization and literal-minimization of speed in-
dependent circuits based on the ESCRCM both are NP-hard[5].
In this section, a heuristic method for circuit realization will be
presented which was evaluated on a SUN SPARC2 station with
STG examples satisfying the CSC property collected insis [3].

The optimization starts with the canonical implementation,
which can be derived with the CG. If it is not an ESCRCM,
then the STGs need rectification. All the examples in Table 1
except for trimos-send.g have canonical ESCRCM implementa-
tions without any rectification on the original STGs. STG trimos-
send.g is not persistent[2], so it is rectified with three additional
arcs, following the strategy in [8]. Then, we try to remove the C-
element. The removal based on that, if and only if all ANDs in the
set (reset) part are able to completely cover on-set (off-set), can
the C-element and the reset (set) combinational part be directly
removed simultaneously, and the remaining set (reset) combina-
tional part still retain functional correctness and hazard-freeness.
After the possible removal, we try to merge gates of different tran-
sitions of the same signal. Since the number of rising(falling)
transitions for a signal in the STG generally is small, exhaustive
search is adopted. Literal minimization is then carried out. The
main concern in this step is that literal deletion does not destroy
the connectness of certain vertices in Cgs. Those certain vertices
include thoseenabling signalsand oneof signalswhich canensure
that the selected cube always turns off before next inverse transi-
tion of the enabled one. We use a greedy strategy to select those
literals to be deleted. For connectness, we choose to delete liter-
als whose corresponding vertices have minimal degrees, i.e. less
contribution for connectness. Here we give an example. We try to
optimize the cube fora-/2 in the STGG in Fig. 2(a). The canoni-
cal implementation fora-/2 is abcde. The corresponding sub-CG
is shown in Fig. 2(b), where the vertices(c-,c+) and(e-,e+)must
be included. Wesubsequentlydelete vertices(a-/1,a+/2), (b-,b+),
(c�; c+) and(a-/2,a+/1), and find that the remaining subgraph is
still strongly connected. Hence, the optimal solution fora-/2 is
ce. The literal minimization step is the most critical setp of the
overall procedure in terms of time complexity. Since the check
of connectness in a Cg needsO(N 2

), this particular step needs
O(L�M �N 2

), whereL is the literal number of canonical im-
plementation,M is the number of MG-components, andN is the
transition number of the largest MG.M is crucial for an STG with
more than one MG-component. From a practical point of view,
for the STG/FC class in which no transition is concurrent with
any free-choice transition,M is always less thanN [5]. Most of
the examples in the literature belong to this class.

The heuristic algorithm has been written inC and successful-
ly evaluated on a SPARC2 station with the set of STG bench-
marks (without CSC violation) fromsis. Table 1 shows the e-
valuated results, whereT (S) means the number of transitions (s-
tates). We compare our synthesis result with that of version 3.0
SYN[1], which derives speed-independent circuits also based on
a predefined circuit template in the domain of state graph. The
literal count in the combinational part is used as an area criteri-
on because those evaluated examples are all two-level. The final
synthesis result from our heuristic algorithm is shown in column
Ours. Compared with SYN, we have slightly better result. As
the results obtained by SYN already have approached the exact
optimization, the improvement on area naturally is not very sig-
nificant.

The significant improvement over SYN is in CPU time. Our
realization is 1 to 3 orders of magnitude faster for most cases with
more than 50 states. The individual speedup ratio depends on the

Literals (Memories) CPU time (s)
Circuits T S SYN Ours SYN Ours
chu133.g 14 24 12(2) 13(2) 0.55 0.100

full.g 8 16 8(2) 8(2) 0.22 0.050
hybridf.g 16 80 14(3) 14(3) 1.78 0.100
vbe10b.g 22 256 32(7) 32(7) 14.28 0.283
vbe5b.g 12 24 11(2)) 11(2) 0.46 0.067
vbe5c.g 12 24 8(3) 10(3) 0.42 0.067
chu172.g 13 12 7(1) 7(1) 0.21 0.117
chu150.g 14 26 11(1) 11(1) 0.51 0.067
converta.g 14 18 20(3) 20(3) 0.71 0.100
ebergen.g 14 18 14(2) 14(2) 0.5 0.117
hazard.g 10 12 10(2) 10(2) 0.21 0.050
qr42.g 14 18 14(2) 14(2) 0.45 0.117

nowick.g 16 20 16(3) 18(2) 0.82 0.117
wrdatab.g 24 216 34(5) 34(5) 15.55 0.283

pe-send-ifc.g 53 108 73(5) 68(4) 26.87 4.983
pe-rcv-ifc.g 50 53 67(6) 59(6) 6.48 4.117

nak-pa.g 20 58 20(4) 20(4) 1.95 0.200
chu-fifo.g 16 64 12(2) 12(2) 2.86 0.083

sbuf-ram-write.g 24 64 20(3) 19(2) 2.42 0.317
trimos send2.g 18 84 27(6) 27(6) 3.44 0.283
master-read.g 28 2108 33(7) 34(7) 1324.1 0.317

Total - - 463(71) 455(68) - -

Table 1: Experimental Results(I)

characteristics of the STG. Generally, the CPU time of SYN is
quite sensitive to the state number while ours depends mainly on
the transition number and conditional structure, which determines
the number of MG-components. For further comparison, a set
of larger-size STG/MGs derived from the multiple-input block-
s (pipelined and nonpipelined) in [8] is evaluated. The original
block in [8] has 2 inputs. We extend the input (output) number
to 4, 5 and 6. As shown in Table 2, our work has significantly
reduced the CPU time from hours to seconds with similar results.
Note also that our algorithm has time polynomially proportional
to the number of transitions, but SYN takes exponentially increas-
ing time.

7 Conclusion
We have presented a new synthesisapproach for realizing hazard-
free circuits under the speed independencemodel for Signal Tran-
sition Graphs (STGs) with a practical configuration. In our ap-
proach, the synthesis problem can be completely transformed into
the new STG-level model, CG, which encapsulates the solution
spaceof hazard-free realization based on a predefined but general
circuit model. The CG has size complexity comparable to that of
the original STG and significantly less than that of the correspond-
ing state graph. It enables us to explore the realizability as well as
the optimization of hazard-free realization. Furthermore, we have
derived a necessary and sufficient condition for hazard-free real-
ization. Previously, only sufficient conditions have been report-
ed. With CGs and this condition, we have developed a heuristic
synthesis algorithm which results in solutions comparable to the
state-graph approach while requiring very little CPU time.

References
[1] P. A. Beerel and T. H.-Y Meng, “Automatic Gate-Level

Synthesis of Speed-Independent Circuits,” InProc. ICCAD,
pp. 581-586, 1992.

[2] T. A. Chu, “Synthesis of Self-Timed Control Circuits from
Graphical Specifications”, PhD thesis, MIT, June, 1987.

Literals (Memories) CPU time (s)
Circuits T S SYN Ours SYN Ours
mi2.g 12 64 14(3) 14(3) 1.49 0.08
mi4.g 20 1024 26(5) 26(5) 184.6 0.18
mi5.g 24 4096 32(6) 32(6) 4022 0.28
mi6.g 28 16385 + 38(7) >25000 0.43

mi2np.g 12 42 13(3) 15(3) 1.38 0.07
mi4np.g 20 594 25(5) 29(5) 93.1 0.16
mi5np.g 24 2292 30(6) 36(6) 1534.3 0.33
mi6np.g 28 8922 + 43(7) >13000 0.44

+: Unable to synthesize with the given CPU time limit with 48MB main
memory.

Table 2: Experimental Results(II)

[3] L. Lavagno, K. Keutzer, A. Sangiovanni Vincentelli, “Algo-
rithms for Synthesis of Hazard-free Asynchronous Circuit-
s,” In Proc. 28th DAC,pp. 302-308, 1991.

[4] K. J. Lin, J. W. Kuo and C. S. Lin, “Direct Synthesis of
Asynchronous Hazard-Free Circuits Based on Lock Rela-
tion and MG-Decomposition from STGs,” InProc. Euro-
pean Conferenceon Design Automation, pp. 178-183, 1994.

[5] K, J. Lin, “Synthesis of Speed-Independent Circuits from
Signal Transition Graphs,” PhD thesis, National Taiwan U-
niversity, R.O.C., 1996.

[6] M. A. Kishinevsky, A. Y. Kondratyev and A. R. Taubin,
“Specification and Analysis of Self-Timed Circuits,”Jour-
nal of VLSI Signal processing,vol. 7, pp. 117-135, 1994.

[7] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen
and A. Yakovlev. “Basic Gate Implementation of Speed-
Independent Circuits,” InProc. 31th DAC,pp. 56-62, 1994.

[8] T. H. Meng, Synchronization Design for Digital Systems,
Kluwer Academic, 1990.

[9] C. W. Moon, P. R. Stephan and R. K. Brayton, “Synthesis of
Hazard-free Asynchronous Circuits from Graphical Speci-
fications,” InProc. ICCAD, pp. 322-325, 1991.

[10] E. Paster and J. Cortadella, “Polynomial Algorithm for the
Synthesis of Hazard-free Circuits from STGs,” InProc. IC-
CAD, pp. 250-254, 1993.

[11] I. E. Sutherland, “Micropipelines,”Commun. ACM, vol 32,
no 6, pp. 720-738, 1989.

[12] P. Vanbekbergen, F. Catthoor,

[13] K. Van Berkel, “Beware the Isochronic Fork,”Intergration
VLSI Journal,vol. 13(2), pp. 103-128, 1992.

[14] K. Van Berkel, R. Burgess and J. Kessels, A. Peeters,
M. Roncken and F. Schalij, “A Fully-Asynchronous Low-
Power Error Corrector for the DCC Player,”IEEE Journal
of Solid-State Circuits, vol. 29, pp. 1429-1439, 1994.

[15] T. E. Williams, and M. A. Horowitz, “A Zero-Overhead
Self-Timed 160ns 54b CMOS Divider,”IEEE Journal of
Solid-State Circuits, pp. 1651-1661, Nov. 1991.

[16] C. Ykman-Couvreur, B. Lin, G. Goossens and H. D. Man,
“Synthesis and Optimization of Asynchronous Controllers
Based on Extended Lock Graph Theory,” InProc. European
Conference on Design Automation, pp. 512-517, 1993.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

