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Abstract { In this paper we consider the problem of
minimizing power consumption of a sequential circuit us-
ing low power state encoding. One of the previously pub-
lished results is based on recursive matching. In general,
a matched pair can be considered as a 1-cube being em-
bedded in a hypercube. We generalize this idea of 1-cube
embedding and propose a new encoding algorithm based
on r-cube embedding. We then present an e�cient 2-
cube embedding based state encoding approach for low
power design. It considers both Hamming distance and
the complexity of logic function (by estimation). Experi-
mental results show that this approach is competitive to
other existed techniques.

I. Introduction

The increasing demand of personal electronic devices pow-
ered by batteries has placed new challenges in digital chip
design. For applications such as notebook computers and
cellular phones, low-power dissipation is one of the major
concerns. The continued push for higher level of integra-
tion, device density and operating frequency also prompt
power dissipation to become an important design issue.
Power e�ciency of a silicon chip has been investigated

at various level of design phases. For instance, archi-
tectural and algorithmic transformations can trade o�
throughput, area, and power dissipation; di�erent logic
optimization methods can result in di�erent power dis-
sipation of combinational logics; and some conventional
layout techniques are modi�ed to improve the power dis-
sipation [2, 4, 9]. In all these works, minimizing switching
activity of a design is shown to have great impact on re-
ducing power dissipation. Especially in CMOS circuits,
the power dissipation is directly related to the extent of
switching activity of the internal nodes in the circuit.
Minimizing power dissipation of a state machine is an

important step in reducing overall chip power because in
most digital systems, state machines often run at full clock
speed. Also, state machine design o�ers better opportu-
nities for power improvement than the other parts of a
digital system, such as data paths, which are di�cult to
optimize for power without changing the functional spec-
i�cation. Previous work on low power state encoding has

been addressed by several researchers [7, 8]. In general,
a weighted graph Gw = (V;Ew), where V corresponds to
the states of a �nite state machine and the edge carries
the weight corresponding to the estimated encoding a�n-
ity, i.e., switching activity and area cost, between states,
is �rst constructed. Then di�erent encoding methods are
applied to Gw to obtain low power encodings. Recently,
a new technique that considers the switching activity and
area cost interactively during a simulated annealing pro-
cess was proposed in [11].
In [7], a matching based state encoding algorithm that

recursively combines 1-cubes into a bigger cube was pre-
sented. Though this approach mostly generates the en-
codings targeted low power consumption, however, its en-
coding scheme strongly depends on local relationship be-
tween states and, as a result, better encodings might be
missed during the process. In this paper, we �rst gen-
eralize the idea of 1-cube embedding and propose a new
encoding algorithm based on r-cube embedding. An e�-
cient 2-cube embedding based state encoding approach is
then presented for low power design.

II. Preliminaries

A. Power Dissipation and State Machines

The average power consumption by a CMOS gate is given
by

Paverage = 0:5
V 2
dd

Tcycle
CloadE(switching): (1)

where Vdd is the supply voltage, Tcycle is the global clock
period, Cload is the load capacitance, and E(switching) is
the expected number of gate output transitions per clock
cycle.
In hardware implementation, the architecture of a state

machine is shown in Figure 1. Each state is encoded with
a binary value represented in the state register. The com-
binational logic generates the next state encoding and the
outputs of the machine from the current state and inputs
of the machine. A machine with n states requires a state
register with at least dlog2 ne bits to be properly encoded.
Many researches have been done to �nd the state encod-

ing of a FSM that targets toward minimizing the area of a
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Figure 1: A hardware implementation of a �nite state
machine.
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Figure 2: a state transition graph

sequential circuit after logic optimization [5, 12]. Usually,
smaller area means less power consumption. However, it
is not always true for CMOS design because the power
dissipation of a CMOS chip is dominated by the dynamic

power, which is proportional to the sum of the product
of load capacitance and switching activity of each gate.
This makes the problem of state encoding for low power
harder because we are not only to consider area, but also
switching activity.
A state machine is conveniently represented by a state

transition graph where the nodes represent the states and
a directed edge sisj , labeled with inputs and outputs, rep-
resents the transition from state si to sj . Consider the
state transition graph in Figure 2, state s2 has two outgo-
ing edges to state s1 and s3. If s2 is encoded as '000' and
the next state s3 is encoded as '100', then, when there is a
transition from s2 to s3, only one ip-op of the state reg-
ister will switch from a logic value of 0 to 1. (The number
of bit toggles between two encodings is also known as the
Hamming distance between them, i.e., h(000; 100) = 1).
However, if s3 is encoded as '111' instead of '100', then
all three ip-ops will transit from 0 to 1. By reducing
the number of bit toggles of the state register in each state
transition, we possibly reduce the switching activity in the
combinational logic which implements the next state and
output functions.
The state transition probability psi;sj , between two

states si and sj , is de�ned as the probability that a tran-
sition occurred from si to sj . The global state transition

probability between two states si and sj is de�ned as:

P (si; sj) = psi;sj + psj;si
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Figure 3: r-cube for r = 1, 2, 3.

P (si; sj) is the probability that there is a transition from
state si to state sj or vice versa.
In general, the relationship between states is indicated

by a weighted graph Gw = (V;Ew), where V corresponds
to the states of a state machine and the weight on an edge
corresponds to the estimated encoding a�nity between
states. The weight between two states si and sj can be
modeled as a linear combination of switching activity and
area cost [3]:

w(si; sj) = �P (si; sj) +A(si; sj) (2)

P (si; sj) is the global transition probability and is referred
as switching cost. For those pairs of states that do not have
edges connected in the state transition graph, their global
transition probabilities are zero. A(si; sj) is the estimated
area saving between states si and sj , and is referred as
area cost. � is a function to trade o� the importance
of switching and area cost in determining the low power
encoding.

B. Properties of A Hypercube

An r-cube, Qr, has 2
r nodes and r2r�1 edges. Each node

is labeled with an r-bit binary number, and two nodes are
linked with an edge if and only if their binary numbers
di�er in only one bit. Therefore, each node has r neigh-
bors, one for each bit position. Figure 3 shows the r-cubes
for r � 3 with appropriate binary numbers.
An important property of a hypercube is that it can be

constructed recursively from smaller cubes. For instance,
consider two (r�1)-cubes whose nodes are numbered from
0 to 2r�1. An r-cube can be constructed from these two
(r�1)-cubes by connecting every node of one (r�1)-cube
to the node of the other (r � 1)-cube having the same
number. Thus to number the nodes of the r-cube, we can
add 0 to the nodes of one (r�1)-cube as 0a1a2...ar�1 and
1 to those of the other (r�1)-cube as 1a1a2...ar�1, where
a1a2...ar�1 is a binary number representing the two simi-
lar nodes of the (r�1)-cubes. An example of constructing
a 4-cube from two 3-cubes is shown in Figure 4.

III. Cube-Embedding Based State Encoding

Consider a weighted graphGw = (V;Ew). We want to �nd
the state encoding such that the states joined by a heavily
weighted edge are encoded as close as possible in terms of
Hamming distance. The problem can be formulated as a
hypercube embedding problem, and the goal is to minimize



Figure 4: Construction of a 4-cube from two 3-cubes.
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Figure 5: An example of 1-cube embedding.

the following cost function:

Ptotal =
X

(si;sj)2Ew

w(si; sj)h(enc(si); enc(sj))

, where w(si; sj) is the estimated encoding a�nity between
states si and sj , and h(enc(si); enc(sj)) is the Hamming
distance between the encodings of these two states.

A. 1-cube Embedding

In [7], a recursive 1-cube embedding approach is pre-
sented. At each iteration, they �nd a maximumweighted
matching M i of a graph Gi

w. Then a "1" is assigned to
the i-th bit of the binary number of one of each matched
pair, and a "0" to the other. After that, they generate a
new weighted graph Gi+1

w = (V i+1; Ei+1
w ), where the new

vertices are the pairs of matched states, and the weight
of an edge is the sum of the edges' weights between the
states which form the new vertices in V i+1.

Example. In Figure 5(a), the edges of maximummatch-
ing are marked with bold lines and the encoding of each
state is shown at its righthand side. The new generated
graph and the associated encodings are shown in Fig-
ure 5(b).

After logjV j-th matching stage of this recursion, a su-
per vertex corresponding to jV j original states is obtained.
A state encoding obtained by the use of this approach is
shown in Figure 6(a) and its Ptotal is 34. However, we
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Figure 6: (a) the encoding by 1-cube embedding, and (b)
a better encoding.

notice that better results can be obtained if the weights
between states are considered more globally. For example
in Figure 6(a), if we switch the position of state 4 and
state 6, the total cost can be reduced by 2. Furthermore,
an even better encoding with Ptotal equals to 30 is shown
in Figure 6(b), which is the combination of two 2-cubes,.
f1, 2, 3, 5g and f4, 6, 7, 8g. This observation motivates
our interest in developing a new r-cube embedding ap-
proach that considers the relationship among states more
globally.

B. r-cube Embedding

Here we propose an encoding strategy based on r-cube
embedding, where r � 2. The algorithm consists of three
major steps. First, a set of heavily weighted r-cubes, Sr ,
is selected from the graph Gw. The selection is done in a
greedy way as follows: we �rst �nd the maximal weighted
r-cube of the graph. Then remove the r-cube and the
associated edges from the graph. Repeat the process on
the remaining graph until no more r-cube exists. After
the above step, there may exist some vertices which do
not belong to Sr . So, the next step is to group these
vertices to form a set of clusters, Sc, such that the size of
each cluster is at most 2r. This is done by applying the
maximum matching algorithm r times. In the third step,
we generate a cluster graph Gr

w = (V r; Er
w), where V r

= fSrg [ fScg, and the weight of an edge is the sum of
the edges' weights between V r. Then apply the maximum
weighted matching to the cluster graph, and each pair of
matched nodes is collapsed into a single node. The process
is repeated until the cluster graph contains only one node.
The output from the third step is a cube-clustering tree,
which it is a rooted binary tree and its leaf nodes are the
vertices of Gw.
After the cube-clustering tree is constructed, we need to

encode each vertex of Gw. We label the two edges incident
from each internal branch nodes with 0 and 1, then the
encoding of each leaf node is the sequence of 0, 1 labels of
the edges in the path from the root to that leaf.

procedure Cube-Embedding(Gw, r)

begin

G = Gw ;

Sr = �;

while G contains an r-cube
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Figure 7: An example to illustrate the algorithm.

begin

rmax = the maximal weighted r-cube of G;

Sr = Sr [ frmaxg;

remove vertices and edges associated with rmax from G;

end

if G is not an empty graph, group its vertices to

a set of clusters, such that the size of each cluster is at

most 2
r
;

generate the cluster graph Gr

w = (V r; Er

w);

apply maximum matching to Gr

w recursively, output the

cube-clustering tree when Gr

w contains only one node;

encode the cube-clustering tree;

end.

Example. In Figure 7(a), two 2-cubes f1, 2, 3, 5g and
f4, 6, 7, 8g are detected and marked with bold lines. The
cluster graph is shown in Figure 7(b). The resulting cube-
clustering tree is shown in Figure 7(c). The ecnoding of
the vertices is shown in Figure 7(d).

However, in general, the task of �nding all r-cubes of
a graph is computationally expensive, even when r is 2.
Therefore, in the following we will develop an algorithm to
�nd 2-cubes of a graph and use it in our 2-cube embedding
based state encoding approach for low power design.

Figure 8: An example of a complete 4-level graph.
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Figure 9: patterns of a 2-cube.

IV. Finding 2-Cube Subgraphs of a Graph

Let G be a level graph with k levels. G is called a com-

plete k-level graph, if the vertices in any two adjacent levels
form a complete graph. For example, Figure 8 is a com-
plete 4-level graph. In the following, we will propose an
algorithm to �nd all 2-cubes of a complete k-level graph.
The algorithm will be used in �nding all 2-cubes of a gen-
eral graph.

If vertices u1; u2; :::; ul (l � 2) are all adjacent to
two common vertices v and w, then any quadruple
(v; ui; w; uj), 1 � i < j � l, forms a 2-cube. However,
even in a planar graph, there may exist O(n2) 2-cubes,
where n is the number of nodes of the graph. Thus, in-
stead of listing these 2-cubes individually, we use the rep-
resentation developed in [1] to list a group of 2-cubes by
a triple (v; w; fu1; u2; :::; ulg).

The patterns of a 2-cube, classi�ed as Type I �
Type VI, are listed in Figure 9. Now consider Vi�1, Vi,
and Vi+1 of a complete k-level graph, where 1 < i < k

(Vi is the set of vertices at level i). If we pick a vertex
v from Vi�1 and a vertex w from Vi+1, then for any two
vertices of Vi these four vertices form a Type I 2-cube.
These 2-cubes are indicated by a triple (v; w; Vi). Now
consider Vi�1 and Vi only. If we choose a vertex v from
Vi�1 and a vertex w from Vi, then for any two vertices
other than v in Vi�1, these four vertices form a Type II
2-cube. These 2-cubes are indicated as (v; w; Vi�1� fvg).
Type III 2-cubes are obtained similarly.

For a Type IV 2-cube, it has two vertices from Vi�1 and
two vertices from Vi. Here we use a quadruple (v; w; Vi�1�
fvg; Vi � fwg) to represent the Type IV 2-cubes that are
detected by selecting a vertex v from Vi�1, a vertex w

from Vi, and one vertex from Vi�1 � fvg and Vi � fwg
each. For a Type V 2-cube, it can be formed by choosing



two vertices v and w from Vi�1 and two other vertices
from Vi. These 2-cubes can be represented by (v; w; Vi).
As for the Type VI 2-cube, it can be formed by selecting
four vertices from the same level.
The algorithm to �nd all 2-cubes of a complete k-level

graph G is thus as follows:

procedure Find-2-cube(G)

begin

k = levels of G;

/* report Type I 2-cubes */

for i = 2 to k � 1 do

for each v 2 Vi�1 and w 2 Vi+1 do report (v;w;Vi);

for i = 2 to k do

begin

/* report Type II, III, and IV 2-cubes */

for each v 2 Vi�1 and w 2 Vi do

begin

report triple (v;w;Vi�1 � fvg);

report triple (v;w;Vi � fwg);
report quadruple (v;w;Vi�1 � fvg; Vi � fwg);

end;

/* report Type V 2-cubes */

for each u; v 2 Vi�1 do report triple (u; v; ; Vi);

/* report Type VI 2-cubes */

for each v;w 2 Vi and v 6= w do report (v;w; Vi � fv; wg);

end;

end.

For a general graph G, we will apply Breadth First
Search to it to obtain a new level graph G0. Assume G0

has k levels. Since a graph with k levels is not always a
complete k-level graph, there exists some missing edges in
between or within levels. We have to remove those 2-cubes
that contain the missing edges.

V. A Modified 2-cube Embedding Based State

Encoding Approach

In our application, the generated weighted graph is a com-
plete graph. Since an edge with light weight means the
a�nity between these two states is weak, we will remove
this kind of edges so as to facilitate the 2-cubes �nding
process. Therefore, the complete weighted graph will be
transformed to a new graph by removing the edges with
weights smaller than a value �, for instance, � is equal to
the average weight.

After applying the 2-cube embedding algorithm to the
new graph, a cube-clustering tree is established, and the
encoding of each leaf is the sequence of 0, 1 labels of the
edges in the path from the root to that leaf. That is, the
encoding of a leaf is determined by its position in the tree.
Since in the embedding process, we randomly put one of
the matched states or matched clusters to the left and the
other to the right, a postprocessing is needed to �ne tune
the cube-clustering tree to get a better tree.
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Figure 10: Di�erent combinations of 2-cubes.

A postprocessing to rearrange the positions of some
leaves in a cube-clustering tree is as follows: �rst, for each
level 2 internal node, if it contains less than four leaves,
�nd the optimal tree of them. Then for each level 3 in-
ternal node, �nd the best tree by rotating and ipping its
two subtrees, i.e., two 2-cubes.

Example. In Figure 10, di�erent combination of 2-cubes
are shown, by rotating and ipping one of the 2-cube f4,
6, 7, 8g.

After the encoding of a FSM is found, the next step is to
perform logic minimization to produce a network imple-
mentation. However, the logic minimization approaches,
i.e., ESPRESSO and the multi-level logic minimization
procedures in SIS [10], usually generate di�erent results,
even for two di�erent encodings with the same total cost.
Instead of reporting just one encoding at the end of the
process, we shall output more encodings (with close to-
tal costs) and then choose the one with the lowest power
dissipation implementation. The following heuristic is to
gererate a reasonable number of encodings with low cost.

For a level 3 internal node of a cube-clustering tree, if we

switch its left subtree with its right subtree, the local cost change

is zero. Since there are dn=8e such level 3 internal nodes,

where n is the total number of leaves, therefore, we can gener-

ate 2
dn=8e di�erent encodings by switching two 2-cubes of each

level 3 node, respectively.

VI. Experimental Results

We have implemented the modi�ed 2-cube embedding
state encoding algorithm and applied it to a number of
MCNC FSM benchmarks. For each benchmark, we cal-
culate the state transition probabilities by simulating the
FSM over a large number of randomly generated primary
inputs. The area cost comes from the fanout-oriented cost
function of MUSTANG [5] with normalization. The �



NOVA �w=0.2, �b=0.01

Ckt #st �=0.5 avg �=1.0 avg �=3.0 avg

#lit pow #lit pow #lit pow #lit pow

s386 13 197 978 203 862 172 746 194 771

sse 16 200 927 187 738 186 759 183 743

keyb 19 593 2108 510 1637 416 1373 460 1464

ex1 20 663 2501 631 1916 571 1781 571 1781

dk16 27 401 2363 432 2318 406 2133 449 2259

sand 32 1243 5966 951 3636 925 3525 970 3540

tbk 32 1353 5588 688 2740 677 2608 832 2935

planet 48 1405 9128 1402 4969 1395 4692 1416 4742

s1494 48 1387 6259 1183 3289 1019 2333 1019 2333

Table 1: Comparsion of power consumption and number of literals on

benchmark examples with �w = 0:2 and �b = 0:01.

varable, as seen in Equation (2), is de�ned as follows [3]:

� = (2dlog2ne � n)�w + �b

where n is the number of states of a FSM. �w is a con-
stant that emphasizes the importance of switching cost as
2dlog2ne � n increases. �b is a constant that addresses the
switching cost if the size of host hypercube is equal to n.
The power consumption is measured in �W, using the

power estimator developed by Ghosh et al [6], assuming
a clock frequency of 20MHz and 5V power supply. In the
following experiments, the generated encodings are writ-
ten in blif format, synthesized using ESPRESSO, and then
calculate the dissipated power. There is no speci�c library
to be used because a unit delay model in calculating the
power dissipation is applied.
The �rst experiment is to compare the encodings ob-

tained by our modi�ed 2-cube embedding algorithm to
those obtained by NOVA [12], a state encoding program
targeting minimum area. The results are shown in Ta-
ble 1. The values in columns \#lit" denote the number
of literals in factored form. For each benchmark, the best
low power consumption encoding is selected and its asso-
ciated power consumption and the number of literals are
reported. Di�erent � values are tested and the parame-
ters, �w and �b, for calculating � are set to 0.2 and 0.01,
respectively. As can be seen, our algorithm outperforms
NOVA in all cases.
The second experiment is to compare the modi�ed 2-

cube embedding algorithm to the maximum matching
based encoding algorithm (MMBE) by [7] and the LPSA
algorithm by [11]. The encodings of MMBE are obtained
by our program, assuming the given weighted graph con-
tains no 2-cubes and thus recursively apply maximum
matching to it. The encodings of LPSA are provided by
the authors of [11]. Table 2 summaries the results. The
values in columns \2-cube" are the best results from Ta-
ble 1. In general the modi�ed 2-cube embedding algo-
rithm produces better results than MMBE, and in four of
six cases, it is better than LPSA. The result shows our
approach is very competitive to other existed techniques.

Ckt MMBE LPSA 2-cube

sse 743 827 738

keyb 1642 1133 1373

ex1 1926 1692 1781

dk16 2540 2200 2133

sand 3992 4543 3525

planet 5826 5699 4692

Table 2: Comparsion of power consumption of MMBE,

LPSA, and 2-cube embedding.
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