
BDD-based Logic Partitioning for Sequential Circuits*

Ming-Ter Kuo, Yifeng Wang, Chung-Kuan Cheng, and Masahiro Fujita†

Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093, USA
e-mail: {mtkuo, yifeng, kuan}@cs.ucsd.edu

†Fujitsu Laboratories of America
Santa Clara, CA 95054, USA

e-mail: fujita@flab.fujitsu.com

Abstract This paper presents a BDD-based approach to per-
form logic partitioning for sequential circuits. We use a
sequential machine to model a circuit and represent the
machine by its transition relation. A heuristic algorithm based
on the BDD representation of the transition relation is pro-
posed to partition the sequential machine with minimum num-
ber of input/output pins. Using BDDs and their operations, we
have developed an efficient method to iteratively improve a
partition. Experimental results show that our sequential logic
partitioning algorithm significantly outperforms partitioning
algorithms at the netlist level.

1. INTRODUCTION

Circuit partitioning is a well known problem and has
been extensively studied. It aims to separate a large circuit
design into smaller parts which satisfy certain constraints,
and usually has an objective of minimizing the interconnec-
tions between the parts. Many approaches have been pro-
posed to solve various partitioning problems. However,
most of the partitioning algorithms operate on the physical
implementations (the netlists) of the circuits and formulate
the problems as graph or hypergraph partitioning problems.
One disadvantage of this approach is that the quality of the
partitioning results is strongly dependent on the circuit
implementation. In contrast, by partitioning a circuit at the
functional level, i.e. decomposing the logic function of the
circuit, we can explore a larger solution space that is inde-
pendent of the physical implementation.

To perform partitioning on the functions, an efficient
data structure is required to represent a sequential circuit.
Ordered Reduced Binary Decision Diagrams (ORBDDs or
simply BDDs) are graph based data structures that provide
efficient and canonical representations for Boolean func-
tions. They have been widely used in various aspects of
logic synthesis and verification. Particularly, BDDs have
been used in function decomposition [4][5] and communi-
cation based logic partitioning [1][8]. However, these
approaches mainly apply to combinational logics, not
sequential circuits.

*This work was supported in part by grants from the NSF
project MIP-9529077 and the California MICRO program.

In this paper, we propose a BDD-based circuit partition-
ing approach for sequential logics. It can also be used to
partition combinational logics. Fig. 1 depicts the partition-
ing flow of our approach for circuit partitioning. First, we
extract the behavior of the circuit from its netlist by model-
ing the circuit as a sequential machine. The behavior of the
sequential machine can be captured by a transition relation
that describes the relationship among the inputs, outputs,
present state and next state. We construct a BDD to repre-
sent the transition relation, where each computation path of
the BDD from the source to sink ‘1’ defines valid transitions
of the sequential machine. The BDD of the transition rela-
tion is used in a heuristic algorithm to find a partition of the
input/output and state variables of the relation. From the
variable partition, we can derive two communicative
sequential machines. The communication complexity
between the two machines is evaluated by the dependency
between blocks of variables in the partition. Using BDD
representation of the transition relation, it is easy to observe
the relationship between the variables and efficient to evalu-
ate the number of interconnections in the partition.

The remainder of this paper is organized as follows. In
Section 2, we will first give some preliminaries on sequen-
tial machines and BDD-based function decomposition. We
will then state the sequential machine partitioning problem
and its relation to function decomposition in Section 3. In
Section 4, the BDD-based partitioning algorithm for
sequential machines will be presented. We will given the
experimental results in Section 5 and conclude the paper in
Section 6.

BDD Partitioning

Transition Relation

Circuit

Sequential Machine
Extraction

Netlist

Sequential Machine

Transition Relation

 Sequential Machines

Transition Relations

Logic

Synthesis

Partitioned Circuit
Netlists

Fig. 1. Circuit partitioning flow.

 of on of Partitioned

ASP-DAC ’97
0-89791-851-7$5.00  1997 IEEE

2. PRELIMINARIES

2.1. Sequential Machine and Transition Relation

Let f : Bn → Bm denote a (multiple-output) Boolean
function withn inputs andm outputs, whereB = {0, 1}.

 Definition 1. Given a functionf : Bn → Bm, its charac-

teristic functionis a single-output functionF : Bn × Bm → B
defined byF(x, z) = 1 iff f(x) = z.

A sequential machine consists of a combinational logic
and memory elements. It can be represented schematically
as in Fig. 2 and defined by Boolean variables and functions.

 Definition 2. A sequential machine M is a 6-tuple (X, Y,
Y′, Z, λ, δ) whereX = {x1,…, xn} is the set of input vari-

ables,Y = {y1,…, yk} is the set of present state variables,Y′

= {y1
′,…, yk

′} is the set of next state variables,Z = {z1,…,
zm} is the set of output variables,λ = (λ1,…,λm) is the out-
put function, andδ = (δ1,…,δk) the next state function. The

output functionλ : Bn × Bk → Bm and the next state function

δ : Bn × Bk → Bk describe the behavior of the sequential

machine and are defined by the following logic equations:1

(1)

. (2)

A 4-tuple (X, Y, Y′, Z) that satisfies (1) and (2) denotes a
valid transition of the sequential machine in which the
machine produces outputZ and changes its state from state
Y to stateY′ on inputX. Combining Equations (1) and (2) for
the multiple-output functionsλ andδ, we can derive a sin-
gle-output function called thetransition relation that defines
all the valid transitions of a sequential machine.

 Definition 3. Given a sequential machineM = (X, Y, Y′,
Z, λ, δ), its transition relationis the characteristic function

T : Bn × Bk× Bk× Bm→ B of (λ, δ), i.e.

. (3)

1. For the purposes of this paper, we use the same symbolX to
denote the variable set {x1, …, xn} and the vector (x1, …, xn).

Combinational
 Logic

y'1

y'k
...

y1

yk

z1
zm

x1
xn

Y′

ZX

Memory elements

...

...
...

...Y

M

Fig. 2. Schematic representation of a sequential machine.

zi λi X Y,()= i 1 … m,,=()

yi' δi X Y,()= i 1 … k,,=()

T X Y Y' Z, , ,() zi λi X Y,()≡()
i 1=

m

∏ yi' δi X Y,()≡()
i 1=

k

∏∧=

From the definition, we see thatT(X, Y, Y′, Z) = 1 iff (X,
Y, Y′, Z) is a valid transition. Thus, we can use the transition
relation of the sequential machine to describe its behavior.

2.2. BDD-based Function Decomposition

 Definition 4. An α-g decomposition of functionf(X)
with bound set Uandfree set V, , is a transfor-

mation off to g(α(U), V). If then the function
decomposition isdisjunctive; otherwise, it isnondisjunctive.

For the purpose of this paper, we consider only the dis-
junctive form forα-g decomposition. The following discus-
sion is based on the results of [4][8] and we extend their
concepts to decompose a multiple-output function by its
characteristic function.

Let πU→V denote a variable ordering ofX = U ∪ V
wherexi < xj for anyxi ∈ U andxj ∈ V andBDD(f, πU→V)
denote a BDD representing a functionf(X) with variable
orderingπU→V.

 Definition 5. Given BDD(f, πU→V), we define
cutset(BDD(f, πU→V), U) as the set of nodes in the BDD
with the following properties:

(i) it is a sink node or a node corresponding to a variable
in V.

(ii) it is linked by an edge from a node corresponding to
a variable inU.

For example, Fig. 3 shows the BDD of functionf(x1, x2,
x3, x4, x5, x6, x7) with variable orderingx1 < x2 < x3 < x4 <
x5 < x6 < x7. With U = {x1, x2, x3, x4} and V = {x5, x6, x7},
the cutset ofBDD(f, πU→V) is {a, b, c, d}. Actually, the
ordering of variables withinU and the ordering of variables
with V will not affect the size of the cutset [4].

 Lemma 1 [4]. GivenBDD(f, πU→V) with cutset(BDD(f,
πU→V), U), the decompositionf(X) = g(α(U), V) whereα =

(α1,…,αk) exists iff .

Lemma 1 states that the minimum number of outputs in
the α function is at least
since we need so many bits (or variables) to encode all the

U V∪ X=

U V∩ ∅=

x1

x2

x3 x3

x4

x5 x5

x6x6

x7 x7

f

0 1

Fig. 3. An example BDD,BDD(f, πU→V), of a functionf and
its cutset for a bound setU.

U

V a(00)
b(01)

c(10)

d(11)

0 1

cutset BDD fπU V→,()()
2

log k≤

cutset BDD fπU V→,()()
2

log

The behavior of the original machine has to be pre-
served in terms of the outputs and the internal state
observed, i.e. each output or memory element inMA andMB
has an equivalent function of its corresponding output or
memory element inM. To meet this requirement, in addition
to the primary inputs,MA and MB have external inputs
CB→A andCA→B, respectively, from the combinational cir-
cuit of the other machine. We callCB→A and CA→B the
communication inputs/outputs in terms of signals andcom-
munication variables in terms of Boolean variables that rep-
resent them. The total number of pins |CB→A| + |CA→B|
required for communication in each submachine is called
thecommunication width.

Let PINA denote the number of external inputs/outputs
of MA andPINB denote the number of external inputs/out-
putsMB, i.e.

(5)

. (6)

The objective of our partitioning problem is to minimize
max(PINA, PINB) to prevent partitions with unbalanced
number of input/output pins.

3.2. Submachine Construction with Minimum
Communication Width

Suppose we are given a variable partition of the sequen-
tial machine. The number of pins for primary inputs/outputs
in each submachine has been determined by the partition.
With the objective of minimizing max(PINA, PINB), we
now show how to construct the submachines with minimum
communication width for a given variable partition.

For submachineMA, its combinational logic has outputs
ZA ∪ Y′A and the communication outputsCA→B. Let gA and
αA be the logic functions forZA ∪ Y′A andCA→B in MA,
respectively. Then, the combinational logic function ofMA
can be partitioned intoαA andgA as shown in the left part of
Fig. 5. Similarly, the combinational logic function ofMB
can partitioned intoαB andgB.

From Fig. 5, we can also observe anα-g decomposition
gA(αB(XB ∪ YB), XA ∪ YA) of the multiple-output function
for outputsZA ∪ Y′A in the original machineM, i.e.

PINA XA CB A→ ZA CA B→+ + +=

PINB XB CA B→ ZB CB A→+ + +=

αA

gA

XA∪YA

ZA∪Y′A

MA

Fig. 5. Logic functions of the submachines in sequential
machine partitioning.

MB

αB

gB

XB∪YB

ZB∪Y′B

CA→B CB→A

nodes in the cutset. For example, the BDD in Fig. 3 has a
cutset of four nodes and each node can be encoded by a
unique code of two bits.

The results in Lemma 1 can be generalized for multiple-
output functions if the functions are represented by an
Edge-Valued Binary Decision Diagrams (EVBDD) [4] or
Multiple-Output Binary Decision Diagrams (MOBDDs)
[8]. For logic partitioning, we propose to use the BDD that
represents the single-output characteristic functionF(X, Z)
instead ofZ’s multiple-output functionf(X) itself. A similar
result can be derived from Lemma 1 when we use this rep-
resentation.

 Lemma 2 Given a functionf(X) and its characteristic
function F(X, Z), the decompositionf(X) = g(α(U), V)
whereα = (α1,…,αk) exists iff there exists a bound setU ⊂
X so that .

3. SEQUENTIAL MACHINE PARTITIONING

3.1. Problem Statement

We consider the problem of partitioning a sequential
machineM into two communicating submachinesMA and
MB with a topology as shown in Fig. 4. Each set of primary
inputs, primary outputs and memory elements is partitioned
into two disjoint subsets. In terms of variables, the each set
of variable is partitioned disjointedly and the state variables
have to satisfy

(4)

to form a valid partition of the memory elements. Hereafter,
we refer to such a partition simply as avariable partition of
the sequential machine.

cutset BDD FπU X\U() Z∪→,() U,()
2

log k≤

yi YA∈ yi ′ Y′A∈⇔() yi YB∈ yi ′ Y′B∈⇔()∧

Combinational

Combinational
 Logic

...

Y′B

ZBXB

Memory elements

...

...
...

...YB

 Logic...

Y′
A

ZAXA

Memory elements

...

...
...

...YA

MA

MB

...
...CA→B

CB→AX Z

Fig. 4. A two-way partitioning of a sequential machine.

4.2. Evaluating a Variable Partition

Our algorithm searches different variable partitions
using the BDD representation of the transition relation. For
each partition, the pin requirement, max(PINA, PINB),
should be calculated to evaluate the solution. The BDD-
based approach has made the calculation for communica-
tion width, , efficient by identifying
the cutsets of twoα-g decompositions (Section 3.2) in the
BDDs. There are two cutsets to be identified, one with
bound setXB ∪ YB and one with bound setXA ∪ YA. There-
fore, we need to maintain two BDDs for the transition rela-
tion simultaneously, where each variable ordering is reverse
to the other.

Fig. 6 depicts the two BDDs,BDD(T, πB→A) and
BDD(T, πA→B), whereA = XA ∪ YA ∪ Y′A ∪ ZA andB = XB
∪ YB ∪ Y′B ∪ ZB. The cutlines in the two BDDs define a
variable partition. We can then compute the cutset size with
respect to the cutline in each BDD to calculate |CB→A| and
|CA→B|. Note that the exact cutset sizes should be computed
from the BDDs representing the characteristic function for
outputsZA ∪ Y′A, i.e.

(9)

derived from the Equation (7) and the characteristic func-
tion for outputsZB ∪ Y′B, i.e.

(10)

derived from Equation (8), respectively. Although these
BDDs for the characteristic functions can be constructed
respectively fromBDD(T, πB→A) and BDD(T, πA→B), we
usecutset(BDD(T, πB→A), B) andcutset(BDD(T, πA→B), A)
computed from the two BDDs maintained by the algorithm
for efficiency. This means that we approximate the commu-
nication width by

+ . (11)

Since the communication width is logarithmic in the sizes
of the cutsets, the amount of over-estimation should be
insignificant.

CA B→ CB A→+

T

Fig. 6. BDD representations of the transition relation.

B = XB ∪ YB ∪ Y′B ∪ ZB
A = XA ∪ YA ∪ Y′A ∪ ZA

B = XB ∪ YB ∪ Y′B ∪ ZB

BDD(T, πB→A) BDD(T, πA→B)

T

A = XA ∪ YA ∪ Y′A ∪ ZA

zi λi X Y,()≡()
zi ZA∈

∏ yi' δi X Y,()≡()
y'i Y'A∈

∏∧

zi λi X Y,()≡()
zi ZB∈

∏ yi' δi X Y,()≡()
y'i Y'B∈

∏∧

cutset BDD TπB A→,() B,()
2

log

cutset BDD TπA B→,() A,()
2

log

= (7)

Similarly, gB(αA(XA ∪ YA), XB ∪ YB) is anα-g decomposi-
tion of the function for outputsY′

B ∪ ZB in M, i.e.

= . (8)

Using BDD-based function decomposition, we can con-
struct the submachines with minimum communication,
CB→A andCA→B, by decomposing the function forZA ∪ Y′A
in M with bound setXB ∪ YB and the function forZB ∪ Y′

B
in M with bound setXA ∪ YA. After decomposition,αA and
gA are composed to the combinational function ofMA; αB
andgB are composed to the combinational function ofMB.

4. BDD-BASED SEQUENTIAL MACHINE

PARTITIONING ALGORITHM

In the previous section, we have shown how to minimize
the communication width if a variable partition of the
sequential machine is given. The communication width,

, can be calculated by identifying the
cutsets in the BDDs. In this section, we propose a BDD-
based logic partitioning algorithm for sequential machines.
The algorithm uses the BDD representation of the single-
output transition relation of a machine to represent its multi-
ple-output logic function. Since an exact method of enumer-
ating all variable partitions is impractical, we use an
iterative improvement approach. The idea is to locally
change a variable partition by relocating a variable and the
cutline in the BDD. For each new partition, the cutset of the
BDD is computed to evaluate the quality of the variable par-
tition.

4.1. Transition Relation Approach

In Section 2.1, we have shown that the behavior of a
sequential machineM = (X, Y, Y′, Z, λ, δ) can be described
by its transition relationT whereT(X, Y, Y′, Z) = 1 iff (λ (X,
Y), δ (X, Y)) = (Z, Y′). There are two reasons for using the
transition relation instead of the logic function of a sequen-
tial machine. First, the transition relation is a single-output
function and the cutset of the BDD in function decomposi-
tion can be easily identified by Lemma 2. Second, a variable
partition in a sequential machine involves input and output
partitioning simultaneously. Since the transition relation
T(X, Y, Y′, Z) is a function of the input and output variables,
we can apply variable ordering operations on its BDD rep-
resentation to locally change a variable partition. Although
there are EVBDDs [4] and MOBDDs [8] proposed to repre-
sent multiple-output function, we can only use their repre-
sentations to partition input variables but not output
variables.

λi X Y,()
zi ZA∈

∪ 
  δi X Y,()

y'i Y'A∈
∪ 

 ∪

gA αB XB YB∪() XA YA∪,()

λi X Y,()
zi ZB∈

∪ 
  δi X Y,()

y'i Y'B∈
∪ 

 ∪

gB αA XA YA∪() XB YB∪,()

CA B→ CB A→+

tion, if the new variable partition after the relocation is an
improved solution. The new position also serves as the new
cutline for defining the variable partition. To avoid
extremely unbalanced partition, we set acutline position
window(CPW) for the new position of each variable and the
cutline. TheCPW is centered in the middle of the variable
ordering and is defined by a width parameterω.

The searching stepsift_and_search for a variable’s new
position is based on a variablesifting operation which was
initially proposed in [6] to reduce the size of a BDD. The
sifting operation searches the optimum position for a vari-
able in theCPW assuming the order of all other variables
remains fixed. For eachv being considered, we first ‘sift’v
(exchangingv with its next neighbor iteratively) to the first
position of theCPW. Thenv is sifted towards the end of the
CPWand the best position with minimum pin requirement
is returned. For example, with a variable ordering <x1, x2,
x3, x4, x5>, we can repeatedly ‘sift’ variablex1 ‘downwards’
in theCPW = [2, 4] from position 2 to position 4 to obtain
variable orderings <x2, x1; x3, x4, x5>, <x2, x3, x1; x4, x5>
and <x2, x3, x4, x1; x5> in sequence. The position of the cur-
rent variablev being sifted defines the cutline that separates
v from the variable in front of it as shown by the semicolon
(;) in the example. Note that the variable partition in the
transition relation requires each pair of present state vari-
ableyi and next state variabley′

i to stay in the same block.
Therefore, each (yi, y′

i) pair is considered as an entity when-
ever the sifting operation is performed, i.e.yi and y′

i are
always adjacent in the ordering and the cutline can never
separate them.

After the new position is returned bysift_and_search, v
is sifted to the best position returned if the partition defined
by the new cutline is a better solution. Otherwise,v is sifted
back to its original position since it has been sifted to the
last position in theCPW. Note that the each variable order-
ing of the two BDDs is the reverse or the other. Thus, all the
sifting operations in the algorithm should be in opposite
directions on the two BDDs.

5. EXPERIMENTAL RESULTS

We have implemented the BDD-based heuristic algo-
rithm and applied it to sequential circuit partitioning. Exper-
iments on a set of MCNC benchmarks were conducted to
demonstrate the effectiveness of the algorithm. For each test
case, we extract the function of the circuit from its netlist at
the gate level and construct the BDD representation of its
transition relation by calling routines of BDD operations in
SIS [7]. Then the BDD is used in our heuristic algorithm to
find a variable partition with minimum pin requirement for
partitioning the sequential machine. For comparison, the
same netlist of each test case is also partitioned by the two-
way Ratio Cut II netlist partitioning program [9] to mini-
mize the input/output pins. The Ratio Cut II program is an
improved implementation of the original ratio cut algo-
rithm.We choose it as the netlist partitioning algorithm

4.3. Heuristic Algorithm by Partition Enumeration

Fig. 7 shows our BDD-based partitioning algorithm to
find a variable partition in sequential machines. The heuris-
tic algorithm locally changes a variable partition and
improves the solution iteratively.

Given an initial variable partition (A, B) and the transi-
tion relationT, two BDDs are first constructed with variable
orderings πB→A and πA→B, respectively. Each variable
ordering of the two BDDs is kept totally as the reverse to
the other in the algorithm. Then, each variable is subse-
quently considered and relocated in the BDD to a new posi-

Algorithm

INPUT: initial variable partition (A, B) and the transition relationT for
the sequential machine.

OUTPUT: final variable partition (A, B).
{
/* N: the total number of input/output variables or state variable pairs */
/* CPW: the cutline position window */
/* ω: the width parameter ofCPW */

CPW= [N/2-ω, N/2+ω];
constructBDD(T, πB→A) andBDD(T, πA→B);

min_pin_num = pin requirement for variable partition (A, B);
repeat {

improved = false;
for each variable or variable pairv in A ∪ B {

old_position= v’s current position;
sift_and_search(v, new_position, pin_num);
if (pin_num < min_pin_num) {

improved = true;
min_pin_num = pin_num;
cutline = new_position;
sift v to new_position in BDD(T, πB→A) andBDD(T, πA→B);

}
else siftv back toold_position;

} until (improved == false);
return (A, B) defined bycutline;

}

sift_and_search(v, new_position, pin_num)
{
/* p : position in variable ordering with indices inBDD(T, πB→A)

andBDD(T, πA→B) reverse to each other. */

pin_num = ∞;

for each positionp ∈ CPW{
sift v to positionp in BDD(T, πB→A) andBDD(T, πA→B);

temp_cutline = p;
compute the cut sets defined bytemp_cutline in BDD(T, πB→A)

and inBDD(T, πA→B);

computePINA andPINB;

if (max(PINA, PINB) < pin_num) {

pin_num = max(PINA, PINB);

new_position = p;
}

}
return new_position, pin_num;

}

Fig. 7. A BDD-based algorithm of finding a variable
partition in sequential machine.

because it is efficient, and yet still generates comparable
results against state-of-the-art netlist partitioning algo-
rithms. To prevent partitions with extremely unbalanced
sizes, we set the total node size ratio of the two subcircuits
between 1/2 and 2.

Table 1 shows the characteristics of the benchmarks and
the partitioning results. The numbers of flip-flops and input/
output pins are listed for each benchmark circuit. In the last
two columns, we compare the numbers of I/O pins of the
results produced by our algorithm against the results by
Ratio Cut II. In terms of total I/O pins or the maximum I/O
pins of the two subcircuits, our BDD-based partitioning
algorithm outperforms the netlist-based Ratio Cut II parti-
tioning algorithm in all the test cases. In particular, the
results of our algorithm for test casess953, s1488 ands1494
require only 1/3 to 1/4 of the total number I/O pins by Ratio
Cut II. The last column in Table 1 also lists the numbers of
flip-flops in the submachines. We can see that our algorithm
produces partitioned sequential machines with balanced
number of flip-flops as well as number of I/O pins. It is an
encouraging result for obtaining balanced circuit sizes after
the submachines are synthesized.

6. Conclusions
We proposed a BDD-based algorithm to perform logic

partitioning for sequential machine. Our approach is to use
the BDD that represents the transition relation of the
sequential machine to find a good variable partition. It is not
difficult to see that our algorithm also can be applied to par-
tition combinational logics (with no feed-back loop) by
using the BDD representation of the characteristic function.
Unlike other combinatorial logic partitioning algorithms
which merely based on theα-g decomposition model, our

approach can produce partitions with bidirectional commu-
nication, instead of unidirectional. Currently, we are gener-
alizing the sequential machine partitioning to allow non-
disjoint partition of inputs for possible improvements.

REFERENCES

[1] M. Beardslee, B. Lin, and A. Sangiovanni-Vincentelli, “Com-
munication based logic partitioning,”Int. Conf. on CAD,
1992, pp. 32-37.

[2] J. R. Burch, E. M. Clarke, and D. E. Long, “Symbolic model
checking with partitioned transition relations,”Int. Conf. on
VLSI, Edinburg, Scotland, Aug. 1991.

[3] D. Geist and I. Beer, “Efficient model checking by automated
ordering of transition relation partitions,”Int. Conf. on Com-
puter Aided Verification, Jun. 1994, pp. 299-310.

[4] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula, “BDD based
decomposition of logic functions with application to FPGA
synthesis,” 30th Design Automation Conference, 1993,
pp. 642-647.

[5] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula, “EVBDD-based
algorithms for integer linear programming, special transfor-
mation, and function decomposition,”IEEE Trans. on CAD,
Aug. 1994, pp. 959-975.

[6] R. Rudell, “Dynamic variable ordering for ordered binary
decision diagrams,”Int. Conf. on CAD, 1993, pp. 42-47.

[7] E. M. Sentivichet al., “SIS: a system for sequential circuit
synthesis,”Mem. UCB/ERLM92/41, U. C. Berkeley, May
1992.

[8] M. Shih, “Delay optimization based on BDD and communi-
cation complexity,”Mem. UCB/ERLM92/117, U. C. Berke-
ley, 1992.

[9] C.-W. Yeh and C.-K. Cheng, “Ratio cut program II,”Techni-
cal Report CS92-250, U. C. San Diego, Jul. 1992.

TABLE 1. RESULTS OF SEQUENTIAL CIRCUIT PARTITIONING

Test Cases Ratio Cut BDD-based Partitioning

Name FF I/O Max I/O Pin1/Pin2 Total Max I/O Pin1/Pin2 Total FF1/FF2

s27 3 5 5 4 / 5 9 4 3 / 4 7 1 / 2

s344 15 20 22 14 / 22 36 19 17 / 19 36 6 / 9

s382 21 9 13 12 / 13 25 8 8 / 7 15 12 / 9

s386 6 14 20 20 / 18 38 11 11 / 9 20 3 / 3

s400 21 9 11 4 / 11 15 8 8 / 7 15 10 / 11

s420 16 19 20 17 / 20 37 12 12 / 11 23 9 / 7

s444 21 9 11 8 / 11 19 8 7 / 8 15 12 / 9

s510 6 26 51 33 / 51 84 23 23 / 23 46 4 / 2

s820 5 37 53 41 / 53 94 24 23 / 24 49 2 / 3

s832 5 37 49 40 / 49 89 24 23 / 24 49 2 / 3

s953 29 39 82 82 / 71 153 29 26 / 29 57 16 / 13

s1488 6 27 70 65 / 70 135 21 21 / 20 41 3 / 3

s1494 6 27 75 58 / 75 133 21 18 / 21 39 3 / 3

s208.1 8 11 11 10 / 11 21 10 10 / 7 19 4 / 4

scf 7 83 152 152 / 123 275 54 53 / 54 107 5 / 2

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

