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Abstract

In this paper we address the problem of software generation
from a Hardware Description Language (HDL). In partic-
ular, we examine the issues involved in translating VHDL
into C or C++ for use in system simulation and cosynthe-
sis. Because of the concurrency supported by VHDL, and
a notion of timing behavior, care must be taken to ensure
behavioral correctness of the generated software. The is-
sues involved will be shown to be different in each of the
application areas. The ideas set forth here have been used in
an efficient VHDL simulator designed to execute on multi-
processor systems. Results are presented for simulation on
uniprocessor as well as multiprocessor systems.

1 Introduction

It is necessary to translate a given VHDL model into a
C/C++ program in either of the two following applications.
One is in efficient simulation of VHDL models. This is ac-
complished by translating it into an equivalent C/C++ pro-
gram, which is then executed on a general purpose pro-
cessor [1]. The second application is the cosynthesis [2]
of systems modeled using VHDL. In cosynthesis, the in-
put VHDL description is synthesized into two portions, one
of which is implemented as application specific hardware,
and the other as a software program that runs on a general
purpose processor. The goal is to automatically generate
the C/C++ code for the functionality identified by the par-
titioner to be in software.

Since most popular HDL’s, including VHDL, are based
on procedural programming languages, the problem may
appear to be a simple translation from one procedural lan-
guage to another. However, there are two important dif-
ferences between HDL’s and software programming lan-
guages that makes this translation difficult. First, in an
HDL, the effect of a statement is not guaranteed to take
place immediately upon its execution. Using a nonzero de-

lay in an assignment in a VHDL description can cause the
effect of the execution of this statement to occur at some
arbitrary time in the future. Further the resulting effect of
a statement may depend upon the execution of other state-
ments in the description. Since there can be multiple state-
ments which assign values to the same signal with differ-
ent delays, it is necessary to resolve the ordering of state-
ment execution in order to determine the correct assignment
of signal values over time. This process of ordering multi-
ple assignments is commonly known as ”signal resolution”.
Secondly, HDL’s commonly support some form of concur-
rency to model the parallelism inherent in hardware. It is
possible to exploit some parallelism in the descriptions for
model execution but some portions may need to be executed
sequentially in order to observe dependences.

In this paper we will systematically describe the delay
models inherent in VHDL, and the difficulties which they
pose. Full support of delay models require considerable
work at runtime for scheduling events. We will isolate sub-
sets of the delay models which require minimal work at run-
time. We apply these findings to our domains of applica-
tion i.e. simulation and cosynthesis. We briefly mention
our simulation algorithms, and give results to demonstrate
the effectiveness of our work.

The remainder of the paper is organized in the following
manner. Section 2 briefly reviews related work in the area.
Section 3 presents a model of the delayed assignments in
VHDL that is used in our software synthesis procedure. We
describe a compile time technique for resolving signal as-
signments in Section 4. We discuss our implementation for
translation of single and multiple process VHDL in Section
5.

2 Related Work

Our work is based on analysis of delay assignments and
signal resolution in VHDL. The semantics of delay assign-
ments in event driven HDL and logic simulators has been



addressed by Abramovici et al [3] and Augustin et al [4].
In particular we concern ourselves with inertial and trans-
port delays, which are supported by the VHDL language.
Augustin [5] describes the semantics associated with these
delay models. The VHDL Language Reference Manual [6]
contains an algorithm to implement the preemptive seman-
tics associated with signal assignments. Augustin [5] and
Allen [7] provide formal frameworks within which it is pos-
sible to analyze the behavior of the waveforms associated
with signals in VHDL. The former provides a waveform al-
gebra within which it is possible to define and manipulate
waveforms and their interactions with one another. Allen
describes a timing model using a set of time intervals and
relations between these intervals are expressed in terms of
predicates. This model is used by Wilsey [8] to describe
signal assignments in VHDL.

The problem of HDL simulation has been addressed
by various authors. Broadly, there are two different ap-
proaches to making the simulation more efficient. The first
is in increasing the amount of analysis performed at com-
pile time. Sakallah and Shriver use waveform analysis in
[9] to perform Verilog simulation for synchronous systems
with assigned delays. French et al [10] describe compile
time analysis for a more general class of Verilog models,
and are able to handle variable delays even in an asyn-
chronous circuit. On the other hand, other groups have at-
tempted to reduce the amount of runtime work. Devadas
et al [11] have described an analysis procedure to perform
event suppression to reduce the number of events occur-
ring in the simulation of synchronous digital circuits. In
this work, we attempt to combine the advantages of com-
pile time analysis and reducing runtime overhead as far as
possible.

3 Delay Models supported by VHDL

A VHDL description consists of a set of concurrent pro-
cesses. Each process consists of a set of statements which
execute sequentially. Processes communicate by writing to
and reading from data structures known as signals. Val-
ues may be assigned to signals, and a temporal delay may
be associated with these assignments. During simulation,
the execution of a signal assignment results in creation of a
transaction, a data structure comprising the value assigned
and the time at which it is scheduled to appear on the sig-
nal. This transaction is then added to a list of transactions
for that signal. A signal transaction list reflects the values
which will eventually appear on the signal. In VHDL, there
are two types of delays associated with signal assignments.
These are known as inertial and transport delays. Transport
delays model delays on wires or transmission lines which
have an infinite frequency response. On the other hand, in-
ertial delays model systems having a frequency response
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Figure 1: Preemption removes invalid transactions from the
output waveform. An event of value 1 scheduled for time 7
is posted at time 0. Then at time 0, a transaction with value 0
is posted at time 3. If the first transaction is not preempted,
the second transaction is contradicted at time 7 ns..

equal to the assignment delay.1

Since arbitrary delays can be assigned to a signal ir-
respective of how real life hardware components behave,
preemption is necessary to ensure temporal causality of
events. In other words, transactions posted by one assign-
ment statement may be invalidated by another assignment
to the same signal. To understand this consider the exam-
ple of events in Figure 1 from [5]. Transactions that cause
events earlier than already scheduled events result in in-
validation of existing events. It is clear that the resolution
of multiple assignments and delayed assignments are inter-
linked.

VHDL signal assignment has preemptive semantics [5].
As soon as a transaction is posted by the execution of
the signal assignment statement, other transactions on the
transaction list are examined for possible preemption as fol-
lows. Signal assignments with transport delays require only
forward preemption, ( see Figure 1 ). Inertial delays require
both backward as well as forward preemption. Backward
preemption entails removal of all transactions scheduled to
appear before the most recently scheduled transaction, ex-
cept those having the same signal value. Figure 2 shows as-
signment with inertial delays.

3.1 A Model of Delayed Assignment

A model for delayed assignment and preemption conditions
has been presented in [8]. In this section, we briefly intro-
duce the conditions for preemption and extend this model to

1The latest revision of the VHDL standard, VHDL-93 allows specifi-
cation of a pulse rejection time with an inertial signal assignment. This
sets a time limit before which it is guaranteed that the signal value will
not change. We do not address this delay model explicitly in this paper.
However, extension of the methods described herein to account for this is
straightforward.
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Figure 2: Forward and backward preemption in an inertial
delay. The most recently scheduled transaction is located at
7 ns for 16 ns, which makes the transactions scheduled at
10 ns and 18 ns invalid. The transaction scheduled for 10
ns is rendered invalid since the value posted by it is differ-
ent than the most recently posted transaction. On the other
hand the transaction scheduled for 18 ns is preempted by
forward preemption.

identify the runtime work needed for multiple assignment
resolution in the case of multiple processes.

The timing model is based on the interval temporal logic
in [7]. The basic elements are intervals of time, and the
predicate meets. All other relations between time intervals
may be expressed in terms of the meets predicate. A time
interval t1 meets t2 if t1 is before t2 and there is no time
interval separating them. Thus an assertion t1+ t2+ t3 = t

means that t1 meets t2, t2 meets t3 and t is composed of all
three intervals. We now consider the following three pred-
icates shown in Figure 3.

� during( t1, t2 ) � 9 t3; t4 : t3 + t1 + t4 = t2.

� overlaps( t1, t2 ) � 9 t3; t4; t5 : t3 + t4 = t1 ^ t4 +

t5 = t2:

� finishes( t1, t2 ) � 9 t3 : t3 + t1 = t2:

Let us define a transaction by a tuple

t = htv; tdi

where tv is the value of the assignment, and td is the time in-
terval beginning with the signal assignment and ending with
the time at which this value appears on the output wave-
form. Further, suppose that htv ; tdi is a transaction posted
by a signal assignment statement sa. Then a transaction
t0 = ht0v ; t

0

di is forward preempted if

during(t0d; td) ^ �nishes(td; t
0
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t1 t2
meets( t1, t2 )

t1 t2 t3

t

t1 + t2 + t3  = t

t1

t2during( t1, t2 )

t1

t2overlaps( t1, t2 )

t1

t2
finishes( t1, t2 )

t3 t4 t5

Figure 3: Relations on time intervals.

is true.
In addition, should the transaction t0 have inertial delay as-
sociated with it, then the first transaction t is preempted if

overlaps(td; t
0

d) ^ tv 6= t
0

v (2)

is true.
Considering the case of backward preemption first,

when the condition 1 holds between the time intervals re-
sulting from two assignments to the same signal, then the
values assigned must be compared. The preemption occurs
if the two values are different. In cases where it is possi-
ble to determine the equivalence between two values, this
can be done at compile time. However, in general the values
may depend upon input and may not be known at compile
time. Should the condition 2 not hold between the intervals
in question, then there is no preemption to be performed, re-
gardless of the delay model. A sufficient condition for this
to happen is that each signal assignment is executed after
the previous assignment has taken effect regardless of the
value assigned.

For a transaction htv; tdi to be preempted due to post-
ing of a new transaction ht0v ; t

0

di, it is necessary that con-
dition 1 holds. Let ts and tf be the starting and finishing
times of the interval td respectively. Similarly, let t0s and t0f
be the starting and finishing times of the interval t0. Since
the transaction t0 is posted after the transaction t it follows
that t0s > ts. The former transaction is only deleted when
t0f < tf . Hence, no preemption is required if we know for
certain, that t0f is guaranteed to be greater than tf . A suf-
ficient condition for this is when only transport delays are
used, and all assignments to a given signal have the same
delay. Thus the time interval associated with assignments



to a given signal are always the same. However, each time
interval finishes after the time interval corresponding to the
preceding signal assignment i.e. the time intervals corre-
sponding to different assignments to the same signal are
disjoint. Under this assumption, no preemption needs to be
performed at runtime.

3.2 Modeling of Synchronous Systems

We now consider the issues arising out of delayed assign-
ments in the case of synchronous systems, wherein all sig-
nal assignments carried out in a particular cycle are ex-
pected to be executed before the end of the current clock cy-
cle. As we have seen above, regardless of the delay model,
the value assigned to a given signal is always the same as
the most recent assignment to a signal. In a synchronous
system, components sample input values only at the clock
boundaries. Hence, while it is important to ensure that the
correct values are placed on signals at the end of the clock
cycle, the exact time at which these values are placed within
a clock cycle is immaterial. We therefore observe that is
sufficient to execute the last signal assignment to a signal
in a process with no delay, and ignore prior assignments to
the same signal. Cycle based simulators utilize this obser-
vation to produce highly efficient code.

4 Software Synthesis from VHDL

In this section we will describe the issues concerned in code
generation for both simulation and cosynthesis. We will
utilize the conclusions reached in the previous sections in
describing solutions to these problems.

4.1 Software Synthesis for Simulation

In simulating large VHDL models such as microprocessors
at the RTL level, we need not concern ourselves with de-
tailed timing issues. This assumes that verification of these
systems is broken up into logic verification (achieved by
simulation) and timing verification (achieved by static tim-
ing analysis or accurate timing simulation). We implement
the transport delayed model wherein all assignments to a
given signal have the same delay.

As we have shown earlier, given this model, we need not
perform any resolution at runtime for multiple assignments.
This is because the effect of a given signal assignment ap-
pears on the signal before the next signal assignment is en-
countered. Hence we are able to resolve the order of ex-
ecution at compile time through an analysis technique first
introduced by French [10]. We have implemented this tech-
nique in a VHDL simulator. The analysis technique enables
us to generate C++ code which reflects a conservative es-
timate of the order in which the simulation will proceed at

Table 1: Runtimes (in seconds) of Vantage vs our sequential
simulator on Sun4 machine
.

circuit vantage our simulator # vectors
c432 95.4 37.3 10000
c499 121.7 44.8 10000

c1908 40.5 21.9 10000
c3540 216.3 148.3 10000

runtime. Runtimes of this simulator running on a Sun 4 pro-
cessor, and those of a commercial event driven simulator,
Vantage, which implements the entire set of delay models
set forth in VHDL appear in Table 1. We have used some
of the ISCAS [12, 13] benchmarks for our work. Since our
simulator does not have to perform the cumbersome run-
time checks for resolution of signals, our simulator is 2 to
3 times faster, even though we have not spent much effort
in optimizing the generated code. This is achieved since
we are able to avoid the need for a centralized event queue,
and therefore we do not need to dereference any pointers or
traverse dynamic data structures such as queues or timing
wheels.

Our simulation algorithm can be refered to as “com-
piled event driven” since it relies on compilation of effi-
cient C code from the source VHDL program, but at run-
time provides event driven behavior using branching con-
structs. There is no event queue involved in this approach.
We then parallelize this simulation to execute on shared
memory workstations. This is done by effectively partition-
ing the graph obtained from the static analysis techniques
mentioned above. Our partitioner minimizes the commu-
nication across processors. Results for our parallel simu-
lator executing on a SparcServer 1000 appear in Table 2.
Note that the single process times are not the same as those
reported in Table 1 because each processor on the Sparc-
Server is faster than that on which we ran Vantage. In addi-
tion to the ISCAS benchmarks, we have used two additional
benchmarks. The first, XCVR32 is a 32 bit transceiver
which is available from the RASSP web site [14]. Its aber-
rant behavior is due to poor load balancing achieved by
our current algorithm. The second description, MAC, a
floating point multiplier and accumulator from Ashenden’s
book [15] scales poorly owing to the limited parallelism in
the circuit. However, speedups of upto 4 on 8 processors
are achieved for some of the other benchmarks. In order to
achieve these numbers for all benchmarks, we are refining
our partitioning algorithms. Detailed descriptions of our
implementation of the static analysis, code generation and
parallelization of the simulator are omitted owing to lack of
space [16].



Table 2: Speedup using multiprocessor simulation on an
8 processor Sparcserver 1000 using Solaris threads. Each
processor is a Super Sparc clocked at 50MHz. There are
512 MB of physical memory. Runtimes are reported in sec-
onds.

circuit 1 proc 2 procs 4 procs 8 procs
c432 12.05 8.80 7.07 4.37
c499 15.80 11.39 7.99 6.34

c1908 10.90 6.89 4.30 2.75
c3540 126.1 98.5 79.9 48.8

XCVR32 10.68 8.90 25.85 7.15
MAC 3.65 2.97 3.77 4.77

4.2 Software Synthesis for Embedded Systems

In software synthesis for embedded systems, we assume
that we are dealing with strictly synchronous systems. Fur-
thermore, we assume that all assignments to signals within
a given clock cycle take effect before that cycle terminates.
As has been shown earlier, this enables us to consider only
the last signal assignment to a given signal in a cycle, thus
simplifying the problem of multiple assignments to a sig-
nal. We assume that we are generating code for partitions of
a system which have already been assigned for implemen-
tation in software [2].

These assumptions enable us to remove unnecessary sig-
nal assignments as an optimization as shown in the VHDL
segment below.

P : process

begin

a <= 1 after 1 ns;

a <= 3 after 10 ns;

a <= 0 after 2 ns;

a <= 0 after 4 ns;

wait;

end process;

At the end of the clock cycle in which the above pro-
cess is activated, it will have the value of 0, and any val-
ues resulting from signal assignments earlier than the last
assignment will not be sampled by other processes waiting
on the signal a. Hence, we can simply remove the other
signal assignments, keeping only the last one in the pro-
cess. Assignments to signals within blocks which are ex-
ecuted conditionally (e.g loops or if-then constructs) can-
not be blindly removed as mentioned above. In order to
determine which signal assignments can be removed from
the generated code, we build and analyse control flow graph
(CFG) for each process statement. We perform reaching
definition analysis, and any definitions which do not reach
the end of the CFG are removed. The delay values in these

are immaterial, since we are only interested in the value at
the end of the clock cycle.

In the presence of multiple processes and I/O interac-
tions the generated code consists of multiple lightweight
threads generated for each process assigned to implementa-
tion in software. A shared memory model of computation
is assumed. In other words, each thread sees the same data
space. The runtime thread scheduler is ised to multiple pro-
cess interactions in VHDL.

The scheduler enforces a dynamic order of execution on
the processes. It accepts interrupts from hardware compo-
nents and schedules processes which are sensitive to these
signals. Furthermore, changes in values of values modified
by software processes implemented as threads are noted
by the scheduler and sensitive threads are scheduled. The
scheduler is also responsible for taking care of resolution
of signals assigned to by multiple processes. This is done
quite easily, since VHDL requires a bus resolution function
for each such signal. Hence the scheduler invokes the bus
resolution function when it is notified that a process wishes
to write to such a signal.

5 Summary and Conclusions

We have identified problems in generating C/C++ code
from VHDL for the purpose of simulation and cosynthesis.
A formal model is used to understand the extent of runtime
support required and restrictions on the compile time anal-
ysis possible for each delay model supported by VHDL.
We have briefly described our simulation algorithms, and
the algorithms for parallelizing them. We have included
runtimes showing the effectiveness of this algorithm. We
have shown how to avoid unnecessary signal assignments
from the VHDL in the context of code generation for syn-
chronous embedded systems. We explain how to embed
this scheme within a multithreaded paradigm which in-
cludes runtime scheduling of processes.

We intend to concentrate on simulation on multiproces-
sors. Our future work includes relaxing some of the con-
straints on the delay model, optimizing the generated code
and improving the parallelization algorithms to obtain bet-
ter scaling.
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