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Abstract - In this paper, synthesis of VHDL procedures and
functions is studied from the VHDL transformation point of
view. Among all the proposed methods, inline expansion and
module can be integrated into a VHDL synthesis system by a
source-to-source transformation, while a control-subroutine
approach requires additional work at the higher level synthesis
phases before it can link to a logic synthesis tool. A lot of
optimization possibility is explored during the process. We also
present various generations of the control-subroutine approach,
including the synthesis of recursive programs, a behavioral
partitioning methodology that divides the controller into several
communicating state machines, and a methodology that mixes
the execution of subprograms. Our study shows that the
combination of these approaches is flexible to be adapted to
various applications in an efficient way.

I. INTRODUCTION

As the complexity of a design increases, the size of a design
description increases. It becomes necessary to define subprograms
within the main program in order to clarify the whole design and
provide the opportunity to share some common portion of the
program. A subprogram (or subroutine) defines a function using a
sequence of declarations and statements in behavior constructions
that can be evoked from different locations in a VHDL program
[1,2,3,4,5,6]. When two tasks perform the same sequence of
operations except on different data sets, a subroutine associated with
parameters is usually shared by the two tasks.

Procedures and functions are examples of subprograms in
VHDL. Their use in a behavioral description has the advantages of
decreasing the description size, enhancing readability, and
improving maintainability [7]. In the past, 2 VHDL program was
mainly for design description and simulation. As synthesis tools
become more mature, synthesis from behavioral VHDL is becoming
a popular issue. Previous research efforts have examined synthesis
of descriptions containing subprograms. Their methodologies fall
into three philosophies. The first one removes a subroutine by
inlining its function into the main program when the subprogram is
evolved (inline expansion). The second one allocates dedicated
resource for a subroutine (module or macro). The last one
compromises them by keeping the control structure of each
subroutine while sharing the data path among all subroutines
(control subroutine or share-routine).

Among them, in'ine expansion is the most widely used due
to its simplicity of implementation and its flexibility to be adapted
to all the applications. However, as the size of the program increase,
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the routing among the data path components and the control
becomes unacceptable. Furthermore, a subroutine usually represents
a group of operations that have strong relationship. Data are
produced by some operations and then consumed by other
operations in the same subroutine. An inline approach is not
intended to maintain the property. Therefore, a synthesis method
that is able to address the above issues is desired.

The problem of subprogram synthesis is complicated by the
presence of parameters, signals and wait statements, the demand of
low power consumption, and possibly recursion in nature. We
found that the best implementation style of subroutine is different
from one to another and the quality of a design cannot be
predictable unless lower level design has been completed. A
synthesis system that supports various implementation styles,
integrates methodologies, and easily links to a lower level design
tools, can have the advantage of exploring the design space.

This paper will address the above issues. In Section 2, the
various ways of implementing a subroutine is examined from
VHDL transformation aspect of view. In section 3, we present the
control-subroutine approach in detail. Various generations of the
control-subroutine approach and the relationships with other
methodologies are discussed in section 4. The experimental result is
presented in section 5.

II. SURVEY OF PROCEDURE IMPLEMENTATION STYLES

The most common subprogram synthesis method is inline
expansion where the subroutine is expanded into the main program
whenever it is evolved. In SUGAR[8] and System Architect’s
Workbench[9], procedure calls are either inlined or implemented as
jumps to micro-subroutines in the control stores. Procedures in
SUGAR are inlined if they are called only once or if the inlining
would not significantly increase the size of the control store. In [10],
subroutines are also inlined. However, a fixed pattern, called
behavioral template, is defined. During scheduling, they try to
match as much such pattern as possible to increase the regularity.

The subprogram is treated as a module in Yorktown Silicon
Compiler {11]. In {7], several subprogram synthesis methods,
namely, fixed-delay macro, variable-delay macro, procedure inline,
and control subroutine are presented and the effects of VHDL
signals and wait statements on synthesis methods are studied. Their
evaluation criteria is based on the number of control steps, number
of registers, and number of functional units needed.

This paper will discuss the subroutine synthesis methods
from VHDL transformation point of view with emphasis on the
control subroutine approach. To synthesis a program contains
subroutines, some tasks of a synthesis system may have to be
modified. Among them, inline expansion and process module can



be easily integrated into the synthesis tool by introducing a source
to source transformation phase. In the following, we briefly
overview these methods using the example in figure 1(a) which is
presented in [7]. The implementation of control-subroutine requires
additional works at higher level synthesis phases which will be
discussed in Section 3 and Section 4.

Inline Expansion:

Inline expansion is the most intuitive and most widely used method
for realizing a subprogram. Basically, for each subprogram call, we
replace the subprogram call statement by the subroutine body.
Parameters are handles in two ways. If they are variables, we have
to rename the formal parameters. If they are signals, we have to
keep them the same. After transformation, the subprogram is no
longer needed and can be removed from the source program.
Consequently, we have a single data path and control unit for the
whole program. Figure 1(b) shows the program after transformation.

Variable-delay or fixed-delay module:

The main idea behind this method is to use dedicated hardware for a
subroutine. There are two different kinds of subroutines, i.e., fixed
delay and variable delay. For a variable-delay one, we have to
introduce handshaking between the main program and the
subroutine. The main program calls the subroutine by setting a start
signal. Upon completion, the subprogram informs the main program
by setting a finish signal. In this case, the relationship between
caller and callee acts like communicating processes as described in
figure 1(c). For a subroutine with fixed delay behavior, the
handshaking is not required. It is instantiated as if there is a
functional-unit designed for it. Figure 1(d) shows the VHDL
description of the fixed-delay module. It is declared as a module by
using a compiler directive, “-- mebs module”.
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Figure 1 Source-to-source transformation, (a) lhc input description, (b)
inline-expansion, (c ) using a variable delay module, (d) using a fixed delay
module.

III. CONTROL-SUBROUTINE APPROACH

Implementing a subroutine as a control-subroutine was first
presented in the field of software compiler. The main idea is to
associate each subroutine with a dedicated control part, while the
operations are executed on the data path allocated for the whole
program. In order to transfer control flow among the subprograms,
the return address has to be hold in a memory. A device named
stack has been designed in most computer systems to simulate the
fist-in-last-out behavioral of subroutine call. Whenever a subroutine
call happens, the caller pushes the returning address into the stack
and sets the new PC to be the first state of the subprogram. At the
end of a subprogram, it pops the top address out to the program
counter. These control transfer operations, push and pop, are
inserted to the caller and the callee at compile time. In this section,
implementing a subroutine as a control-subroutine is discussed in
detail. We will first describe the target architecture and then present
the synthesis flow.
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Figure 2. Target architecture: FSMD with a stack.

A. Target Architecture

If a subprogram is going to be synthesized as a control subroutine, a
process describing the behavior of a stack has to be created in
addition to the original subprograms. Figure 2 shows our target
architecture (FSMD with a stack). The stack consists of two
components, namely, stack registers and return address generator
(RTN). The stack is made of shift registers. It accepts two signals,
i.e., push and pop. On push, it pushes the content of each register
downward to the register below it and places the return address at
the topmost position. On pop, it pops the content of each register
upward to the register right above it. At the same time, the value of
the topmost register is selected as the new program counter (PC).
The return address generator is a combinational logic which takes
PC as input and produces a return address to be stored in the stack.
The size (depth) of the stack must be large enough to save the
sequence of return addresses. However, the exact requirement is in
general unknown until run-time if the program is a recursive one. In
this case, a designer has to estimate it by simulating the behavior.

To synthesize a program with control subroutines, some
tasks in a synthesis system have to be modified to adopt the new
behavioral construction. We will focus on the synthesis of non-
recursive programs in this section. The extensions of the method
will be discussed in the Section 4. Figure 3 shows the overall
algorithm. An example illustrating the synthesis flow is shown in
Figure 4. The major steps are explained in detail in the following
sections.

Synthesize a control subroutine {

. Source transformation

Il Schedule subprograms in decreasing ID order
¢ Introduce inter-routine dependencies
* Perform operation scheduling

IlI.  Scheduled code optimization

IV.  Register allocation and Binding

V.  Functional-units binding and Interconnection generation

}

Figure 3. Algorithm for synthesizing a control subroutine.



B. Source transformation

The first step of dealing with a subroutine in control subroutine
implementation is the source transformation for formal parameter
renaming and parameter passing. The task is similar to that of inline
expansion except that the subroutine body is replaced with a control
transfer operation. Every time a caller calls the subroutine, it places
the parameters on the variables and then passes the control flow to
the subroutine. When the control flow returns, it gets result from the
fixed location (variable). The codes after source transformation is
shown in Figure 4(a).

o0y A=l

o3 B:=I2;

03 Pl=A;

04 Pi=B;

o call SumO{Squares
og C:=P3;

o7 D=Csl;

og E:=A+l;

o9 Pl=D;

oy P2=E;

011 call SumOfSquarcs
o1y F=P3;

XX:=P1*P1:
P3:=XX+YY:
return

013 Ol<=F+3; o
@ ®

IF (clock’EVENT and clock = °1°)
THEN

CASE next_state 1S

WHENM(n>P1:=11;P2:=I2:E:=l1+1];
push(M1).nex1_statc:=S0;

WHEN M1=>P1:=P3+1;P2:=E;
push(M2); next_state:=S0;

WHEN M2=>01<=P3+.
next_state 1= MO;

WHEN S0=> XX:=P1*P1;
next_state := S1;

WHEN Sl=> YY:=P2*P2;
next_stalc = S2;

WHEN S2=5> P3:=XX+YY;
next_state := stack; pop:

END CASE;
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Figure 4: Example of control subroutine (a) after source transformation, (b)
the scheduling result of Sum Of Squares, (c ) dependency graph, (d)
schedule result of main program, (e) after code optimization, (f) FSMD
description, (g) variables’ lifetime table (h) data path.

C. Scheduling

The calling sequence of a program can be represented by a
dependency graph, which is a directed graph G(V,E) with V for the
set of subroutines and E for the set of directed edges. There is an
edge, e, with weight n, emits from v; to vj if v; calls v; for n times.
Then, we traverse the graph in a breadth-first order and associate
each subprogram with an identity number (ID) in the order it is
visited. The subprograms will be scheduled in decreasing ID order.
For the example, the subprogram, Sum of Squares, has ID of 2. It is
scheduled first and the result is shown in figure 4(b). We then
proceed to the main program for scheduling, whose ID is 1.

In order to obtain a more global solution, we allow an
operation to be scheduled across subroutine calls. For this purpose,
a previously scheduled subprogram is treated as a macro while

dealing with its higher level. Obviously, the macro must be
executed after its input parameter producers but before its output
consumers. Likewise, implicit dependency introduced by signals or
global variables as either’inputs to or outputs from the macro must
be kept in order. All these requirements can be achieved by
introducing data dependency edges between macro and regular
operations. In the example, an edge of weight 1 from o3 to o5
enforces 05 be executed later than operation 03 by at least 1 step.
The other dependencies, o4 < 05, 010 = 011, 09 => 0]], are
defined similarly as in Figure 4(c). Note that o5 <> o010 has a weight
of -2 which specifies a use-define dependency (a new version of P2
can not be generated until its previous version is consumed).

In the example, a distance of 0 is always specified between a
data transfer operation and its predecessors or successors because a
data transfer can be accomplished by forwarding through a direct
link in data path. Besides the data dependency, we also need to
specify control dependency. For a caller program, it needs at least 1
state before the subroutine call as the calling state and 1 state after
the call as the return state for control transfer. Also, if there are
multiple calls in a subprogram, they must be separated by 1 cycle.
The control dependency is specified by introducing dummy nodes
and dot edges as in figure 4(c).

Based on the control and data flow graph (CDFG), a list
scheduling based algorithm is performed to partition the operations
into disjoint states. Figure 4(d) shows that scheduled result of the
example. In this example, og is scheduled across the subroutine.
Also, a lot of operations are performed by chaining because their
accumulated propagation delay is within the clock cycle.

D. Scheduled code optimization

In a scheduled CDFG, if a data transfer operation and all of its
immediate successors are scheduled in a same state, then we can
replace the data transfer operation by propagating the input of the
operation to all of its successors and then removing the operation
(because it is not used thereafter). As illustrated in figure 5,
operations 02 (B:=I2) and o4 (P2:=B) in state MO are replaced with
P2:=12 with the same functionality. Similarly, the set of operations
{ o1 A:=I1, og E:=A+1, 03 P1:=A} is replaced with {E:=I1+1,
P1:=I1}. Likewise, if the only successor of an operation is a data
transfer operation and they are scheduled to a same state, they can
be merged. As an example, in state M1, 07 D:=C+1and o9 P1:=D
are first replaced with P1:=C+1. It is then merged with og C:=P3,
which results in a P1:=P3+1 in the same state. The optimized CDFG
is shown in figure 4 (e). In this example, the 11 operations in the
main program is reduced to 6 operations. This technique is very
important to a control subroutine implementation because a lot of
parameter passing operations have been introduced in the source
transformation phase. At this time, the result can be described as a
VHDL in behavioral state machine level [4] (or finite-state machine
with a data path, FSMD). Figure 4(f) shows the kernel of the FSMD
description. Notice that it contains 6 states with push and pop
signals are inserted at proper states.

0, (B:=12) P2:=12
o, (P2:=B)
MO o, A:=li
0z E:=A+1
0. P1:=A

E:=Ii+1,
P1:=I1

0, C:=P3 C:=P3
Ml o D:=C+l PleCsl — Pl:=P3+1
0g P1:=D

M2 oy (F:=P3) 7()1:=P3+3
o:\ (O1<=F+3

Figure 5. Scheduled code optimization.

E. Register Binding



In the control subroutine implementation of a subprogram, the value
of a variable defined in main program must be retained during the
period of subroutine execution. Instead of allocating dedicated
registers for each subroutine as in [7], our method tries to ‘Share
registers among all subprograms. For this purpose, a variable
lifetime table is created as shown in figure 4(g). The table is global
in the sense that it includes all the variables and spreads across all
the execution cycles. Based on the lifetime table, a storage
compatible graph is constructed, G(V,E), where V is the set of
variables, E is the set of edges. There is an edge between two
variables v; and v; if v; and vj do not overlap their lifetimes. The
register binding problem is then solved by a clique partitioning
algorithm[13]. In this example, the 9 variables and 2 constants are
partitioned into 5 cliques {E}, {Il, P1, XX, O1}, {12, P2, YY,
P33}, {c1}, {c3} and a register (or ROM) is allocated for each clique.
In comparison with [7] where 14 registers is used for the same
example, we use only 5 registers, which is a significant
improvement.

F. Functional-Unit and Interconnection Binding

The most important advantage of control subroutine implementation
is that for each operation in a subroutine, we perform functional-
unit binding just once. Recall that in an inline approach, if a
subroutine is called n times, every operation of it has to appear n
times in the main program. In the synthesis process, every instance
of an operation may be scheduled in any order for maximizing
performance, so every instance of a variable may be bound to a
different register to maximize register sharing and every instance of
an operation may be bound to a different functional unit.
Consequently, a lot of wires connecting the various registers and
functional units have to be introduced in order to execute the
instances of the operations. Therefore, the data path becomes more
complicated, and the clock cycle time becomes longer. Furthermore,
the controller can become bigger because more control signals must
be generated. Sometimes, it becomes the bottleneck of a design
because random logic is much more difficult to synthesize.

inline

&Xpansio

gperation ‘one data path éMulti le processes
duplicated : one controller  :multiple ‘each with data
) ‘controller ‘path and controller

Functional partitioning ,

: one data path
«——— Resource sharing

Figure 6. The relationships among subroutine synthesis methods.

IV. VARIATIONS OF THE CONTROL SUBROUTINE

In this section, we will present three enhancements of the control
subroutine approach. In Section 4.1, the synthesis of a recursive
program is discussed. Section 4.2 presents a behavioral partitioning
methodology which divides the controller into several
communicating state machines. In Section 4.3, the methodology of
mixing the execution of subprograms is studied. These features
either increase the range of applications or improve the quality of a
design. We also relate the proposed methods with well known
approaches. The result of these methods vary from a signal data
path and controller (inline) to multiple processes each \-ith data path

and controller (module/macro) as illustrated in figure 6.
A. Recursive Programs

Control subroutine is the only method that can handle recursive call.
If the program is a recursive one, then we have to stack the
instances of each variable in addition to the states of the controller.
There are two kinds of recursion: direct or indirect. A direct
recursion has a loop of length 1 in the call sequence graph. An
indirect one consists of cycles longer than 1. Figure 7 gives an
example of a direct recursive program described in behavioral
(figure 7(a)). The example computes the factorial of a given input L.
It is translated to a FSMD in figure 7(b). Figure 7(c) shows the
architecture design that we proposed. In this example, variable I is
live across the state boundary of the recursive call (S1). Therefore, a
stack, instead of a register, is allocated to save its previous versions.
An instance of the variable is pushed into the stack when control
flow of the program reaches the loop at the end of S1. In general, if
the program contains a cycle of length L and the iterations of the
cycle is /, then the"depth of each data stack is I and the depth of
program stack is L*/. A designer should try to describe a design
with a non-recursive one to reduce the hardware cost. For example,
the same function can be described as a for-loop as illustrated in
Figure 7(d).

Factorial(l) case next_state is
{if I=1 return (1) when SO => if (I=1) {
else return(I*factorial(l-1)) next_state := stack_PC;
pop_PC; pop_I;
(a) else next_state:=S1;

when S1=> push_PC(S2),push_;
I=I-1,next_state :=S0

fi=1; when S2=> f:=f*];
for (p=1to 1, -p) next_state:=stack_PC;
f=fp; pop_PC; pop_l;
end case;
@ ®

Stack_PC ALU

©)
Figure 7. Compute factorial, (a) a recursive description, (b) FSMD
description with push and pop inserted, (c ) the architecture, (d) a non-
recursive description.

B. Behavioral Partitioning of the Controller

Given a scheduled CDFG as in figure 4.(e), the realization of the
controller has two scenarios. The first leaves the flexibility to a
logic synthesizer and will produce a mixed controller; while the
others force them to be disjointed. In this subsection, the control of
each subroutine is synthesized individually as a FSM that has a state
register, next-state logic and output-logic of its own (figure 8(a) and
8(b)). A special hardware, named arbitrator, is used to control over
the execution of all FSMs and is used to select appropriate control
signals for the data path. The arbitrator supervises the execution of
FSMs by controlling their clock inputs. The privilege is granted
clockwise. At any cycle, only one state machine gets clock pulse. It
then proceeds to the next state and has the right of control over the
data path. Figure 8 (c ) shows a snapshot of the given example. At
the initial state (cycle 0), both the main and the subroutine are in
their last states (M2 and S2). When a program is just started, the
arbitrator (GR) is set to M which grants the main program starting
execution in the first cycle. By the end of the first cycle, the man
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sets the GR as S. In the next cycle, the subroutine awakes up, it
proceeds to SO and continues in the success cycles. By the end of
cycle 4, it sets GR as M which resumes the main. At the next cycle,
the subprogram halts at-S2 while the main program proceeds to M1.

The synthesis flow of the method is identical to that of control
subroutine. The data path will be the same. However, a controller
consists of smaller ones has a lot of advantages. First of all, each
FSM takes a smaller state inputs and takes only related inputs from
data path or outside word. All the signals that do not appear in this
subprogram is treated as don’t cares. This would greatly reduce the
complexity of each state machine. Second, since the delay time of
the controller is the maximum of each FSM, it has a much smaller
propagation delay as compare to the global FSM approach. This
would become more significant for a control dominated circuits.
Finally, the method actually implements a low power controller
because there is no circuit switching for those unauthorized FSM,
and hence consumes no dynamic power dissipation. The above facts
also encourage of dividing a large program into smaller pieces, each
forms a subprogram. This is similar to the idea of ex-line in [14].

Sum of Sq
PS | NS |NB| PS | NS
MOM1] S |SO]SI
M1 |[M2| S |S1]S2
M2 |MO|{ M | S2] S0
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Figure 8. Behavioral partitioning of the controller, (a) arbitrator and state
machines, (b) state table for main and Sum of squares, (c ) snapshot of
execution. GR: status of the arbitrator, PS: present state, NS: next state, NB:
next block.

Another close related approach is the communicating
processes for variable-delay subroutine in which a dedicated
hardware is allocated for each procedure. The proposed method
differs from the other in the following ways, (1) a single data path is
shared among all subroutines (reduce area), (2) being embedded
onto a same data path, parameters can be passing directly through
forwarding, while they have to be transmitted explicitly between
processes (reduce state overhead), (3) control transfer is completed
by a centralized arbitrator instead of by processes handshaking
(more efficient). Nevertheless, if a process performs a fixed delay
behavioral, the drawbacks raised in (2) and (3) can be eliminated.

C. Mixing the operations of subprograms

If any operation has been scheduled concurrently with the macro
during the scheduling of 2 CDFG, the FSMD of a previously
scheduled subroutine should be modified to include these new
operations. As an example, figure 9 (b) shows the FSMD of the
scheduled CDFG in figure 9(a) where og and 032 have been merged
to S2 with a case construction. Now, the FSMD will have to look at
the stack to decide which conditional operations should be executed.
The presence of conditional execution operations doesn’t increase
the complexity of data path. However, the control becomes more
complicated because it has to take both state-register and stack as
inputs. To achieve the best performance while keeping a low

overhead, a post-optimization algorithm is used to reduce the
number of operations scheduled concurrently with the subroutine

body.

Given the result in figure 9(a), we may interpret it in another
way as shown in figure 9(c) where the scheduled CDFG is kept
flatten instead of merged into a control-subroutine. A flatten result
has many advantages: (1) we do not have to execute the operations
by conditions, (2) the control transfer states can be omitted, (3) the
resulting data path could stay as simple as that of control-subroutine
since we could bind every instances of an operations to the same
resource. In comparison, a control-subroutine takes less states, but
its circuit is more complicated in each state; on the other hand, the
flatten one takes more states but is simpler in each state. The merits
of each other won’t be clear until gate level design is completed.
This method is similar to the concept of behavioral template in [10].

IF (ckwk EVENT and clock = *17)
THEN

IF {cdock’EVENT and ckck=*1")
THEN
CASE next_ste IS CASE nexi_staie [S
WHENMU> PL=ll P2=l2E=ll+l;  WHENMO=>
push; nexd,_stac:=S(x PL=I1P2:=12E:=l1+
WHEN Ml P):=C+1:P2:=E: I
prssh; nexs_sanc:=S0; nex_state: =80,
WHEN M2=>O01<=F+3 WHEN S00=> XX:aP1*P1;
next_siake = MO, next_state = SOI;
WHEN S(=> XX:=P1*Pl; WHEN S01=> YY:=P2°P2;
next_siale = S1; next_stose = SO
WHEN Sla> YY:=P2*P2; WHEN S(2=> P3:=XX+YY; C:=P3;
next_sac:=M1;
WHEN Mi=> Pl:=Ce 1;P2:=E:
next_stae=S10;
WHEN S10=> XX:2P1*P);
nex_staie = S11;
‘WHEN Sli=> YY:=P2*P2;
nox_state = S12
WHEN S12=> P3:2XX+YY, F:=P3;
next_staic=M1;
WHEN M2=>Ol<=F+3
next_stale e MO,
END CASE;
(@ ®) ©

Figure 9. Mixing the operations of subprograms, (a) a scheduled CDFG, (b)
the FSMD description, (c ) an alternative design description.

D. Overall strategy of the control subroutine approach

To adapt the various generations presented above, the scheduling
phase of a control-subroutine approach described in figure 3 is
modified. As shown in figure 10, we start with a scheduling that
takes data dependency only. If the result can not be realized as a
control-subroutine, a flatten code is reported as one of the optimal
solution (F1). Then, the control dependency is included and mixed
operations are minimized (C1). Finally, we restrict any operation to
be scheduled with the subroutine, which produces a pure control-
subroutine (C2).

Schedule the subroutine with data dependency only
'if (control transfer states do not exist)
{report Flatten-code F1;
reschedule the subroutine with control dependency
included; }
reduce mixed operations;
report Control-subroutine C1;
if (any regular operation mixed with subroutine)
{ re-schedule with no mixed operation allowed;
report pure Control-subroutine C2;}

Data path generation and controller synthesis (F1,C1,C2).

Figure 10. The overall strategy of the control subroutine approach.

The strategy above will produce at most three solutions,
namely, (1) flatten schedule, (2) control-subroutine with mixed
operations, and (3) control-subroutine without mixed operations, for



further synthesis. Obviously, as more constraints are enforced on a
schedule, it will costs more states, but its control circuit could be
simpler. Thus, each of them is treated as a local optimal solution.
The behavioral partitioning technique in Section 4.2 can apply to
cases (2) and (3) for controller optimization.

V. EXPERIMENTS

The proposed methods are integrated into a behavioral synthesis
system called MEBS [12]. The MEBS contains a serial of synthesis
tools. As design enters at the algorithmic level, the scheduling tools
will convert it into behavioral state machine level, then the
allocation tools convert it into register transfer level, and finally the
logic synthesis tools convert it into a gate level design. We use
MEBS directive to specify the implementation method. For the
inline expansion and process module approach, a source to source

transformation converts the program into processes at the same level.

The control-subroutine approach is realized according to the
algorithm in figure 10 and figure 3. Two examples are chosen for
demonstrating the performance of each method.

A. Result on the illustrating example

TABLES 1 RESULT ON SUM OF SQUARES

+ | *| statesin |execution| Reg | links
L= (nla;n.sub) cycles

IFixed-delay module[2 ] 1 (7.2) 7 7 -
Inline expansion |11 7 7 6 -

Control subroutine | 1 L5,3) 11 9 | -
[Fixed-delay module] 2 (8.3) 8 @07
Inline expansion | 1 7 7 5 14
Flatten 111 7 7 5 14
Control-subroutine | 1] 1 (3.3) 9 5 15

This example is proposed in [7] and is used as an illustrating
example in this paper. In each experiment, a minimum resource is
allocated. The table is consisted of 2 parts. The first part shows the
results of [7], while the second part shows our results. Some
observations are explained below.

1. In each methodology, our implementation achieves better
result than [7] except the case using fixed-delay module, this
is due to they use a module of delay 2, while we use a slower
(but cheaper) module of delay 3.

2.  According to figure 10, our method produces 2 optimal
solutions, the flatten one takes 7 cycles, while the control-
subroutine one takes 9 cycles. Further synthesis shows that the
result of the flatten approach achieves better design with little
control overhead (7 states v.s. 6 states).

B. Results on the modified example

6] R. Campos

XX:=X*X;

XX:=XX+1;

Y:=Y+1;

YY:=Y*Y;

Z:=XX+YY;

Fig. 11. The modified subroutine.

In this example, the subroutine, Sum Of Squares, is replaced with a
more rich one (figure 11). Table 2 summarizes the results. Again,
our method produces 2 optimal results, flatten schedule and pure
control-subroutine. Although they take the same cycles (9) to
perform, the control-subroutine needs only 6 states in the controller.
The difference will increase as the number of subroutine calls
increases.

TABLES 2 RESULT ON MODIFIED EXAMPLE.

+ | * | statesin |executio | Reg [ links
(main,sub n
cvcles ]
Fixed-delay module| 2 (9,3) 9 (4,2){(10,7)
Inline expansion | 1 9 9 5 16
Flatten 1 9 9 5 15
Control-subroutine { 1 | 1 (3,.3) 9 5 15

The above examples show that inline (flatten) based
approach is good for a small case, while the control-subroutine
approach is able to control the complexity of data path and control
path with acceptable overhead (less than 2 cycles). Synthesis using
fixed-delay module always produce a design with more objects
(functional units, registers, and links); however, it may have the
advantage of locality.

V1. CONCLUSION

In this paper, the control-subroutine implementation of a
subprogram as well as its variation are extensively studied. A lot of
optimization possibility is explored during the process. Our study
shows that choosing a procedure implementation style has
significant impact on design quality. Unfortunately, there is no
simple way to decide which approach will produce a better design.
Therefore, we proposed a methodology which produces several
solutions to be evaluated by a low level synthesis tool. And finally a
best result is selected for implementation. Being able to support
various implementation styles, integrate methodologies, and easily
link to a lower level design tools, the proposed methodology is
flexible enough to adapt various applications.
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