
DP Gen: A Datapath Generator for Multiple-FPGA Applicationsy

Wen-Jong Fang1, Allen C.-H. Wu1, Ti-Yen Yen2, and Tsair-Chin Lin2

1Department of Computer Science, Tsing Hua University

Hsinchu, Taiwan, 300, Republic of China

2Quickturn Design Systems, Inc., 440 Clyde Avenue,

Mountain View, California, 94043, U.S.A

Abstract

This paper presents a datapath generator for
multiple-FPGA applications. This datapath generator
is able to generate complex datapath designs described
in HDLs. Our datapath generator uses a novel syn-
thesis and partitioning approach which bridges the gap
between RTL/logic synthesis and physical partitioning
to fully exploit design structural hierarchy for multiple-
FPGA implementations. Experiments on a number
of benchmarking circuits and industry designs demon-
strate that the generator can e�ectively and e�ciently
produce high-density multiple-FPGA datapaths.

1 Introduction
Because of their low manufacturing time and cost,

Field Programmable Gate Arrays (FPGAs) have be-
come the most popular Application-Speci�c Integrat-
ed Circuit (ASIC) for fast system prototyping. In ad-
dition, the development of recon�gurable hardwares
by integrating FPGAs and Field Programmable In-
terconnect Chips (FPICs) has become the new trend
in fast-prototyping and computation-intensive appli-
cations [1, 2, 3, 4, 5].

Most of computation-intensive applications contain
a variety of data-processing elements that can be cast
as datapaths. Since many datapaths are too large to
�t into a single FPGA chip, multiple FPGA chips are
required to implement such datapath designs. In gen-
eral, the commonly used design ow to map datapath-
s onto a multiple-FPGA implementation consists of
three phases. In the �rst phase, a synthesizer is used
to transform the HDL description of a datapath into
an RTL design. In the second phase, the RTL design is
converting into a attened CLB netlist by performing
a series of logic optimization and technology mapping
procedures. In the �nal phase, a partitioner is used to
partition the CLB netlist into FPGA chips.

One of the crucial tasks for multiple-FPGA imple-
mentations is to partition a design onto a set of F-
PGAs. The problem of FPGA-based partitioning is

ySupported by the National Science Council of R.O.C. under

contracts No. NSC-85-2215-E-007-011 and NSC 86-2221-E-007-

047

quite di�erent from the classical ASIC partitioning
problem. FPGA chips have �xed and limited amounts
of logic units (CLBs) and I/O pins. Typically, map-
ping a design onto a set of FPGA chips is predomi-
nately constrainted by I/O-pin limitations. This often
results in FPGA partitions with very low logic utiliza-
tions. In the past several years, many partitioning
approaches and algorithms [6, 7, 8, 9, 10, 11, 12] have
been proposed to solve the multiple FPGA partition-
ing problem. However, all of the above approaches
perform partitioning on attened circuit-level netlists,
which do not take into account design-hierarchy infor-
mation. In a recent study [13], Schmit et al. experi-
mented multiple FPGA partitioning at behavioral and
structural levels. They have two interesting observa-
tions. Firstly, the best behavioral partitions do not
always correspond to the best structural partitions.
Secondly, during structural partitioning, the IO limi-
tation can be reduced if the partitioner is capable of
decomposing and placing portions of structural com-
ponents such as multiplexors and controllers into dif-
ferent FPGA partitions. In addition, Isshiki and Dai
[14] proposed a high-level bit-serial datapath synthesis
method for multi-FPGA systems. This method aim-
s to design datapaths using bit-serial circuits so that
the partition quality is no longer dominated by the IO
resource of the FPGA.

In this paper, we present a datapath generator for
multiple-FPGA applications. This datapath genera-
tor is able to generate complex datapath designs de-
scribed in HDLs. Moreover, the datapath genera-
tor uses a new synthesis and partitioning approach
which bridges the gap between RTL/logic synthesis
and physical partitioning by �nely tuning logic im-
plementations suited for multiple-FPGA implementa-
tions. Experiments on a set of benchmarking circuits
and industry designs are reported. The results demon-
strate that the generator can e�ectively and e�ciently
produce multiple-FPGA datapaths with high logic u-
tilization.

The rest of paper is organized as follows. Section 2
gives an overview of the datapath generator. Section
3 presents the datapath generation method. In Sec-
tion 4, we present the experimental results. Finally,
Section 5 provides concluding remarks.

ASP-DAC ’97
0-89791-851-7/$5.00 1997 IEEE

 Logic
 synthesizer

Synthesis
 (EmSyn)

Partitioning
 (EmPar)

HDL descriptions

HDL CLB-level
 descriptionsXNF files

Component
 library

DP_Gen
 Compilation
(V_Compiler)

 Function
generator

Figure 1: The system block diagram.

2 Overview

Figure 1 depicts the system block diagram of the
datapath generator DP Gen which consists of three
major components: a Verilog compiler (V Compiler),
an RTL synthesizer (EmSyn), and a partitioner
(EmPar). EmSyn interfaces to a set of logic min-
imization/technology mapping procedures, a compo-
nent library, and a function generator. The input to
the generator is a Verilog description of the design.
V Compiler performs HDL compilation and convert-
s the Verilog design description into an intermediate
design format. EmSyn �rst performs RTL synthesis
to generate a structural design. Then, EmSyn in-
vokes logic minimization and technology mapping pro-
cedures to convert the structural design into a CLB-
based design. The component library provides the
synthesizer with a set of generic RTL components,
such as adders and subtractors, to support the RTL
synthesis. In addition, the function generator can dy-
namically generate a set of bit-level logic sub-functions
for bit-sliced components. If the generated datapath
can not �t into a single FPGA chip, then a partitioner
EmPar is used to decompose it into multiple-FPGA
chips. Finally, the module generator outputs both an
XNF and Verilog description of the datapath.

3 Datapath generation

The datapath generation consists of two phases: (1)
datapath synthesis and (2) datapath partitioning. In
the following sections, we �rst describe the datapath
synthesis method. Then, we present the datapath par-
titioning approach.

module MUX2(o,i1,i2,sel);
parameter BIT_WIDTH=4;
 output [1:BIT_WIDTH] o;
 input [1:BIT_WIDTH] i1,i2;
 input sel;

 reg [1:BIT_WIDTH] o;

 always
 case(sel)
 1’b0: o = i1;
 1’b1: o = i2;
 endcase
endmodule

module MUX2(o,i1,i2,sel);
parameter BIT_WIDTH=4;
 output [1:BIT_WIDTH] o;
 input [1:BIT_WIDTH] i1,i2;
 input sel;

 assign o[1] = ((sel & i1[1]) | (~sel & i2[1]));
 assign o[2] = ((sel & i1[2]) | (~sel & i2[2]));
 assign o[3] = ((sel & i1[3]) | (~sel & i2[3]));
 assign o[4] = ((sel & i1[4]) | (~sel & i2[4]));
endmodule

(a) (b)

Figure 2: The Verilog descriptions of a 4-bit 2-to-1 mul-
tiplexer: (a) behavioral-level, (b) logic-level.

3.1 Datapath synthesis
The datapath synthesis consists of three steps: (1)

HDL compilation, (2) RTL synthesis, and (3) log-
ic synthesis. The Verilog compiler V Compiler �rst
transforms a Verilog RTL description of the design
into an intermediate design format. The RTL de-
sign can be described at behavioral or logic lev-
el. For example, Figures 2(a) and (b) show the
behavioral-level and logic-level descriptions of a 4-
bit 2-to-1 multiplexer. For an RTL behavioral de-
scription, the synthesizer will perform unit selection
and unit/storage/interconnect binding, and output a
structural design. The structural design consists of
a set of interconnected regularly-structured functional
units represented by a hierarchical function-tree in the
Berkeley Logic Interchange Format (BLIF) and EQN
(Boolean equation) format. For a logic-level descrip-
tion, the synthesizer will directly convert the design
into a function-tree in BLIF and EQN formats. Dur-
ing logic synthesis, the synthesizer EmSyn invokes the
logic minimizer and technology mapper [15] to gener-
ate CLB-based netlists of datapaths.

3.2 Datapath partitioning
When a datapath is too big to �t into a single chip,

then it needs to be partitioned into multiple chips.
One way is to apply an existing traditional circuit-
level partitioning algorithm such as the RFM [16] to
decompose a large CLB netlist into a set of subnetlists.
However, in certain common cases, the RFM method
produces partitions with high I/O-pin utilization but
low logic utilization. When datapaths contain a set
of multi-bit datapath components, the I/O limitation
of the chip becomes the bottleneck and a high logic-
utilization partition can not be achieved using the tra-
ditional circuit-level partitioning method.

In our datapath partitioning, we use a new RTL
partitioning method [17] to improve the I/O-pin and
logic utilizations of FPGAs. The main objective of the
RTL partitioning method is to fully exploit the design
structural hierarchy and to allow decomposing por-
tions of the data-processing components into di�erent
FPGA partitions. The RTL partitioning method con-
sists of two phases: (1) function-tree construction and

(a)

Mux1[0:7]

Adder[0:7]

I1 I2 I3 I4 I5

O1

c1
c2

c3

Mux2[0:5]

I6

c4

(b)

DP
(Mux1[0])f

(Mux1[7])f

(Adder[0])f

(Adder[7])f

DP[0]

DP[7]

(Mux2[0])f

(c)

Mux1

Mux2

Adder

[0] [7]
c1
c2

c3

c4

DP

Bit1 8

A

B
D

P
[1

]

f1

f2

f3

f1
f2

f3

Control
 lines

m2

I/Os I/Os

Bit 1 n n+1

Con

m1

m3

B
it-

sl
ic

e(
r

C
LB

s)

B
it-

sl
ic

e(
r

C
LB

s)

(d)

[5]

[5]

[5]

Figure 3: Functional structuring and partitioning: (a) an
RT example, (b) the topological oorplan of the datapath,
(c) the function-tree, (d) functional partitioning.

(2) functional partitioning.

3.2.1 Function-tree construction

Function-tree construction consists of three steps: (1)
function decomposition, (2) function restructuring,
and (3) CLB and IO-pin estimations.

In the �rst step, the generator invokes the
function generator to decompose the functionalities
of the RT components into a set of sub-functions. The
logic function of a datapath component is decomposed
into a set of bit-level sub-functions. Each sub-function
represents one-bit of the component. A hierarchical
function-tree is constructed by decomposing the func-
tionality of the design in a top-down fashion.

In the second step, a hierarchical function-tree is
reconstructed into a bit-level function-tree by per-
forming bit-alignment and topological placement of
the datapath components. A datapath may con-
tain components with varying bit widths. For such
an irregularly-shaped datapath, the components are
aligned according to their connectivities. For exam-
ple, in Figure 3(a), the datapath contains an 8-bit
adder, an 8-bit multiplexer Mux1, and a 6-bit mul-
tiplexer Mux2, in which Mux2 is connected to the
least-signi�cant 6-bit of the Adder. The topological
oorplan of the datapath is shown in Figure 3(b). Ac-
cording to the topological oorplan of the datapath,
the �rst bit of the datapath contains three one-bit log-
ic functions of Adder[0], Mux1[0], and Mux2[0], as
shown in Figure 3(c). On the other hand, the eighth
bit of the datapath contains only two one-bit logic
functions of Adder[7] and Mux1[7].

In the third step, we compute the required CLBs
and I/O pins for each node of the function-tree. To
obtain such information, we �rst perform FPGA syn-
thesis to generate CLB netlists for the leaf nodes of
the function-tree. For example, for the leaf-node of
f(Mux1[0]) in Figure 3(c), we can obtain its CLB
netlist by invoking the logic minimizer and technol-
ogy mapper [15] with logic function of f(Mux1[0]).
After generating the CLB netlists for all the leaf n-
odes, we can generate the CLB netlists for interme-
diate nodes of the function-tree by applying the col-
lapsing technique described in [15]. Consequently, the
required CLBs and I/O pins of nodes in the function-
tree can be determined. Furthermore, the number of
interconnections between two nodes can be computed
by matching the I/O pins of these two nodes. If the
design can be �t into a single FPGA chip; that is, the
number of CLBs and IO pins of the Root node satis�es
the CLB and IO-pin constraints of the chip, then the
datapath generation terminates. Otherwise, a func-
tional partitioning procedure will be invoked which
will be discussed in the following section.

Let G be an RTL netlist. DP denote the datapath
component set. f(DP) denote the logic-function sets
of the datapath components. In addition, CLB and
IOP represent the CLB and IO-pin constraints of the
FPGA chip. The pseudo code of the function-tree-
construction procedure is listed as follows.

ALG: Function Tree Construction(G;DP)f
f(DP) = Function Generation(DP);
Bit Alignment(G;DP);
T = Bit Level Function Tree(f(DP));
CLB IO Estimation(T);
if (Clb(Root(T)) � CLB
and IO(Root(T)) � IOP) then
Datapath = Netlist(Root(T));

else

Functional Partitioning(T);
g

Procedure Function Generation generates bit-
level logic functions for datapaths. Procedure
Bit Alignment performs bit-alignment of the datap-
ath components. Procedure Bit Level Function Tree
builds up the function-tree according to the bit-
alignment of the datapath components. Procedure
CLB IO Estimation invokes logic minimization and
technology mapping algorithms to convert the logic
functions into CLB-based designs. If the design can be
�t into a single chip, then the CLB netlist at the root of
the function-tree is assigned to a chip Datapath. Oth-
erwise, the Functional Partitioning procedure will
be invoked to decompose the design into multiple chip-
s, which will be discussed in the next section.

Complexity analysis: Let BW be the average bit
widths of all of the components in DP , n the number
of nodes in the netlist, m the number of edges in the
netlist. The Function Generation, Bit Alignment, and
Bit Level Function Tree procedures take O(BW � n),
O(m + n), and O(BW � n) time, respectively. The
CLB IO Estimation procedure performs logic mini-
mization and technology mapping for each node in the

function-tree. The computational complexity of this
procedure is dependent upon the logic minimization
and technology mapping algorithms used.

3.2.2 Functional partitioning

During functional partitioning, we use a bit-slice of
the datapath as the basic unit and pack the bit slices
into FPGAs from the least signi�cant bit (LSB) to the
most signi�cant bit (MSB) in sequential order. The
objective is to maximize the CLB-utilization of the
FPGA chips subject to satisfying the CLB-capacity
and I/O pin constraints of the chips.

Considering one bit-slice in Figure 3(d), it contains
r CLBs, m1 I/O pins, and m2 control pins. Hence, by
assigning one bit-slice into an FPGA, it uses m1+m2

I/O pins. By packing n bit slices into one FPGA, it
will use up to r�n CLBs and (n�m1)+m2 I/O pins,
as shown in Figure 3(d). Assume that we can not
pack the n + 1 bit-slice further because of the CLB-
resource constraint. However, we may be able to pack
a portion of one bit-slice into the FPGA to improve
the CLB utilization. For instance, in Figure 3(d), the
�nal partition consists of n bit slices with a portion of
the n + 1 bit-slice.

The function partitioning procedure consists of two
steps: (1) initial bit-slice packing and (2) bit-level cell
packing. In the �rst step, we determine the maximum
number of bit slices which can �t into one FPGA. We
use the bin-packing algorithm to cluster bit slices into
FPGAs one at a time under the given CLB-capacity
and I/O-pin constraints. After the initial packing, the
number of unused CLBs and I/O pins of the FPGA is
then computed.

In the second step, a bit-level cell packing procedure
is used to improve the CLB utilization of the FPGA
chip. Let CLB and PIN be the unused CLBs and I/O
pins. The bit-level cell packing problem is to partition
the logic functions of one bit-slice into two subsets
such that the CLB-capacity of one subset is maximized
subject to satisfying the CLB and PIN constraints,
as shown in Figure 3(d). We �rst use the bin-packing
algorithm to pack logic functions of one bit-slice into
clusters and then perform iterative improvement using
a pairwise exchange procedure. The logic functions
are packed one at a time based on a priority function.

Let C denote a set of chip used. f(BS) and f(BT)
represent a set of logic functions of bit slices and por-
tions of one bit-slice, respectively. Tbit = fV;Eg de-
notes a sub-tree represented the logic functions of one
bit-slice, where V is a set of vertices representing bit-
sliced logic functions, V = fvi j i = 1::ng, and E is
a set of edges representing the connections between
logic functions, E = feij j vi; vj 2 V g. V1 and V2
represent two subsets of vertices. Clb(vi) denotes the
number of CLBs in vi and w(eij) denotes the number
of connections between vi and vj . connk(vi) denotes
the number of connections between vi and the ver-
tices in subset Vk. c(vi) denotes the interconnect cost
of vi. The pseudo code of the functional partitioning
algorithm is listed as follows:

ALG: Function Partitioning(T;C)f
C = �; i = 1;
while (T 6= �)f
ff(BS); CLB;PINg = Bit Slice Packing(T);
f(BT) = Cell Packing(Tbit; CLB;PIN);
ci f(BS) [f(BT);
T = T - (f(BS) [f(BT));
C = C [ci; i++;

g
g

PROC: Cell Packing(T;CLB;PIN)f
V1 = �; V2 = V ;
Priority Function(V1,V2);
vi = Best F it(V2,CLB,PIN);
while (vi 6= �)f

V1 = V1 [vi;
V2 = V2 - vi;
CLB = CLB - Clb(vi);
Priority Function(V1,V2);
vi = Best F it(V2,CLB,PIN);

g
Pairwise Exchange(V1; V2);
Return(V1);

g

PROC: Priority Function(V1,V2)f
for (all vi2V2)f

V2 = V2 - fvig;
conn1(vi) =

P
w(eij), for all vj 2 V1;

conn2(vi) =
P
w(eij), for all vj 2 V2;

c(vi) = conn2(vi) - conn1(vi);
V2 = V2 + fvig;

g
/*Normalize the interconnect cost*/
minc = minimum c(vi)(V2);
c0(vi) = c(vi) - minc + 1;
sc(vi) = Clb(vi) � c0(vi), for all vi 2 V2;

g

Procedure Bit Slice Packing determines the max-
imum number of bit slices which can �t into one chip
and returns the number of unused CLBS (CLB) and
IO-pins (PIN) of the chip. Procedure Cell Packing
returns the portions of one bit-slice which can be
packed into the chip. Procedure Priority Function
scores each cell (sc(vi)) based on the ratio of its CLB-
capacity (Clb(vi)) and the interconnect cost (c(vi)).
c(vi) indicates the interconnect gain by moving vi from
subsets V2 to V1. When c(vi) is a negative value, it
means that the cut-lines between V1 and V2 are re-
duced by c(vi) by moving vi from subset V2 to V1.
Normalization is done such that all interconnect cost-
s have positive values. When a cell vi has a large
sc(vi) value means that more CLBs can be packed
into FPGAs with consuming less I/O pins. Proce-
dure Best F it �rst sorts the cells in V2 in descending
order according their sc(vi) scores. Then, the proce-
dure searches the �rst cell vi such that (Clb(vi) �
CLB) and (Interconnect Cost(V1 [vi; V 2 � vi) �
PIN). If such a cell is found then return the cel-
l. Otherwise, it returns an empty set �. Finally,
the algorithm performs a pairwise exchange procedure

(Pairwise Exchange(V1; V2)) to iteratively improve
the CLB utilization under the I/O pin constraint.

The Functional Partitioning algorithm runs re-
cursively to partition the datapath components (start-
ing from the LSB slice) into FPGAs one chip at a time.
The procedure terminates when all the components
are assigned into FPGA chips.

Time Complexity. Procedure Bit Slice Packing
takes O(1) time. Let n be the number of logic
functions of one bit-slice and m the average num-
ber of connections associated with each cell. Proce-
dures Priority Function and Best F it take O(m �
n) and O(nlogn) time, respectively. Hence, the
Functional Partitioning algorithm takes O(n�((m�
n) + (nlogn))) time.

4 Experiments
We have implemented the datapath generator in

the C programming language. Presently, the genera-
tor is embedded in an interactive multiple-FPGA syn-
thesis and partitioning system (ISyn) which consists
of approximately 150,000 lines of C code and runs on
SUN and HP workstations.

We have tested our generator on two benchmarking
circuits and two industry designs, as shown in Table
1. The �rst benchmark is an ALU from the Mano
book [18]. The second one is the �fth-order elliptic
�lter which is extensively used in high-level synthesis.
The bit-width of the two benchmarks is 32. Industry
I and II are two industry designs, a datapath and
a oating-point multiplier. We have targeted to two
di�erent technologies: the Xilinx 3000 series and the
Xilinx 4000 series chips. Table 1 depicts the charac-
teristics of the benchmarks, in which #IOs, #CLBs,
#Eq:Gates, #Pins, and #Nets represent the num-
ber of IOs, CLBs, equivalent gate counts, pins, and
nets of the designs.

We have compared the partitioning results pro-
duced by our approach and a traditional approach.
In the traditional approach, we �rst used ISyn to
generate a attened CLB netlist. Then we applied
the RFM algorithm to partition the attened netlist
into multiple-FPGA chips. Table 2 shows the com-
parative results in which Chips, IO U , and CLB U
represent the number of partitions, the average I/O
utilization, and the average CLB utilization, respec-
tively. We have targeted to four di�erent chips: (1)
XC3090 with 144 IO pins and 320 CLBs, (2) XC3042
with 96 IO pins and 144 CLBs, (3) XC4010 with 160
IO pins and 400 CLBs, and (4) XC4005 with 112 IO
pins and 196 CLBs. The results show that our ap-
proach produced partitions with lower IO-utilization
(in average 69%) and higher CLB-utilization (in aver-
age 86%) compared to that produced by the RFM al-
gorithm (in average 92% IO-utilization and 56% CLB-
utilization). Only 3 out of 16 partitions (Multiplier,
IndustryI, and IndustryII targeted to XC3090 chip-
s, and IndustryII targeted to XC3042 chips), the
RFM algorithm achieved the same CLB utilization-
s as that produced by our approach. Nevertheless,
they consumed in average 15% more IO pins. This
demonstrates that I/O limits are the bottleneck for
CLB usage enhancement when the RFM algorithm

was performed on attened circuits. On the other
hand, the CLB and I/O-pin utilizations are signi�-
cantly improved when the functional structuring and
partitioning approach was performed on hierarchical
circuits.

Because each FPGA chip has only limited rout-
ing resources, a high CLB-utilization partition (e.g.,
�90%) may result in an unroutable design. We have
tested the routability of partitions on some high CLB-
utilization designs. For example, we used Xilinx PPR
to perform place-and-route tasks on the elliptic �l-
ter design which has 96%, 88%, 99%, and 96% CLB-
utilizations for XC4010, XC4005, XC3090, and X-
C3042 chips, respectively. The results show that both
partitions targeted to XC4010 and XC4005 chips were
routable even under the high CLB-utilization condi-
tion. On the other hand, both partitions targeted to
XC3090 and XC3042 were unroutable. This indicates
that the routing capability of a chip is dependent on
the chip architecture.

5 Conclusions
In this paper, we have presented a datapath gen-

erator for multiple-FPGA implementations from RT
netlists. We have tested our generator on a number of
benchmarks and industry designs. Experimental re-
sults have demonstrated that our datapath generator
is able to produce high-density multiple-FPGA data-
paths.

Our generator is most applicable to low-speed ap-
plications, such as hardware emulation, due to its fo-
cus on the e�ciency of CLB and IO-pin utilizations.
Further study of timing issues would be bene�cial for
high-speed applications. We have also shown that the
routing capability of chips depends on the chip archi-
tecture. In order to achieve viable partitioning solu-
tions, further study is needed of the practicality of
considering routability issues during the partitioning
process.

Acknowledgment

The authors would like to thank Quickturn Design
System Inc. and Dr. K. C. Chu for their support.

References
[1] M. Butts, J. Batcheller, and J. Varghese, \An E�-
cient Logic Emulation System," Proceedings of IC-
CD92, pp. 138-141, 1992.

[2] C. E. Cox and W. E. Blanz, \GANGLION- A Fast
Field-Programmable Gate Array Implementation of
a Connectionist Classi�er," IEEE Journal on Solid-
State Circuits, vol. 27, pp. 288-299, March 1992.

[3] P. K. Chan, M. Schlag, and M. Martin, \BORG:A
Recon�gurable Prototyping Board Using Field-
Programmable Gate Arrays," in Proceedings of 1st
International ACM/SIGDA Workshop on Field-
Programmable Gate Arrays, pp. 47-51, 1992.

[4] S. Walters, \Computer-Aided Prototyping for
ASIC-Based Systems," IEEE Design and Test of
Computers, pp. 4-10, June 1991.

Table 1: Characteristics of the benchmarking circuits.

Circuits #IOs #CLBs(A/B) #Eq. Gates #Pins(A/B) #Nets(A/B)
Mano-ALU 47 849/694 5325 5321/6982 1275/1519

Elliptical Filter 117 2223/1549 13587 12857/14582 2739/3179
Industry I 46 1134/861 7151 6635/7826 1378/1798
Industry II 109 1752/1150 11050 9839/11590 1953/2370

A: XC3000, B: XC4000.

Table 2: Comparisons between our approach and RFM.

Circuits Types Ours RFM
Chips IO U CLB U Chips IO U CLB U

Mano-ALU XC3090 3 .45 .88 7 .93 .38
Elliptic Filter XC3090 7 .57 .99 13 .91 .53
Industry I XC3090 4 .62 .89 4 .83 .89
Industry II XC3090 7 .70 .78 7 .82 .78
Mano-ALU XC3042 6 .63 .98 13 .92 .47
Elliptic Filter XC3042 16 .72 .96 26 .91 .59
Industry I XC3042 8 .85 .98 10 .85 .79
Industry II XC3042 15 .81 .81 15 .92 .81
Mano-ALU XC4010 2 .58 .87 3 .93 .58
Elliptic Filter XC4010 4 .63 .96 12 .95 .32
Industry I XC4010 3 .63 .72 4 .93 .54
Industry II XC4010 5 .88 .58 8 .96 .36
Mano-ALU XC4005 4 .60 .88 5 .92 .71
Elliptic Filter XC4005 9 .70 .88 26 .96 .30
Industry I XC4005 5 .81 .87 9 .98 .49
Industry II XC4005 9 .87 .65 16 .98 .37

Average .69 .86 .92 .56

[5] Proceedings of IEEE Workshop on FPGAs for
Custom Computing Machines, 1993, 1994, 1995,
and 1996.

[6] C. Kring and A. R. Newton, \A Cell-Replicating
Approach to Mincut-Based Circuit Partitioning,"
Proceedings of ICCAD91, pp. 2-5, 1991.

[7] G. Saucier, D. Brasen, and J. P. Hiol, \Partitioning
with Cone Structures," Proceedings of ICCAD93,
pp. 236-239, 1993.

[8] R. Kuznar, F. Brglez, and K. Kozminski, \Cost
Minimization of Partitions into Multiple Devices,"
Proceedings of the 30th DAC, pp. 315-320, 1993.

[9] N.-C. Chou, L.-T. Liu, C.-K. Cheng, W.-J. Dai,
and R. Lindelof, \Circuit Partitioning for Huge
Logic Emulation Systems," Proceedings of the 31st
DAC, pp. 244-249, 1994.

[10] N.-S. Woo and J. Kim, \An E�cient Method
of Partitioning Circuits for Multiple-FPGA Imple-
mentation," Proceedings of the 30th DAC, pp. 202-
207, 1993.

[11] D. J.-H. Huang and A. B. Kahng, \Multi-Way
System Partitioning into a Single Type or Multiple
Types of FPGAs," Proceedings of 3rd International
Symposium on FPGAs, pp. 140-145, 1995.

[12] P. K. Chan, M. Schlag, and J. Y. Zien, \Spectral-
Based Multi-Way FPGA Partitioning," Proceedings
of 3rd International Symposium on FPGAs, pp.
133-139, 1995.

[13] H. Schmit, L. Arnstein, D. Thomas, and E.
Lagnese, \Behavioral Synthesis for FPGA-based
Computing," Proceedings of IEEE Workshop on F-
PGAs for Custom Computing Machines 1994, pp.
125-131, 1994.

[14] T. Isshiki and W. W.-M. Dai, \High-Level Bit-
Serial Datapath Synthesis for Multi-FPGA System-
s," Proceedings of 3rd International Symposium on
FPGAs, pp. 167-174, 1995.

[15] R. Murgai, N. Shenoy, R. K. Brayton, and A.
Sangiovanni-Vincentelli, \Improved Logic Synthe-
sis Algorithms for Table Look Up Architectures,"
Proceedings of ICCAD91, pp. 564-567, 1991.

[16] C. M. Fiduccia and R. M. Mattheyses, \A Linear
Time Heuristic for Improving Network Partitions,"
Proceedings of 19th DAC, pp. 175-181, 1982.

[17] W.-J. Fang and Allen C.-H. Wu, \A Hierarchical
Functional Structuring and Partitioning Approach
for Multiple-FPGA Implementations," ICCAD96.

[18] M. M. Mano, Computer Engineering Hardware
Design, Prentice Hall Inc., 1988.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

