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      Abstract— After analyzing the limitations of the traditional
description of CMOS circuits at the gate level, this paper
introduces the notions of switching and signal variables for
describing the switching states of MOS transistors and  signals in
CMOS circuits, respectively. Two connection operations for
describing the interaction between MOS transistors and signals
and a new description for CMOS circuits at the switch level are
presented.  This new description can be used to express the
functional relationship between inputs and the output at the
switch level. It can also be used to describe the circuit structure
composed of various transistor switches. Based on the new
description, the design of CMOS circuits at switch level can be
efficiently realized. It is expected that this will provide a basis for
techniques for analyzing and optimizing delay and power
dissipation of CMOS circuits.

I.  TRADITIONAL DESCRIPTION OF CMOS CIRCUITS

AT GATE LEVEL

      The traditional description of CMOS circuits is based on
Boolean algebra. Its elementary points are:

(1) Boolean variables are used to represent signals in circuits.
The two values of a variable, 1 and 0, are physically
represented by two levels of a signal, for example 5V and 0V.

(2) The basic operations among variables in Boolean algebra
are NOT, AND and OR operations. Usually, two composite
operations, NAND and NOR, are also introduced. These
operations are realized by the corresponding basic circuit
units called gates, such as NOT gate (inverter), AND gate,
OR gate, NAND gate and NOR gate.

(3) NOT, AND and OR operations form a complete set and
can be used to express any functions. Besides, NAND alone
(or   NOR   alone)   can   form  a   complete   basis  by  itself.
*  This work was supported in part by DARPA under contract #F33615-95-
C-1627 and NNSF of CHINA.
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Therefore, as long as we get the function expression we can
obtain its corresponding circuit configuration by using gates
from the complete set. For example, the Exclusive-OR
function is given by its truth table shown in Fig.1(a). Based on
the Boolean algebra, we can describe the Exclusive-OR
function of x and y by the following expression:

  x y x y x y x y x y⊕ = =( ) ( ) ( ) ( ),� � � � � �

which yields the corresponding circuits in Fig. 1(b) and (c),
respectively. This example explains how the description is
used for both the function and the circuit structure at the gate
level.

x y x⊕y

0 0 0

0 1 1

1 0 1

1 1 0

Fig. 1 Definition and circuits for Exclusive-OR operation  (a) truth table, (b)
circuit composed of NOT, AND and OR gates, (c) circuit composed of NOT
and NAND gates

      We should also point out the following limitations of the
traditional description.

 (1) The internal structure of a gate cannot be described, or
derived from the function expression. For example, the
internal structures of CMOS inverter and CMOS NAND gate
shown in Fig. 2 (a) and (b) cannot be described by Boolean
algebra.
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(2) A compound gate which also realizes the Exclusive-OR
function is shown in Fig. 2 (c). The structure cannot be
described by Boolean algebra because it is not composed of
gates. Reference [1] introduces the following procedure to
derive the structure from its Boolean expression. First, we

obtain the inverted expression: x y x y x y⊕ = ( ) ( )� � � . For

the n-side of the CMOS structure, we take the non-inverted
expression ( ) ( )x y x y� � � . Here the operations �  and �

may be considered connections of nMOS transistors in series
and in parallel. After having the n-structure, a dual p-structure
can be derived and the whole configuration is obtained as
shown in Fig. 2 (c).  Obviously, the procedure is not included
in Boolean algebra.

(3) NOT, AND and OR operations in Boolean algebra form a
complete set, but they cannot be used to describe the
relationship of the output to the inputs of a CMOS circuit that
has a high-impedance state Φ. The output of a simple CMOS
transmission gate shown in Fig. 2 (d) is expressed as
f c x x= ( ) ( )� � �Φ in some textbooks. However, we do

not define the operations related to the high-impedance state F
in Boolean algebra.

Fig .2. Switch structure of some CMOS gates  (a) inverter, (b) NAND gate,

(c) composed Exclusive-OR gate, (d) transmission gate

      According to the above discussion, Boolean algebra can
be used to describe the CMOS circuit structure at the gate
level, but cannot be used to describe the switching states of
MOS transistors in the circuit and the circuit structure at
switch level. The description at switch level is however
desired for the switch-level techniques [2,3]. This paper
proposes a new description that describes both signal and

switching state of transistors in CMOS circuits and reflects
the circuit structure at the switch level.

II. DESCRIPTION OF CMOS CIRCUITS AT SWITCH LEVEL

In order to describe the CMOS circuit structure with
transistors, we introduce an additional variable that describes
switches in circuits; we should distinguish the new variable
from the variable which is used to describe signals.

(1) Assume α, β …  are switching variables that take two
values, T and F, which in turn represent the two opposite
states of on and off for a MOS transistor. The basic operations
related to switching variables are NOT, AND and OR. Their
definitions are as follows:

NOT operation

                 ~α
α
α=





T             if    = F,

F             if    = T;
                            (1)

AND operation

                  α β
α β

⋅ =
=




T             if    = T

F             otherwise
                   (2)

OR operation

                    α β
α β

+ =
=




F             if    = F

T            otherwise
                (3)

Based on the above basic operations, a binary switching
algebra is established.

(2) Assume x, y, … are binary signal variables. They take two
values, 1 and 0, which represent the two signal levels, high
and low, in a circuit. They have a precise magnitude and can
be identified by comparing their magnitude with a threshold
value, denoted by 0.5. The basic operations related to binary
signal variables are Complement, Minimum and Maximum.
Their definitions are as follows:

Complement operation

                       x
x

x
=

=




1             if    = 0

0             if    1
                         (4)

Minimum operation

                      x y
x y

� =
=




1             if    = 1

0            otherwise
                  (5)

Maximum operation

                      x y
x y

� =
= =




0             if    0

1             otherwise
                (6)

Based on the above basic operations, a binary signal algebra
is formed.

      Therefore, we have two kinds of binary algebra systems; it
can be shown that the two systems are isomorphic. However,
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in the existing literature they are always substituted for one
another confused without considering their essential
differences and their isomorphism. Therefore, gates that
realize Complement, Minimum, and Maximum operations are
traditionally named NOT, AND and OR gates.

      Taking inverter in Fig. 2(a) as an example to explain two
kinds of variables, we can use x, x , αp and αn to express the
input and output signal, and the switching states of pMOS and
nMOS transistors, respectively. Their relationship is given in
Table 1.

TABLE 1   

RELATIONSHIP BETWEEN SIGNALS AND SWITCHING STATES

IN A CMOS INVERTER

x αp αn x

0 (low level) T (on) F (off) 1 (high level)

1 (high level) F (off) T (on) 0 (low level)

      We can further introduce operations between two kinds of
variables for describing the connection between the on-off
states of switching elements and the voltage levels of the
signals, as shown in Fig. 3. They are:

Connection operation I -- describing the physical process of
how the binary signal controls the on-off state of an element.

Connection operation II -- describing the physical process
of how the on-off state of an element controls the transmission
of the binary signal.

Fig. 3. Connections between binary switching variables and binary signal
variables

      In a CMOS digital circuit, the on-off state of a MOS
transistor is dependent on the comparison between the gate
signal and the threshold. Therefore, we can define the
connection operation I as follows:

High-threshold comparison operation

                    0 5. x
x

x
=





T             if    > 0.5

F             if    < 0.5
                        (7)

Low-threshold comparison operation

                    x
x

x
0 5. =





T             if    < 0.5

F             if    > 0.5
                       (8)

In Eqs.(7) and (8), 0.5 implies that the detection threshold is
set in the middle of two logic levels, 1 and 0. These two
equations represent the low-active switching characteristic of
a pMOS transistor and the high-active switching characteristic
of an nMOS transistor, respectively.

      The following properties can be easily verified by use of
the above definitions:

                                x x x0 5 0 5 0 5. . .
~

= = ,                               (9)

                                0 5 0 5 0 5. . .
~

x x x= = ,                           (10)

which state that the two threshold comparison operations can
be transformed by complementing the signal variable.

                                0 5 0 5 0 5. . .( )x y x y� = ⋅ ,                        (11)

                                0 5 0 5 0 5. . .( )x y x y� = + .                       (12)

In Eqs.(10)-(12) the corresponding relationships between
Complement, Minimum and Maximum in binary signal
algebra and NOT, AND and OR in switching algebra are
established by use of the high-threshold comparison
operations. Furthermore, the high-threshold comparison
operation penetrates  through a function  f x y( , , ; , , )� � �− in

binary signal algebra as follows:

            0 5 0 5 0 5. . .( , , ; , , ) ( , , ;~, , )f x y f x y� � � �− = ⋅ +  .      (13)

On the other hand, the on-off state of a MOS transistor
determines whether the source signal is transmitted to the
drain or not. Therefore, we may introduce the connection
operation II as follows.

Transmission operation

                             c∗ =
=
=





α
α
α

c      if     T

     if     FΦ
                    (14)

where the binary variable c is called transmitted source signal,
and a represents the switching state of a transmission switch
network. If α = T, signal c is transmitted to the output; if α =
F, the switch network is off and its output is in the high-
impedance state, denoted by symbol Φ. The switch network is
composed of an nMOS transistor, if c = 0, or a pMOS
transistor, if c = 1.

      To denote the joining of the outputs of two (or more)
transmission branches, we define the following operation
further.

Union Operation

           c c
c c

c c1 1 2 2
1 1 2 2

2 2 1 1
∗ ∗ =

∗ ∗ =
∗ ∗ =





α α
α α
α α

#
        if     

        if     

Φ
Φ

       (15)

In Eq.(15), the transmission operation * takes priority over the
Union operation #. Note that 1 # Φ = 1 and 0 # Φ = 0.
Furthermore, if c1 ≠ c2  and α1  = α2  = T, a voltage conflict

Switching algebra
variable∈{T, F}

describes
switching state

Signal
algebra

variable∈{1, 0}
describes

signal value

Connection operation I

Connection operation II



arises between sources c1 and c2; this condition is not allowed.
As an example, we can use the above operations to re-express
x  in Eq.(4) at switch level:

                               x x x= ∗ ∗1 00 5 0 5. .# .                          (16)

The above expression exactly describes the circuit structure in
Fig.2(a) and its working process shown in Table 1.

      It can be proved that the following laws related to the
transmission operation and union operation hold.

Serial transmission law

                             ( ) ( )c c∗ ∗ = ∗ ⋅α α α α1 2 1 2 ,                  (17)

Parallel transmission law

                             c c c∗ ∗ = ∗ +α α α α1 2 1 2# ( ) ,               (18)

Commutation law

                     c c c c1 1 2 2 2 2 1 1∗ ∗ = ∗ ∗α α α α# # ,                 (19)

Associative law

     
( # )# #( # )

# #

c c c c c c

c c c
1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3

∗ ∗ ∗ = ∗ ∗ ∗
= ∗ ∗ ∗

α α α α α α
α α α

    (20)

Distributive law

      ( # ) ( )# ( )c c c c1 1 2 2 3 1 1 3 2 2 3∗ ∗ ∗ = ∗ ⋅ ∗ ⋅α α α α α α α ,     (21)

      We can use the connection operations to derive a new
canonical function form. For example, a two-variable function
f(x,y) has the following canonical expansion form at the
switch level:

       
f x y f x y f x y

f x y f x y

( , ) ( , ) ( )# ( , ) ( )

# ( , ) ( )# ( , ) ( )

. . . .

. . . .

= ∗ ⋅ ∗ ⋅

∗ ⋅ ∗ ⋅

0 0 0 1

1 0 11

0 5 0 5 0 5 0 5

0 5 0 5 0 5 0 5            
    (22)

In comparison, the two-variable function f(x,y) has its
traditional min-term expansion at the gate level:

           
f x y f x y f x y

f x y f x y

( , ) [ ( , ) ] [ ( , ) ]

[ ( , ) ] [ ( , ) ]

= 0 0 0 1

1 0 11

� � � � �

� � � � � �             
        (23)

Equation (23) shows how the circuit is realized by using
gates, which could be  renamed Complement gate (inverter),
Minimum gate (AND gate) and Maximum gate (OR gate).
However, Eq.(22) explains how four signals, f(i,j), are
transmitted to the output through two switches in series. These
equations illustrate the difference in philosophy between
switch-level and gate-level descriptions.

III. A PPLICATIONS OF THE DESCRIPTION AT SWITCH LEVEL

Since in Eq.(22) the expansion coefficient f(i,j) ∈ {0,1}, we
can factor coefficients 1 and 0, respectively, and obtain the
following form:

                                  f f# f. .= ∗ ∗1 00 5 0 5,                        (24)

where 0 5. f  and f 0 5.  are complementary. They are the
switching functions of source 1 and source 0, respectively. By
using Eq.(9) the above equation can be rewritten as

                                  f f# f. .= ∗ ∗1 00 5 0 5 .                         (25)

      If we have the simplified function expression

f x y( , , ; , , )� � �−  in traditional binary signal algebra, we can

easily derived its corresponding switch-level expression
0 5.

( , , ; , , )f x y� � �−  by using Eq.(13). The latter shows how

to use serial and parallel nMOS switch connections for
controlling the transmission of source 0. According to

0 5 0 5. .
~

f f=  in Eq.(25) and De Morgan’s Law, the two

switch-level expressions, 0 5. f  and 0 5. f , are dual. And that is

the principle of the design procedure presented in [1] .

      Taking f x y1 = �  and f x y2 = ⊕ as examples, we have

f x y1 = �  and f x y x y2 = ( ) ( )� � � . Then the following

switch-level expressions can be obtained:

              0 5
1

0 5 0 5. . .f x y= ⋅    and    0 5
2

0 5 0 5 0 5 0 5. . . . .f x y x y= ⋅ + ⋅ .

The above two expressions describe the n-branches in Fig.2
(b) and (c). By De Morgan’s Law, we have the following dual
expressions for describing the corresponding p-branches:

 0 5
1

0 5 0 5. . .f x y= +     and  0 5
2

0 5 0 5 0 5 0 5. . . . .( ) ( )f x y x y= + ⋅ + .

In fact, the duality between p-part and n-part in a CMOS
circuit is unnecessary. Because f x y2 = ⊕  also can be

expressed as f x y x y2 = ( ) ( )� � � , we have the following

expression instead:

            0 5
2

0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5. . . . . . . . .f x y x y x y x y= ⋅ + ⋅ = ⋅ + ⋅ .

The above expression will guide a new pMOS connection
model, which would eliminate the internal connection in the
p-branch in Fig. 2(c).

      Another example is given in design of a combinational
adder as follows. For a circuit with output inverting buffers,

we can design a circuit with inverse outputs, C+  and S , first.

From Eq.(25) we have

 C C # C
. .

+ + += ∗ ∗1 0
0 5 0 5 ,

 S S# S
. .= ∗ ∗1 0

0 5 0 5 .

Based on the traditional Boolean algebra the following
expressions are derived:

C A B A B C+ = ( ) [( ) ]� � � � ,

C A B A B C+ = ( ) [( ) ]� � � � ,

S A B C C A B C= +[( ) ] ( )� � � � � � ,

S A B C C A B C= +[( ) ] ( )� � � � � � .



Note that in the above expressions C+ andC+ , S  and S  are

symmetric rather than dual with each other. By using Eq.(13),
their corresponding expressions at switch-level are:

        
0 5 0 5 0 5 0 5 0 5 0 5. . . . . .( )C A B A B C+ = ⋅ + + ⋅

        0 5 0 5 0 5 0 5 0 5 0 5. . . . . .( )C A B A B C+ = ⋅ + + ⋅

        
0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5. . . . . . . .( )S A B C C A B C= + + ⋅ + ⋅ ⋅+

        0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5. . . . . . . .( )S A B C C A B C= + + ⋅ + ⋅ ⋅+

Therefore we obtain the corresponding circuit design at
switch level, as shown in Fig. 4 [1]. Obviously, the p-branch
and n-branch in the optimized schematic are symmetric.

Fig. 4. Circuit design of a combinational 1-bit full adder

      In addition to transformation from the traditional Boolean
expression, the switch-level expression can be also derived
directly from  truth table or Karnaugh map. Figure 5 shows
three Karnaugh maps for outputs of the NAND gate, the
transmission gate, and the Exclusive-OR gate. From the
mapping synthesis shown in Fig.5(a), we directly obtain the
switch-level expression:

                      x y x y x y� = ∗ + ∗ ⋅1 00 5 0 5 0 5 0 5( )# ( ). . . . .

The above expression describes how the source 1 (VDD)
transmitted through two p-transistors in parallel to the output,
and the source 0 (Ground) transmitted through two n-
transistors in series to the output, as shown in Fig. 5(a).

      According to the mapping in Fig. 5(b),  we use the
variable c as its transmitted source and obtain the switch-level
expression:

                                       f c x= ∗0 5. .

      The above expression shows that the source c is
transmitted by an n-transistor. To avoid the poor transmission
for c = 1 we rewrite the expression as:

                                 f c x x= ∗ +( ). .0 5 0 5 ,

where two terms,0 5. x  and x0 5. , are equal based on Eq. (9).
However, they describe that the variable source are
transmitted by a complementary MOS construction, as shown
in Fig. 5(b).

Fig. 5. Mapping synthesis of some CMOS circuits at switch-level (a) NAND
gate, (b) Transmission gate, (c) Exclusive-OR gate

      Based on the previous example, we can synthesize
Exclusive-OR in its Karnaugh map, as shown in Fig. 5(c), and
get

             x y y x x x y x y⊕ = ∗ + ∗ ∗( )# ( ) # ( ). . . .0 5 0 5 0 5 0 51 0 .

Notice that the parts overlapped in Karnaugh map have been

realized by y x x∗ +( ). .0 5 0 5 , and therefore the branch with

source x (term x y( ) .1 0 5∗ ) only has to transmit a 1 and never a

0, and the branch with source x  (term x y( ) .0 0 5∗ ) only has to

transmit a 0 and never a 1. Hence each of these transmission
branches can be realized with a single MOS transistor as
shown in Fig. 5(c). This simple circuit realization previously
has been considered as something that “… does not follow
from any systematic (design) method'' [4].

      Comparing all three designs of Exclusive-OR gate in Fig.
1(c), Fig. 2(c) and Fig. 5(c) we find that the number of
transistors in the circuits are 16, 12 and 6, respectively.
Besides, the numbers of internal nodes in circuits are 5, 3 and
2, respectively. This means that the design based on switch-
level description may lead to a circuit with a simpler structure
as well as higher quality (delay and power). A schematic
diagram of a transmission gate adder, which has two output
buffers and equal delay for the sum (S) and carry-out (C+),
and is designed from our switch-level specification directly, is
shown in Fig. 6. Only 20 MOS transistors are used in the

x y⊕
y

x

y

x

0

x
y

0

0 1

1

1

1

1

C+
x

y

0

0 1

1 10

ΦΦ

S
x

y

0

0 1

1

1

1

0

0

VDD

c x∗0 5.

x

x

c

A

(a)

B

(b)

C

(c)

x y

x y�

1

0

x

y



circuit. In comparison, a similar design given in [1] needs 26
transistors, and the standard design in Fig. 4 needs 28
transistors..

Fig. 6. Transmission gate 1-bit full adder designed at switch level

      It should be pointed out that the description of CMOS
circuits at switch-level also offers a new method for analyzing
and optimizing  circuits. However, since there exist physical
capacitance and resistance for MOS transistors, the
permutation of the inputs to a series chain of transistors will
lead to different input pin loads and pin dependent delays. It
is well known that the signal to pin assignment  in a CMOS
logic gate has a sizable impact on the propagation delay
through the gate [5]. Besides, researchers of power
optimization also indicate that the assignments of input signal
with different probability of assuming a controlling value
(zero for nMOS and one for pMOS), or input signal with
different switching activity when all other inputs are set to
their non-controlling values (one for nMOS and zero for
pMOS in series-connected transistors) must be considered for
power reduction [6,7]. Therefore, we have to describe the
circuit more accurately at switch level. It means that each
transistor in series-connected structure should be located
exactly. In fact, by weakening the communication law of
ANDed switching variables, those two switching variables in
Eq. (17) cannot be permuted. Thus, the order of ANDed
switching variables will represent corresponding location
accurately in the series-connected structure. Taking the
Exclusive-OR gate shown in Fig. 2(c) as the example, its
output can be expressed as

x y x y x y x y x y⊕ = ∗ + ⋅ + ∗ ⋅ + ⋅1 00 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5[( ) ( )]# [ ]. . . . . . . . .

The above expression indicates that the two nMOS transistors
which are controlled by signals x and x  are close to Ground
since their corresponding switching variables are near the
source 0 in the above expression. Obviously, the other two

nMOS transistors are close to the output terminal. Therefore,
the proposed description of CMOS circuits is modified to
locate each transistor in the circuit. It is expected that the new
switch-level description will provide a basis for analyzing and
optimizing delay and power dissipation by using the new
description.

IV. CONCLUSION

      The traditional description of CMOS circuits is based on
Boolean algebra, where three basic operations, NOT, AND
and OR, are used to describe functional relationship between
inputs and the output, and to describe the circuit structure
composed of gates. However, it cannot be used to describe
the internal structure of MOS transistor switches. Besides,
there exist some problems with Boolean algebra when
describing complex gates or gates with high-impedance state.
This paper introduced another variable to describe the
switching state of transistors in addition to original variable,
which describes signal in the circuit. The two variables have
their own independent operations. Since there exists a mutual
relationship between the on-off states of switch elements and
the signals, we proposed two connection operations for
describing their interaction, whereby a new description for
CMOS circuits at the switch level is presented. Based on the
new description the design of CMOS circuits at switch level
can be realized. For CMOS circuits the traditional inverting-
logic stage design and pass-transistor design have been
considered to be two different design methods [8,9].
However, the new description proposed in this paper can unite
the two and can overcome other difficulties in the traditional
theory. Besides, it is expected that it can provide a basis for
techniques for analyzing and optimizing delay and power
dissipation.
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