Efficient Synthesis of AND/XOR Networks

Yibin Ye

Kaushik Roy

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-1285, USA.

ye@ecn.purdue.edu

Abstract— A new graph-based synthesis method for general
Exclusive Sum-of-Product forms (ESOP) is presented in this
paper. Previous research has largely concentrated on a class
of ESOP’s, the Canonical Restricted Fixed/Mixed Polarity
Reed-Muller form, also known as Generalized Reed-Muller
(GRM) form. However, for many functions, the minimum
GRM can be much worse than the ESOP.

We have defined a Shared Multiple Rooted XOR-based De-
composition Diagram (XORDD) to represent functions with
multiple outputs. By iteratively applying transformations and
reductions, we obtain a compact XORDD which gives a mini-
mized ESOP. Our method can synthesize larger circuits than
previously possible. The compact ESOP representation pro-
vides a form that is easier to synthesize for XOR heavy multi-
level circuit, such as arithmetic functions. The method suc-
cessfully minimized large functions with multiple outputs. Re-
sults are also compared to the minimized SOP’s obtained from
ESPRESSO. Experimental results show that for many circuits
ESOP’s have considerably more compact form than SOP’s.

[. INTRODUCTION

In many applications, the AND/XOR realizations of digi-
tal circuits are very efficient. It has long been the experience
of circuit designers that AND/XOR forms are more economi-
cal in large classes of circuits such as those used in arithmetic,
telecommunication, and linear systems.

While the slow speed of the XOR gate has been the main
obstacle, recent advances in technologies make the use of
this logic more practical. Circuits in AND/XOR forms can
be easily mapped to Field Programmable Gate Arrays (FP-
GAs). Moreover, in table-lookup FPGAs such as the Xilinx
3000 family, XOR gates do not cause any extra cost in terms
of chip area and speed.

While powerful optimization tools for AND/OR based
synthesis have been developed in the last few years, (such
as ESPRESSO [9], MIS [1] and BOLD [5]), there are few
minimization and synthesis tools available which include
AND/XOR realizations.

There are several classes of the AND/XOR forms, of which
the Exclusive Sum-of-Product (ESOP) expression is the most
general 2-level form. The problem of finding the minimal
SOP’s of a Boolean function is a classical problem in switch-
ing theory which has been studied for many years. The
minimization of ESOP’s is much more difficult than that of
SOP’s. So far no efficient method is known to obtain a min-
imum ESOP of a function except for those with very small
number of variables. Many previously published algorithms
consider the canonical-restricted forms [7], [8], [3], such as
the Canonical Restricted Fixed/Mixed Polarity Reed-Muller
form, also known as Generalized Reed-Muller (GRM) form.
However, for most functions, the minimum GRM is worse

than the ESOP.

The research was supported in part by NSF (9633516-MIP) and by ARPA
(F33615-95-C-1625), and IBM Corporation.

ASP-DAC'97
0-89791-851-7$5.00 0 1997 IEEE

kaushik@ecn.purdue.edu

Recently, Sasao [11] developed a heuristic approach which
applied methods similar to ESPRESSO by iteratively finding
smaller covers of products and by looking for parity-like pat-
terns. While ESPRESSO succeeds in minimizing the SOP’s
of most practical functions, a similar methodology is less
powerful when applied to minimize the ESOP’s. This is due
to the fact that only prime implicants need to be searched in
the minimization of SOP’s, while the search space is drasti-
cally larger in minimizing the ESOP’s.

In this paper, we present a new graph-based minimization
method for general ESOP’s. We start from the OBDD [2]
representation of a function (multiple primary outputs in
general). By iteratively applying transformations and reduc-
tions, we finally obtain a compact Shared Multiple Rooted
XOR-based Decomposition Diagram (XORDD) which gives
a minimized ESOP. Our method promises to be efficient since
transformations are performed by adding/removing edges
and by changing edge values rather than computing new
sub-functions. Note that building the initial BDD is not an
additional cost because the BDD provides a disjoint Sum-of-
Productform (as the initial ESOP) before applying minimiza-
tion procedures. In fact, if the original circuit descriptions
are in multi-level combinational format, creating an OBDD
is usually far more efficient than flattening the multi-level
circuit and then transforming the flattened circuits into dis-
joint SOP form. Results on benchmark circuits are compared
with the SOP forms obtained from ESPRESSO to show the

effectiveness and efficiency of our algorithm.

II. PRELIMINARIES AND DEFINITIONS

A. Fxclusive Sum-of-Products Representations of Boolean
Functions

A Boolean function of n variables f:B" — B, can be
written in the Reed-Muller Canonical (GMC) form as:

flx) =

ap D arxry @ axxrz @ asrirs ©asxrs - -
Dasrn 12122 Tn (1)

where the RM (Reed—Muller) coeflicients a; can take the val-
ues of 0 or 1.

If #; in each product term is allowed to take either posi-
tive polarity x; or negative polarity T;, then we have a Gen-
eralized Reed-Muller (GRM) form, or Mized Polarity Reed-
Muller Canonical (MPRM) form representation. When each
variable is restricted to retain the same polarity, either pos-
itive or negative, then the expression is that of Fized Polar-
ity Reed-Muller Canonical (FPRM) form. While the GMC

representation of a Boolean function is unique, there are 2"

possible FPRM representations and gn2" 7! possible MPRM
representations for a function of n variables [7].

A general and most compact AND/XOR form is that of
the ESOP representation which is not necessarily canonical.
In the following example, we compare the four AND/XOR
forms we have discussed above.

f= abc+abc+dbc+dbc
= adboacedbodc

b
d a

Fig. 1. An example function in both SOP and ESOP forms.

Exzample 1: Consider the function f = x12223 + T17273.

The various AND/XOR forms are given by:

f = 1@z ®ro® oz Doz @ o103 @ xewa (GMC)
= 11D T1T2 DT 1T3 D T2Ts (FPRM)
= 1172 D 1173 B T27Ts (MPRM)
= 117233 D T1T2T (ESOP)

Now let us consider an example to compare the SOP and
ESOP representations for a simple function shown in Fig. 1.

FEzxample 2: Consider the function shown in Fig. 1. The
minimal SOP representation is f = abec + abc + dbc + dEE,
which has 4 product terms and 12 literals, and the minimal
ESOP representation is f = ab @ ac @ db @ dc, which has 4
product terms and & literals. Note that the minimal SOP
form is unique. The minimal ESOP representation, however,
has a number of equivalent expressions.

B. Graph Representations of Boolean Functions

Bryant presented the Ordered Binary Decision Diagram
(OBDD) [2] as a canonical form for Boolean functions. It is
currently one of the most popular data structures for the rep-
resentation of Boolean functions. OBDDs have been widely
used in logic synthesis, verification, and testing. While OB-
DDs are MUX-based representations, another type of De-
cision Diagram, the Ordered Functional Decision Diagrams
(OFDD), have been introduced [3], which are based on
AND/XOR representations. In the following paragraph, we
first examine the decomposition equations on which the OB-
DDs and OFDDs are based, then we define our new graph
representations for Boolean functions.

Let f: B® — B be a Boolean function over the variable set
X,. Let f2 denote the cofactor of f with respect to #; = 0
given by f2(z) = f(w1, - 2-1,0,8i41, -+, o). Similarly,
f! denotes the cofactor of f with respect to x; = 1 given
by flz) = fe1, - wic1, 1,241, -+, &n). We also define f7
as f2 = f2 @ fl. Note that all 2, f} and f? are indepen-
dent of x;. Using the above notations, we have the following
decompositions:

f o= @mfitaifl =7fl uif! (2)
= fl@uif? (3)
fl ezl (4)

While the OBDD representation of a Boolean function is
based on equation (2), the OFDD is based on equation (3)
and (4). Many functions that have large cube covers have
compact OBDD representations. Practical functions with
compact cube covers seldom have very large OBDDs [6] (al-
though one can design some functions that are of simple SOP
forms to have exponential OBDD size). It is known that for
certain classes of functions, the size of OFDDs are signifi-
cantly smaller than that of OBDD representations, and vice
versa.

‘fzilfl®ilf2@xlf3 ‘ f=f,@f,
G
0
f1 fs O)
f2
@ (b)

Fig. 2. The XORDD representation of functions

We now define General Decomposition Diagrams (GDD)
and XOR-based Decomposition Diagrams (XORDD) which
are used for representation and minimization of ESOP’s.

Definition 1: A General Decomposition Diagram (GDD)
over a set of variables X := {null, 1, %2, -+, z,} is a rooted
directed acyclic graph (DAG) G=(V,E) with two types of
vertices, non-terminal and terminal. A non-terminal vertex
v is associated with an operation (OR, XOR, etc.) as well
as a variable € X, and has one or more children vertices
€ V. Edges from a non-terminal vertex of variable z; to
its children vertices are labeled with either a 0 or 1, which
give the edge value T; or z;, respectively. Edges from a non-
terminal vertex associated with null variable are not labeled
and always have the value of 1. A terminal vertex is labeled
with either a 0 or a 1 and has no children vertices. Each
variable is encountered at most once when traversing from
root to a terminal vertex.

The GDD is simply a generic graph representation of
Boolean functions. The only restriction that distinguishes
GDD from an arbitrary multi-level logic representation is
the condition that each variable is encountered at most once
when traversing from root to a terminal vertex in a GDD.
This restriction is due to the type of decompositions to be
imposed on the graph.

Definition 2: An XOR Decomposition Diagram
(XORDD) over a set of variables X := {null,z1,z2, -+, 2zn}
is a special case of GDD, in which only the XOR operation
is associated with each non-terminal vertex.

The XORDD is defined in such a way that any ESOP can
be represented by an XORDD (Shown later in this section).
Unlike an OBDD or OFDD, an XORDD is not a decision
diagram. It is a decomposition diagram as defined earlier.
A non-terminal vertex in an XORDD can have one, two, or
more children vertices. Edges going from a vertex can have
the same label (and hence, the same value). Fig. 2 illustrates
how an XORDD relates to the function it represents. Assign-
ing a value to each edge is an important feature in XORDD
representations, because changing the type of decompositions
can be realized by changing the edge connections and edge
values rather than computing new sub-functions.

BDD is a special case of XORDD based on our definition
of XORDD. OFDD, however, does not belong to the class
of XORDD because of the different rules used for assigning
the edge values. We assume the readers are familiar with the
OBDD and OFDD representations of a Boolean function.
For the purposes of comparison, the following example gives
the three graph representations given by OBDD, OFDD and
XORDD, respectively.

Exzample 3: Let us consider the function f = ab -+ ac + be.
Fig. 3 shows all three types of graph representations. Note
that in the OFDD, both decomposition types of equation (3)
and (4) have been applied, where label 0 denotes f2, 1 de-

abc @ abe abc

cobcoac

(8 OBDD (b) OFDD (c) XORDD

Fig. 3. The same function represented by OBDD, OFDD and
XORDD, respectively

notes f! and 2 denotes fZ.

While XORDD is a multi-level representation, the two-
level AND/XOR form can be easily constructed from the
graph as follows: A 1-pathis a path from root to a 1-labeled
terminal vertex. Each 1-path defines a product term which is
the product of all the edge values in the path. The function
can then be expressed in form of XOR sum of product terms
of all 1-paths. Therefore, the number of 1-paths is equal to
the number of terms in the ESOP’s. One can observe that
the O-labeled terminal vertex is not useful in the XORDD
representations. Unless otherwise mentioned, the XORDD’s
have only one type of terminal vertex with label 1.

Let us consider Example 3 and Fig. 3 again. The two-
level expressions given by OBDD, OFDD and XORDD are
ab @ ab @ abe, ¢ ® be @ ac and be @ ac, respectively.

It is important to note that an OFDD representation of
a function always gives the GRM form, i.e., canonical form,
while XORDD representation gives a more general ESOP
form. Conversely, an ESOP expression can always be repre-
sented by an XORDD, and only Fixed Polarity Reed-Muller
expressions can be represented by OFDDs.

So far, only single output functions (hence single rooted
XORDD’s) have been discussed. For functions with multiple
outputs, we construct Shared Multiple Rooted XORDD rep-
resentations, in which common internal vertices are shared
by several component functions. While this extension is
straightforward, we need to note that common 1-path should
be counted only once in determining the number of product
terms of ESOP’s. Since in most cases we deal with multiple-
output circuits, unless otherwise mentioned, the XORDD is
a shared multiple rooted graph.

We now state our synthesis strategy of minimizing
ESOP’s. Starting from a shared OBDD representation of
a multiple output function, we iteratively apply transforma-
tions and reductions to finally obtain a shared multiple rooted

XORDD which gives a minimized ESOP.

[II. ALGORITHMS
A. Transformations and Reductions on XORDDs

For a given XORDD, the following reduction rules can be
applied to reduce the size of XORDD.

1. Delete terminal vertices labeled with 0.

2. If two edges between two vertices have the same value,
then they are removed (Fig. 4(a) and 4(b)).

3. If two edges from vertex v to v’ are labeled with 0
and 1 respectively, we remove them and redirect edges
pointing to v to point to v’ (Fig. 4(c)).

4. Delete non-terminal vertices that do not have succes-
sors.

Reductions

o
AN
%

V

%

@ (b) ©

Fig. 4. Three basic reduction rules of XORDD

5. Delete non-terminal vertices (except root vertices) that

do not have predecessors.

Reduction rule (1) is necessary because the initial XORDD
we start with is an OBDD which has two terminal vertices
labeled with O and 1 respectively. Reduction rule (2) and
(3) are illustrated in Fig. 4, which are based on the following
facts:

Tig; D xig; =Tig; B Tigy =0 (5)
rig; ®Tigy = gs(wi DTi) = gj (6)

After applying reduction rules (2) and (3), there may exist
vertices that do not have successors or predecessors. Then
reduction rules (4) and (5) can be applied. Besides the
reductions given above, the following transformations on an

XORDD will be applied on an XORDD.

Change of decomposition: The three types of
decomposition described in equations (2) — (4) can be
rewritten as follows:

Tff daifi =L@ L@ f)=f ez ef),

where f° @ f! = f?, which was defined in section 1I-B. The
change from one type of decomposition to another can be
realized by changing the value of an edge and adding
another edge. This is illustrated in Fig. 5(a), where the
label e € {0,1}.

Split: A vertex with multiple incoming or outgoing edges
can be split into two or more vertices, as illustrated in

Fig. 5(b).

Merge: If two or more outgoing (incoming) edges of a
vertex have the same value and go to (come from) vertices
of the same variable, then they can be merged as shown in
Fig. 5(c).

Extract: If two or more incoming (outgoing) edges of a
vertex have the same value, they may be extracted in a way
as illustrated in Fig. 5(d). Exztractis essentially a compound
operation consisting of split and merge.

As one can see, applying reduction rules always reduce
the size of XORDD (reduce edges and/or nodes). How-
ever, transformations do not directly result in a more com-
pact graph. The purpose of performing transformations on
an XORDD is to create opportunities for more reductions.

Transformations

' x (P2 fY) = fleox(f’ef)

(a) Change the decomposition type

(b) Split

ek RE-%

e
Q

(c) Merge
XZO
5

(d) Extract

Fig. 5. Basic transformation steps of XORDD

Thus, we need to identify which types of transformations
should be performed on a particular node or edge. In our
synthesis techniques, local loop detection is used in deter-
mining transformations and reductions.

Local loop detection: Detection of three basic loops are
performed in our synthesis technique. These are illustrated
in Fig. 6. In loop type 1 (Fig. 6(a)), we can first merge two
nodes and then apply reduction rule (3). In loop type 2
(Fig. 6(b)), an edge label is changed first. We then merge
two nodes followed by a reduction. In loop type 3(Fig. 6(c)),
after changing an edge label, a reduction can be applied.

B. Algorithms of Minimization

Our goal is to obtain a compact XORDD from the ini-
tial large XORDD by iteratively applying transformations
and reductions. The number of product terms and literals
should be simultaneously minimized. We concluded in the
previous section that the number of product terms is equal
to the number of 1-paths in an XORDD and that each 1-
path defines a product term which is the product of all edge
values in the path. Thus, we can recursively calculate the
number of terms and literals from lowest level vertices to
roots in a shared multiple rooted XORDD by the following

(b) loop type 2

e it
Lo K% .

o, O 1
/0 /0»1 @/1

O o
W

(c) loop type 3

Fig. 6. Three types of loops are identified, on which reductions can
be applied after performing certain transformations.

two equations:

v/ Esuccessors of v

l(v) = >

v/ Esuccessors of v

where e(v) is defined by

e(v) = { (1):

One exception 1s that a common 1-path shared by multiple
roots should be counted only once. For two-level ESOP min-
imization, the two functions defined in equation (7) and (8)
are the objective functions which need to be minimized. By
examining the reductions and transformations introduced in
section III-A, one can observe that reductions always reduce
the objective functions. While merge, split, and extract do
not affect the objective functions, change of decomposition
actually increases the value of objective functions. However,
more reductions are possible only after certain transforma-
tions as we have discussed in section I1I-A.

An algorithm to minimize the objective functions of the

XORDD 1is given below:

Step 1: Create a Multiple Rooted Shared OBDD (as the
initial XORDD) from the original two-level or multi-level
circuit descriptions.

Step 2: Recursively compute the two objective functions
(# of terms and literals) for the initial XORDD. Compare
the number of 1-paths and O-paths. If there are
considerably more 1-paths than O-paths, change the
0-terminal into 1-terminal and vice versa. Add a terminal

if node v is associated with a variable
if node v is associated with the null variable.

=bdecde o at

Fig. 7. An example showing how the algorithm is performed on a
function—-from initial BDD to the final compact XORDD, which
gives a minimized ESOP form

edge for every root vertex. This is equivalent to inverting
the function twice. (Exchange of the O-terminal and the
1-terminal inverts the function once. Putting a 1-terminal
edge on the root vertices inverts the function again

(1% f = f)). Delete the O-terminal and all its incoming
edges.

Step 3.1: Start from the lowest level vertices. Examine
each node to determine if reductions can be directly applied.
Step 3.2: Detect three reducible loops discussed in
section I1I-A (also shown in Fig. 6). Change the label of
some incoming edges (i.e., change decompositions), then
apply reductions on parent node(s).

Step 4: For every vertex in the next lowest level, repeat
the same transformations and reductions given in steps 3.1
and 3.2.

Step 5: Level by level from the bottom up to the root
vertices, repeat the same operations given in steps 3.1 and
3.2.

Step 6: For each node, examine the incoming edges, do
merge and estract as shown in Fig. 5 to change the topology
of the graph. Then repeat step 3 — 5.

Let us consider the function shown in Fig. 1 as an example.
The initial OBDD after removing the 0-terminal is shown in
Fig. 7(a). First, consider edges of the 1-terminal. Merge or
extract can not be directly applied. After changing an edge
label from 1 — 0, the two nodes of variable ¢ can be merged
and reduction can be applied. Thus we obtain the graph of
Fig. 7(b). We now consider the next lowest level variable d.
By examining the four incoming edges of node d, the four
nodes of variable ¢ can be merged into two nodes, as shown
in Fig. 7(c). From node d, two type 2 reducible loops (both

are d -+ ¢ — b — ¢ — d) can be detected. By changing the
label (from 0 to 1) of the edge between node d and ¢, we can
merge the two nodes of variable ¢ to obtain Fig. 7(d). We
now consider variable ¢. A number of reductions are available
on node c. After reductions, we have the graph in Fig. 7(e).
There is a new reduction available between node ¢ and node
a. We can also merge two nodes of b. After a final reduction
step, we obtain the XORDD of Fig. 7(f), which gives the

minimum ESOP expression.

IV. EXPERIMENTAL RESULTS
The XORDD-based synthesis method is applied to a large

set of benchmark circuits in both PLA and combinational
formats. Results are summarized in tables 1. In the first
column, circuits with an asterisk are in PLA format. :n and
out represent the number of inputs and outputs of the cir-
cuits. c¢pu denotes the cpu time in seconds on SPARC 5
workstation. Unlike most previous works [7], [8], we synthe-
sized multiple outputs simultaneously to explore the common
product terms shared by multiple outputs.

Minimized SOP’s obtained from ESPRESSO are also in-
cluded in the tables. For many functions, e.g. 5zpl, apex5,
rd53, rd73, rd84, t481, xors etc., the ESOP’s have consider-
ably fewer product terms than the SOP’s. On the other hand,
for functions such as apex1, apex3, cps, spla, etc., the SOP’s
are significantly more compact. On average, the compactness
of these two forms are comparable. For some particular types
of functions, one representation is better than the other. On
average, the XORDD-based synthesis algorithm consumes a
comparable ¢pu time with that of ESPRESSO. However, for
many larger circuits we examined, the XORDD-based algo-
rithm consumes significantly less cpu time. Note that most
of the cpu time consumed in XORDD-based synthesis is for
the initial BDD creation. The synthesis algorithm usually
consumes less than 20% of the total cpu time reported in the
table.

For some combinational circuits, no compact two-level
forms in either ESOP or SOP could be obtained. We ex-
perimented with circuits such as i3, ¢4, rot, pair, C432, and
C1908. The number of product terms are more than tens
of thousands for such circuits. We have not listed these cir-
cuits in Table I. As long as BDDs are successfully created,
the XORDD-based method can always generate results. Ta-
ble II listed several circuits for which ESPRESSO did not
produce any result in 30 minutes on a SUN SPARC 5 work-
station. The last column node in Table Il represents the
number of nodes in an XORDD. It should be noted that
the size of XORDD’s is still small even though the circuits
have large number of product terms and literals. The shared
multi-level structure of XORDD’s gives a compact represen-
tation of these functions. Moreover, the cpu time depends on
the size of the graph. For some even larger circuits, such as
02670, 3540, and C7550, we are unable to have compact
XORDDs because of the excessive size of the initial BDDs.
However, we feel that these circuits are inherently not suited
for two-level realizations.

V. CONCLUSIONS AND FUTURE WORK
We have defined a new Shared Multiple Rooted XOR-based

Decomposition Diagram to represent multiple output func-
tions. Based on this type of graph, we presented an efficient
algorithm to minimize the ESOP’s.

In this paper, only two-level AND/XOR minimization has

TABLE I
Minimized ESOP’s for benchmark circuits and their comparison with SOP’s from ESPRESSO

Circuit ESPRESSO XORDD-based Synthesis
in out terms literals cpu terms literals cpu
5xpl* 7 10 65 347 0.3 42 146 0.5
9sym* 9 1 86 602 0.6 84 548 0.6
apex1* 45 45 206 2842 5.7 518 4692 5.7
apex3* 54 50 281 3303 7.4 449 3432 13.1
apex5* 117 88 1088 7281 106.3 428 4056 5.4
b12* 15 9 43 207 0.6 30 145 0.4
cps* 24 109 163 2836 10.7 342 4340 8.2
e64* 65 65 66 2210 1.3 65 2210 4.9
ex4* 128 28 279 1928 13.3 354 3276 3.7
ex5* 8 63 74 1122 65.5 128 784 9.2
rd53% 5 3 31 175 0.1 20 48 0.2
rd73% 7 3 127 903 0.4 54 191 0.7
rd84* 8 4 255 2070 1.6 90 399 2.8
spla* 16 46 252 3194 64.3 446 5291 29.4
t481%* 16 1 481 5233 2.8 13 41 1.1
xor5* 5 1 16 96 0.0 5 6 0.0
apex6 135 99 656 4456 154.3 432 4012 3.7
apex7 49 37 434 3305 25.4 218 1874 1.6
ALU2 10 6 143 1029 1.8 111 641 1.8
ALU4 14 8 608 5444 21.7 565 4625 8.3
b1l 3 4 4 0.0 6 14 0.0
b9 41 21 106 512 1.9 81 509 0.8
c8 28 18 79 333 0.7 55 177 0.5
cmb 16 4 17 74 0.3 4 39 0.2
count 35 16 169 793 1.5 54 292 0.6
dalu 75 16 2076 24972 74.6 1754 19108 49.7
frgl 28 3 119 914 0.9 127 1405 1.8
frg2 143 139 ** ** 1180 11997 43.6
il 25 16 28 129 0.2 22 81 0.3
i6 138 67 202 919 3.6 145 498 2.1
i8 133 81 951 7966 41.9 1224 9997 12.4
i9 88 63 1279 8523 50.0 1287 8189 14.6
parity 16 1 ** ** 16 17 0.1
ttt2 24 21 124 700 1.6 65 429 0.5
vda 17 39 93 1442 4.5 197 1183 4.9
x2 10 7 17 84 0.2 20 78 0.5
x3 135 99 656 4458 188.6 419 4131 10.2
x4 94 71 520 3062 21.6 321 1913 2.5

* circuits in PLA format

TABLE II

Some combinational circuits with large number of product terms and

literals

Circuit XORDD-based synthesis
in out terms literals cpu nodes
des 256 245 9828 60103 46.4 3883
i3 132 6 212643 4194303 2.1 138
i4 192 6 212642 7191492 7.8 192
my-adder 33 17 262158 4128803 4.0 579
C432 36 7 1.2e6 3.0e7 116.5 1280

been implemented. With some modifications, our algorithm
can be extended to optimize multi-level AND/XOR net-
works. This is because a Shared Multiple Rooted XORDD is a
multi-level representation of functions. An algorithm is cur-
rently being developed to minimize multi-level AND/XOR
networks.

(1]

[2]

REFERENCES

R.Brayton, R.Rudell, A.Sangiovanni-Vincentelli, and A.Wang, “MIS:
A Multi-level Logic Optimization System,” I[EEE Transactions on
CAD/ICAS, Vol. CAD-6, No. 6, November 1987, pp. 1062-1081.

R.E. Bryant, “Graph-Based Algorithms for Boolean Function Manipu-
lation,” IEEE Trans. on Computers, Vol. C-35, No. 8, August 1986, pp.
677-691.

(2]

[4]

(5]

(6]

[71

(8]

(9]

[10]

[11]

** not available after 15 minutes of cpu time

R.Drechsler, M.Theobald, and B.Becker, “Fast OFDD based Minimiza-
tion of Fixed Polarity Reed-Muller Expressions,”
Automation Conf., 1994, pp. 2-7.

H.Fleisher, M.Tavel, and J.Yeager, “A Computer Algorithm for Mini-
mizing Reed-Muller Canonical Forms,” IEEE Trans. on Computers, Vol.
C-36, No.2, 1987, pp. 247-250.

G. Hachtel, M.Lightner, R.Jacoby, C.Morrison, P.Moceyunas, and D.
Bostik, “Bold: The Bould optimal Logic Design System,” Hawaii Int.
Symp. on Systems Sciences, 1988.

S. Malik, A.R.Wang, R.K. Brayton, and A. Sangiovanni-Vincentelli,
“Logic Verification using Binary Decision Diagrams,” Proc. Intl. Con-

Proc. Buropean Design

ference on Computer-Aided Design., 1988, pp. 6-9.

A.Sababi, and M.A.Perkowski, “ Fast Exact and Quasi-Minimal Mini-
mization of Highly Testable Fixed-Polarity AND/XOR Canonical Net-
works,” Proc. 29th ACM/IEEE Design Automation Conference, 1992,
pp. 30-35.

M.A.Perkowski, L.Csanky, A. Sarabi, and I.Schafer, “Fast Minimiza-
tion of Mixed-Polarity AND/XOR Canonical Networks,” Proc. Intl.
Conference on Computer Design, 1992, pp. 33-36.

R.Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued Minimiza-
tion for PLA Optimization,” IEEE transactions on CAD/ICAS, Vol.
CAD-6, No. 5, September 1987, pp727-750.

T.Sasao and P.Besslich, “On the Complexity of Mod-2 Sum PLA’s,”
IEEE Trans. on Computers, Vol. 39, No. 2, February 1990, pp. 262-266.
“EXMIN2: A Simplification Algorithm for Exclusive-OR-
SUM-of Products Expressions for Multiple-Valued-Input Two-Valued-
Qutput Functions,” IEEE Trans. on Computer-Aided Design, Vol. 12,
No. 5, May 1993, pp. 621-632.

T.Sasao,

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

