AND/OR Reasoning Graphs for Determining Prime
Implicants in Multi-Level Combinational Networks

Dominik Stoffel

Wolfgang Kunz

Stefan Gerber

Max-Planck Fault-Tolerant Computing Group
at the University of Potsdam, Germany

Abstract

This paper presents a technique to determine prime implicants
in multi-level combinational networks. The method is based on
a graph representation of Boolean functions calledAND/OR
reasoning graphs. This representation follows from a search
strategy to solve the satisfiability problem that is radically
different from conventional search for this purpose (such as
exhaustive simulation, backtracking, BDDs).

The paper shows how to build AND/OR reasoning graphs for
arbitrary combinational circuits and proves basic theoretical
properties of the graphs. It will be demonstrated thatAND/OR
reasoning graphs allow us to naturally extend basic notions of
two-level switching circuit theory to multi-level circuits.

In particular, the notions of prime implicants and permissible
prime implicants are defined for multi-level circuits and it is
proved that AND/OR reasoning graphs represent all these
implicants.

Experimental results are shown for PLA factorization.

1 Introduction

This paper presents a method to calculate prime implica
in multi-level circuits, thus generalizing basic notions frorrb
minimization theory to multi-level

circuits. Our reasoning techniques to analyze multi-lev
circuits are based on a radically different way of soIvinH
satisfiability compared to conventional concepts. This moti-
vates the following basic discussion attempting to give

classical two-level

global view on the nature of the algorithm.

Algorithms to solve satisfiability rely on appropristear-

automatic theorem proving with predicate logic and are used
in proof-by-refutation strategies. For a description of general
problem-solving techniques in computer science and for
more information on the basic concepts of OR graphs and
AND/OR graphs, the reader may refer to a standard text
book, e.g. [14].

Conventionally, in the field of switching theory, when explo-
ring the functionality of a giveBoolean function or combi-
national circuit, techniqgues enumerate through the finite
Boolean space being defined by the setlo€ombinations of
value assignments at the input variables. A common search
scheme to prove satisfiability or related problems like test
generation is théecision tree A decision tree can be consi-
dered as an example for @R graph

Notice that there can also be a different interpretation to

such graphs. They do not only represent a possible search
process to solve a specific problem, for certain problem

formulations (like satisfiability) they can also represent the

underlying Boolean function. If exhaustive siiation is

rPE}?)resented as tree we obtain a Shannon tree. This tree can

e reduced by sharing isomorphic subtrees so that we obtain
binary decision diagranfi2],[6]. Graph representations of

%oolean functions byrderedbinary decision diagram§s]

ave encountered wide-spread popularity.

fhe following observation is crucial for the motivation of

this paper: the conventional concepts to solve satisfiability
and related problems in computer-aided circuit design like
decision tree based backtracking, exhaustive simulation,

ching techmque; - Every search process can be viewed a8ifhnnon trees or binary decision diagrams can be interpre-
traversal of a directed grapiStandard literature, e.g. [14]'t<?d as OR trees ambtas AND/OR trees
d .

distinguishes between two basic types of search graphs.

the most simple case t_o be considered, the graph 'S Anifle that any Boolean expression can be understood as an
calledORgraph A node in the OR graph represents a IVERAND/OR tree. However, such a general AND/OR tree does
problem to be solved and each arc emerging from this ng 6t decide whether the implemented Boolean function is

represents a possible move or decision that can be mad aeﬁtsfiable or not. (As mentioned, this problem is usually

:he curr enttﬁtate of F}hi lslear_ch procefs.. A ?olltmon IS :;mtj)n(.js ved by resorting to an OR tree based enumeration). Here
raversing the graph following a certain strategy and BeING, .. jnterested in specific AND/OR trees Bwolean

guided by some heuristics exploiting prObIem'SpeCif'f"[mctions that decide satisfiability. This is important for

knowledge. many applications in design automation and leads to other
useful properties of these graphs. A technique which solves

AIT 'S well—I;now.r:hhfwe\t/er, for fsomdeezro[t))lemz Itis u;egg Boolean atisfiability based oiAND/OR search is the recur-
allow graphs with two types of nodeSND nodes an sive learning approach of [11].

nodes in order to represent a different type of search process.

If at a given search state a certain move is made this neiye differences between the two searching schemes are of
lead toseveralnew problems thaill have to be solved. Such great practical interest in the field of design automation. In
AND/OR reasoning grapher simply AND/OR graphsare particular OR search techniques are hard to ussyfiem-

the basis of many searching methods employed in the fieldagfc reasoning The goal of any reasoning is to derive the
ASP-DAC'97

logic consequences of a given assumptpecifically, of value assignments yielding a conflictgat Otherwise,
for some BooleantatementA we would like to derive some gis called justified.
statementB that is true ifA is true, i.e.A 0 B. Previous
representations ddoolean functions are not well suited forUnjustified gates represent OR nodes in the AND/OR tree.
this kind of task. For example, given statem&nta BDD- The special case of an unjustified gate where the specified
based approach cannderive or imply statemen®, it can signal is at the gate output is commonly referred torgis-
only checkif A Bis true if bothA andB are given. stified linein test generation literature [1].

Boolean reasoning techniques have always played an im-Def. 2.2: Let f;, f,, ...f, be some unspecified input- or
portant role for two-level circuits. Here, we propose a rea- output signals of an unjustified gateand letV;, V,,

soning technique fomulti-level circuits. In the sequel we ...V, be logic values which specify them. The set of si-
will speak of AND/OR reasoning graphs or simply AND/OR gnal assignments] = {f; = V; , f, = V,, ... f, = V,}}, is
graphs interchangeably. calledjustification for g, if the combination of value as-

signments i) makegy justified.

2 AND/OR Enumeration in Combinational Networks
Justifications represe®ND-nodes in the AND/OR tree. To

In the following, we consider combinational netwofksith ~ complete the picture we need the following definition:
n primary inputs andn primary outputs where all gates in
the circuit have a unique label and their output sigyals Def. 2.3: Let °C be a set ofn justificationsJ;, J, ... Jm
realizeBoolean functionsy(x): B", - B, with B, = {0, 1}, for an unjustified gatg. If there is at least one justifica-
where the variables,,... %, correspond to the primary input tion J;, 0 °C, i=1,2..m for any possible justificatiod” of
signals of the circuiC. Following the usual representation g, such thatl 0 J, then sefC is calledcomplete
of a combinational circuit as a directed acyclic grdpAG),
we say as in [4], that a sigrfalies in the transitive fanout of As an example, the following represents a complete set of
y if and only if there exists a directed path frgrio f. Simi- justifications for a logic OR gate with five unspecified inputs
larly, a signalff lies in the transitive fanin of if and only if and a logical 1 at the outputC = {J;, J,, J3, Js, Js} With
there exists a directed path framto y. Furthermore, we J;={a=1}, Jb={b=1}, l3={c=1}, ,={d=1}, J5=
assume that there are externaldon’t cares, the function of {e= 1}. Note, that for example the justificatigh= {a = 1,
the combinational networ&(x): B," - B," with B, = {0, b = 0} does not have to be i@ since all assignments i
1} is completely specified. Extensions to our methods usirgge contained id". Finally the following definition is nee-
external don’t cares are possible, but will not be furtheted:
considered here.

Def. 2.4: Let R be the set of value assignmefiits V,
2.1 Revisiting basic notions of [11] for those variable§ in a combinational network whose

value has been changed by making implications for a gi-
AND/OR enumeation is performed by injecting and rever- ven set of value assignmerfis Further,U is the set of
sing signal values and by evaluating their logic consequencesvariable assignments at the outputs of those unjustified
using the ordinary event-driven implication techniques for gates, which have an input with a variable assignment
combinational circuits.Direct implications play an im- contained inR. The seE(S) =R O U is called thesvent
portant role in this reasoning. By direct implications as in |list E for S
[11] we understand the evaluation of the set of value as-
signments at every gate that has an event and the propagatiether words, when performing (e.g. direct) implications
on of value assignments according to the connectivity in ther a given set of value assignmeshe event listE con-
circuit. To perform AND/OR enumation in a multi-level tains all variables whose value has been changed. This
combinational network we need the two basic notions ficludes the output signals of new unjustified gates.
unjustified gatesand justificationsfrom [11]. For the time Furthermore, also the output signals of old unjustified gates
being, assume that we operate in a ternary logic alphabetdfe included if their status has changed, i.e. one of their
1, X) where X is the don't care value. A signal is calle¢hputs has assumed a different value.
specifiedif it is assigned the logic value 0 or 1, it is unspeci-
fied if it has the value X. 2.2 AND/OR Reasoning Trees

Def. 2.1:Given a gatg in a combinational network that The procedure in Table 1 performs AND/OR enuatien
has at least one specified input or output signal and tfe an initial set of value assignmerSisat arbitrary signals
values afg are logically consistentGateg is calledun- in a combinational circuit. The technique in Table 1 results
justified if there are one or several unspecified input drom routinemake_all_implications(n [11] after removing
output signals of for which there exists a combinationthe statements to extractcessary assignments. If the

initial set of value assignments is inconsistent, th€onsider the circuit in Figure 1. We appiyd_or_enu-
routine produces a conflict. If the value assignments amgerate() for an initial situation of value assignments
satisfiable this is proved by the absence of a conflict aft&= {y = 1}. The initial event list i€ = {y = 1}. Nodey in
exhausting the complete AND/OR tree. (Thisimsigr as in the circuit of Figure 1 becomes an unjustified line and the
proof-by-refutation strategies for theorem proving.) Theomplete set of justifications 1€ ={{ g = 1}, {e = 1}}. This
completeness of this method follows from [11]. produces the two AND nodes in the AND/OR tree of Figure

2. To distinguish AND nodes from OR nodes, AND nodes

Note an important difference to conventional techniqueare marked by an arc. (This convention is adopted from
unlike other techniques in computer-aided circuit design thésandard literature.) For each justification direct implications
method proves the satisfiability of a set of value assignmemtsply logic signal values and produce new unjustified gates.
in a combinational circuit without actually generating &very value assignment forms an OR node in the treeg For
satisfying input vector. (This may only happen in specia 1 we implyc = 1,f = 1 andu = 1, where nodébecomes a
cases). When conventional methods check satisfiability, amew unjustified gate. This requires new justifications and the
side result, they producifficient solutionsi.e. inputs that technique continues to enumerate the AND/OR tree as
satisfy the function. In contrast, t#ND/OR enumeation shown in Figure 2 in a depth-first way.
based approach presented here, as a side result, can generate
thenecessary conditionfer a solution in terms dmplicati-
ons or implicants This will be further developed in Secti-
on 4. ‘7

initially: r:=0;
[* this procedure operates on a global data structure representing the cifcuit,
it takes as input r,.xand a set of initial value assignments S in a cirtuit

d
Figure 1: Circuit with value assignmemt= 1
and_or_enumerate(S, I, max)

{ o ine OR nodes of AND/OR tree The proposed AND/OR trees are described more precisely by
etermine OR nades o tree the following definitions:

make all direct implications for S in circuit and
set up a list U" of unjustified gates in event list E(S);

Def. 2.5: An AND/OR treeis a bipartite rooted directed
tree with two disjoint vertex se¥éwp andVor The root
node v, is an element oVanp . The terminal nodes
/* determine AND nodes of AND/OR tree */ (leaves of the tree are elements \¢fr. Adjacent nodes
if (r<fmax) belong to different vertex sets. Each neggd Vog has
as attribute a variable assignméntV wheref is element
of a set of variablesf{, f,, ..., f;} and V is element of a

if (value assignments are logically inconsistent)
return INCONSISTENT,;

for (each unjustified gate g in U')

set up list of justifications °C'; set of valueB. Each node/a,q 0 Vanp has as attribute a
* try justifications * set of variable assignmerfss= {f; =V, f, :_Vz, ...,fk_:
for (each justification J 0°C") Vi }. Furthermore, each vertexhas as attribute an inte-
consistency; := and_or_enumerate(J;, r+1, Imax); gerlevelv), such that
_ _ i) The root (AND) noder; has
/* check logic consistency */ | -0
if (consistency; = INCONSISTENT for all i) . eve(v) = 0. L
return INCONSISTENT; i) OR nodes/or have the samlievelvor) as their im-
} mediate (AND) predecessolg.q
} levelVor) = levelVyed
return CONSISTENT; SOR) = = "= Tpred):
} iii) AND nodesvanp With their immediate (OR) pre-
Table 1: Pseudo-code for AND/OR enumeration decessors,.q have

levelvanp) = levelVyred + 1.

We now introduce AND/OR trees constructed by the routine .

of Table 1. An AND/OR tree is a bigée tree, one type of ~ D€f. 2.6: An AND/OR tree with root node, can be as-
node is referred to as AND node, the other type is the OR Sociated with theAND/OR enumeation of Table 1 as
node. The justifications as performedand_or_enumerate() follows:

form the AND nodes. The sition of value assignments 1) €ach AND nodevayo belongs to a se8 = {f; = Vi,
being implied from the justifications are represented by the ~ f2= Va ... f = Vic} of variable assignments at nodes
OR nodesJustifiedgates are OR nodes without successors, 1" the combinational network, where this set is given
i.e. they are the leaves of the tree. Unjustified gates require ~ €ither by the initial set of variable assignments if
justifications and have AND nodes as children. Vanp = V; (root node), or by justifications for unjusti-

fied gates ifvanp # V; (intermediate nodes). If a spond to the AND gates in the circuit. Obviously, this is
setSturns out to be logically inconsistent, the correbecause the AND gates in the circuit represent implicants for
sponding AND node andll its siccessors are remo- functiony and therefore the value assignmgmt O implies
ved from the tree. OR nodes which correspond to these implicants. Since the
circuit implements a unate function the AND/OR tree termi-
ii) each OR node/or belongs to a variable assignmennates in the next level, @8iND nodes have only one succee-
f =V at a node in the combinational network which ising OR node representing a leaf of the tree. This reflects
required for the logic consistency of the &etas- the well-known fact that tautology checking for unate functi-
sociated with the pare®ND node ofvog, i.e. an OR ons is of polynomial complexity.
node belongs to a variable assignment in the event list
E(9). If f =V is at the output of an unjustified gaje seves 0
thenvor hasm AND children, each belonging to a
justification J O °C, with m = PC|. If f = V is at the
output of a justified gate theny is a leaf of the tree. = =~ = = = w
Such a tree is called tReND/OR reasoning tretor the zeve/ 7
initial set of value assignmen$and the given combina-
tional network.

) il assignments {y=1}

Implications can be extracted in an easy way by examining . :
the topology of the AND/OR tree. Ifall AND nodes that -~ -~ -~/ \~ -~~~ -~~~ -~
succeed a given OR node, sayhave succeeding OR nodes J=feet)
that all correspond to the same value assignment, then, these
OR nodes with identical value assignments can be attached
as OR nodes to the immediate messsor of. As an ex-

ample, in Figure 2, the two AND nodes corresponding to a1 Gl ol g0 o0

attached to the immediate peegssor of. This process has

been referred to as “learning” in [11] and is schematically

shown in Figure 2. It can occur in any recursion level and
. . . . e=0 b=l el b0

the value assignments resulting in the previous level Calplgure 2: ANDIOR tree for assignmest= 1 in the circuit

change the course of subsequent enumeration so that mor of Figure 1

logical consequences can be examined faster. Recursive
learning is one possible application AND/OR trees and Let the AND/OR tree be lelized according to Def. 2.5,

allows to determine all (not only direct) implications for th?hen each level consists of a set of AND nodes with their OR
given set of value assignments in the circuit. children. The following theorem holds:

An important practical property of AND/OR graphs is that
important information about the given problem can be deri-
ved without visiting the complete graph. In thigoge ex-
ample the implicationy = 1 0 f = 1 can be derived already
in the first recursion cand_or_enumerate(Partial graphs
can be visited by restricting the maximum recursion dep
for and_or_enumeratefp some value,ay

Theorem 2.1: Lety be the output signal of a two-level
combinational circuit inSOP form. The AND/OR tree
for the initial set of value assignmen&= {y = 0}

(tautology test) has only two levels if the SOP is unate.

tH1e fact that the AND/OR tree for a unate SOP has only two
levels is related to the well-known result that all prime
It is illuminating to applyand_or_enumerate{f Table 1 to |mpl|can.ts ina unate SOP are esﬁnl.g. t_he unat&OP is
o : YT a syllogistic formula [5]. If the circuit is not unate the
two-level circuits. Consider the two-level circuit in Figure 3,

Fgure 4 shows he ANDIOR graph fr the assgyend. _pericrroe 122 (2 be coniued ale eve 11 order o
AND/OR enumeation for the initial set of value as- P 9 q y

signmentsS = {y = 0} at the output of a two-level SOP typeIrnpllcants included in the SOP.

circuit performs a tautology test. The SOP is a tautology.i.fhe situation for the non-unate case is illustrated in Figure 5

and only if a conflict is produced land_or_enumerate(As and 6 where the circuit of Figure 3 is modified such that it

can be noted, the AND/OR tree forumate SOP is very ; . X
b?comes non-unate in variatdeAlso in the case of a non-

simple and has the same structure as the two-level circuit. - -
The root AND node in the AND/OR tree corresponds to thuem"te qrcun, level 0 of the AND/QR tree reflects the impli

. o . cants in the SOP. If the circuit is not unate however, the
OR gate in the circuit and the succeeding OR nodes corre-

AND/OR tree continues after level 1. (Now there aralso of practical importance as will be demonstrated in
non-essential prime implicants). This is because the justiffection 5.
cations at some unjustified line, etg= 0 in Figure 5, pro-
duce events at other unjustified lines without justifying them. zewes o
In Figure 5, the justificatiorc = 0 at gateh produces a
logical 1 at the input of gate This changes the status at
gatej and represents an event so that the unjustified bne - - - - - - - A - - - - -A - A -
0 is added to the list of unjustified gates for the next recursi-
on level.

initial assignments {y=0}

J1={a=0}

a=0 b=0

Figure 3: Unate two-level circuit Figure 6: AND/OR tree for circuit in Figure 5

Level 0 initial asswg(n)menls {y=0}

3 Implicants in Multi-Level Circuits

Section 3.1 provides the theoretical links between basic

Level 1 notions of two-level minimization theory, namétgplicants

- @/HD/MKN) e " and prime implicants and certain subtrees of tAd&ND/OR
reasoning tree. Section 3.2 shows that AND/OR enatioer

allows to naturally extend these notions to important con-

cepts of multi-level optimization theory likebservability

“ @ e S don't cares and permissible functiond13]. Section 3.3

illustrates these concepts by means of an example.

3.1 Prime Implicants

The notions ofmplicantsand prime implicantsof Boolean
functions are central elements two-level minimization
theory. However, when dealing with general, multi-level
combinational circuits the basic concepts of implicants and
prime implicants have been used only rarely. One reason
why the notion of implicants has only played a limited role
in multi-level circuit design, we believe, is that in the classi-

Note that conventional OR search exploits the properties G @Pproach implicants are always expressed in terms of the
unate functions only by additional heuristic guidance. Fof@riables of the considered Boolean function. This is suffi-
example, a decision tree based test generator usually empfg8t for two-level circuits, however, in multi-level circuits

a backtrace procedure, see [1], to direct the search such thit does permit to describe all transformations which are
non-unate signals are enumerated first. Similarly, in tautolB9SSible in a multi-level network. Therefore, in this section,
gy checking by themnate recursive paradigiis] heuristics W€ extend thg meaning of the notion of prime implicants for
are used to direct the Shannon expansions to the non-urf4f&der use in multi-level circuits. A second reason why the
signals. AND/OR enumation on the other hand does nofotion of prime implicants has not become popoular for
require any such guidance. As the above exanilpletrate muItl-IeveI. circuits is that previously no technigues haye
it is an inherent property of AND/OR enuration that the been available to actually calculate them. The classical

enumeration simplifies at the presence of unate signals Bfolean reasoning techniques likensensus-methodsre
unate circuit partitions. This is not only of theoretical bup@sed on a two-level description of the circuit. Therefore we

now present how prime implicants can be determined in
multi-level circuits based on the concepts of Section 2.

Figure 5: Non-unate circuit

A literal is a variable in theombinational networlor
its complement. Aroduct terms a conjunction of literals.

Def. 3.1: A l-implicant(0-implican) for a given func-
tion y in a combinational networ€ is a product ternt
such thaly assumes the value 1 (0) for every set of value
assignments at the primary inputs®ffor whicht as-
sumes the value 1. Amplicantfor a nodey is product
term which is either a O-implicant or a 1-implicant yor

Note that 1-implicants correspond to the classical notion of
implicants as used in the theory of two-level minimization.

Def. 3.2: An implicant is calledprime if the removal of
any literal makes the implicant a product term that is not

Def. 3.3: An implication subtreg(IST) is an AND/OR

tree with the following properties:

i) it is a subtree of an AND/OR reasoning tree accor-
ding to Def. 2.6,

ii) the AND/OR reasoning tree and its subtree have the
same root node,

iii) for each AND node included in the subtrea| its si-
blings in the AND/OR reasoning tree are also inclu-
ded in the subtree.

Theorem 3.1: Lety be an arbitrary node in a combi-
national network and be the AND/OR reasoning tree
for an initial set of value assignmer8s- {y=0}. Consi-
der a product termh = x;X,[0..x,, wherex, is a literal
corresponding to a variabfe or its complement in the

an implicant. combinational network. Further, consider an ISTTof

with a set of leaveks.

If there is a one-to-one mapping between the literals
x oft and the elements$; & V;) of L such tha, = 0 if x,
represents the uncomplemented variable, ¥hd 1

By definition, the literals of an implicant for some ngdi@
a multi-level combinational network can belong to arbitrary
nodes in the network. Unlike in the case of a two-level

circuit, they are not necessarily primary inputs and do not otherwise, ther is a 1-implicant foy. Analogously} is
even have to be in the transitive faninyoPrime implicants a 0-implicant fory if the IST is a subtree of the AND/OR
at a node in the network may be composed out of arbitrary reasoning tree with the initial assignmé&nt {y=1}.
network variables.

Consider the nodg in the circuit of Figure 7. It is immedi- Theorem 3.1 states the rule for deriving implicants from an
ately obvious thatt and bd are prime (1-)implicants of ANP/OR tree. Alj implicant is formed by the conjunction of
functiony. If we allow that the literals of the implicants dovariables belonging to the leaves of an IST. If a variabke

not have to belong exclusively to primary input signals bigaf of the IST is assigned to 0 then we have to take the

can belong to arbitrary nodes of the network, additiondicomplemented variable, if it is assigned to 1 we have to
prime implicants can be determined. Note that 1 and take the complemented variable as a literal in the implicant.

z=0 can simultaneously only occur for input assignments

that producey = 1. Thereforexz is a 1-implicant fory. This As mentloned above, |mphd1_ons as performed n t_est
implicant is prime because neithernor Erepresent a1 generation can be related to single-literal implicants. Viewed
imglicant fory in AND/OR treesdirect implications correspond to an IST

completely contained in level 0, i.e. it only consists of the
root node with its immediate ORessors. For aimdirect
implication, sayy = 10 f = 1, there must exist an IST with
root nodey and an initial set of value assignmenys< 1}
which also includes OR nodes further down in the AND/OR
o tree, and which fulfills the condition thall leaves belong to
the same value assignmdrt 1. As an example, the bold
lines in Figure 2 indicate an IST which corresponds to an
Figure 7: Circuit example for multi-level implicants indirect implication.
We will now examine how implicants in combinationalHow areprime implicants represented in the AND/OR tree?
networks can be derived by AND/OR reasoning trees. It hhote in Def. 3.3 there is no requirement to include in the
been shown in [11] how aflingle-literal implicants can be IST more tharone child of each AND node of the original
extracted from the AND/OR enunagion process (= recur- tree. In fact, including more than one OR child of any AND

sive learning). This is now extended to extract arbitrarjjode makes the IST non-minimal. Since this non-minimal
multi-literal implicants. IST can contain leaves with new variable assignments which

are not needed to make the product term an implicant, the
The following definition is useful to relate implications and-orresponding implicant is non-prime.
implicants in a combinational network to certain subtrees of

the AND/OR reasoning tree defined in Section 2. Def. 3.4: An IST is calledminimal implication subtree

(MIST) if each AND node has exactly one OR child.

enumeration of Table 1 results framake_all_implications()
Theorem 3.2: Lety be an arbitrary node in a combi-[11], D-AND/OR enumeration results from
national network and be the AND/OR reasoning tree fault_propagation_learning(py removing the statements to
for an initial set of value assignmen&= {y = V}, extract necessary assignments. The routine will be illustrated
V O {0, 1}. For everyprime implicant ofy there exists a by an example in Section 3.3.
minimal implication subtree (MIST) of such that the
leaves of the MIST correspond to the literals of the primehe AND/OR tree ass@ted with these extensions starts
implicant as given in Theorem 3.1. with a single stuck-at fault assumption and, in the sequel, is
referred to asD-AND/OR reasoning treeThe results of
Note that not every MIST corresponds to a prime implicangection 3.1 can now be generalized for permissible impli-
For a given MIST with a set of leavesthere may be some cants.
other MIST with a set of leavds such thatL’ O L. Ob-
viously, then, the implicant belonging to the first MIST Theorem 3.3: Lety be an arbitrary node in a combi-
cannot be prime. Fortunately, by tracing from the leaves national network and@ be the D-AND/OR reasoning tree
towards the root of the AND/OR tree, it is very easy to check for a fault assumptiory stuck-at-1. Consider a product
for a given MIST with its set of leaves, whether a subset of termt = x;X,[1.x, wherex is a literal corresponding to
these leaves can belong to another MIST. a variablef; or its complement in the combinational net-
work. Further, consider an IST ©fwith a set of leavek
such that in the combinational network the ndgdesan-
3.2 Observability Don't Cares not be reached by the fault effect
If there is a one-to-one mapping between the literals
Often, the value of an internal logic function cannot be X oftand the element$ & V,) of L such thav; = 0 if x;
observedat any of the circuit outputs and therefore, in such represents the uncomplemented variable, &hd= 1
situations the value of the function need not be specified. otherwise, thent is a permissible 1-implicant foy.
This leads to so calleabservability don't caresAny functi- Analogously,t is a permissible O-implicant foy if the
on that covers such an incompletely specified function is IST is a subtree of the enumeration tree widtuck-at-0.
called apermissible functiomaccording to Muroga [13].
Theorem 3.4 states an important propertAND/OR trees
Since we extend the notion of implicants from two-levelvhich makes them very attractive in multi-level logic syn-
circuits to multi-level circuits we do not only calculate priméhesis:
implicants for functions at the outputs of the circuit but also
for functions that belong to arbitrary internal nodes in the Theorem 3.4: Lety be an arbitrary node in a combi-
network. Therefore, we also want to take into account the national network and be the D-AND/OR reasoning tree
concepts of observability don't cares and permissible functi- for a fault assumptiony stuck-atv, V{0, 1}. For every
ons. This leads to the definition pérmissible prime impli- permissibleprime implicantat nodey there exists a mi-
cants nimal implication subtree (MIST) of such that the lea-
ves of the MIST correspond to the literals of the per-
Def. 3.5: For some nodg in the combinational network missible prime implicant as given in Theorem 3.1.
C, a product termt of some node variables 6fis called
a permissible 1-implicanfor y, if and only if the follo- 3.3 Example
wing condition holds: It is 1 theny is 1 ornot obser-
vable at any primary output of. Equally,t is called a For illustration of DAND/OR enumeation consider the
permissible O-implicantor y, if and only if the following following example. Figure 9 shows a circuit for which the
condition holds: It is 1 theny is O ornot observableat AND/OR tree is bilt in Figure 11. Consider the faudt
any primary output o€. A permissible implicant is cal- stuck-at 1.
led prime if the removal of any literal makes the per-
missible implicant a product term that is not a pee proceed as given bfault propagation_learning()in
missible implicant. [11]. There are two paths along which this fault can propa-
gate to a primary output. At least one of them has to be
AND/OR enumeation for a given node in the combinationakensitizedor fault detection. One path traverses gatesd
network can easily take care of observability if the enumer-sensitization yields the value assignmehts1 andj = 0.
tion is based on Roth's D-alphabet. In [11] a method h&sr the AND/OR tree in Figure 11, this produces the left
been presented to calculate all value assignnmesdsssary AND-node in level 1 with its children. The second possibi-
to observe a stuck-at fault at a given fault line in a combinBty is to sensitize the path through andq resulting in the
tional network. This routine is calledault_propaga- right portion of the AND/OR tree. The séimations yield
tion_learning() in [11]. Analogously, like the AND/OR value assignments and unjustified lines. These value as-

signments are enumerated in the usual way as givengmssible with the conventional two-level notion of prime
Table 1, so that the AND/OR tree for the stuck-at-1 faulinplicants. Further, this example illustrates another im-
assumption at signalresults as shown in Figure 10. portant property of our approach. The implicant actually
exploits observability don't cares at nadeThe fact thab/@
is a permissible prime implicant means that we can modify
the combinational network of Figure 9 as shown in Figure
11. The noda' assumes a different function tharbut the
full circuits in both figures are still functionally equivalent.

Figure 9: Example circuit for D-AND/OR enumeration

Note that for reasons of simplicity, in Figure 10, we only
consider for inclusion in the AND/OR tree those unjustified
gates _that have a specmeq output st|gnal,. l.e. they repre§en|£igure 11: Adding permissible implicart(¢ at signala
what is referred to as unjustified lines in test generation
literature. Although unjustified gates with unspecified out-
puts like in the AND/OR tree of Figure 2 are necessary for
the theoretical completeness of the enumeration, it is POg; -

. . .4 Heuristics
sible to neglect them for most practical purposes [11].

A) Heuristics to select an implicant

Level 0

il assgnment a =D} (suckat 1 AND/OR reasoning trees, in principle, can be used to gene-
rate all prime implicants for nodes imaulti-levelcombina-
ais Dfonter tional network, however there may be a huge number of
P e N prime implicants for a given node in the network, especially
sensiize kand| sensiize mand g if we take into account that the implicants can be expressed
in terms of arbitrary (internal) nodes of the network. There-
fore, this section is dedicated to demonstrate howdpe-
logy of the AND/OR trees can be used to generattaicer
implicants being particularly promising for the given appli-
cation. Here we consider circuit minimization. In [12] it has
92=(p<0) been observed and experimentally confirmed that, for a
given nodey, certain single-literal implicants, being ob-
tained byindirect implications, represemooddivisors fory.
As explained bove, an indirect implation corresponds to a
MIST with severalleaves all belonging to theamevalue
assignment. Intuitively, a subtree of thRD/OR tree which
has several leaves that all correspond to tlsamevalue
assignment indicates suboptimal circuitry. If such a subtree
) o o is a MIST, then we have an implication and transformations
The bold lines in Figure 10 indicate a MIST that representsige in [12] can be performed. Hence, we intend to identify
permissible implicanb(d for nodea in the circuit. MISTs with many identical leaves. In Figure 10 of Section

3.1, the bold lines indicate a promising MIST with four

Note the special characteristics of this prime implicant: thgayes that only belong to two different value assignments.
network functiona does not depend dhe variabled andc. Therefore, the permissible implicabt@ is promising for

Still, according to our definitions, it is possible to determing,«usion in a permissible function at nageln Section 4 it
a prime implicant fora using these variables. This is not,;; pe shown how this optimizes the circuit.

i=0 =0 h=0 ¢=0 n=0 b=0 p=0 0=0 g=0 n=0 e=0 ¢=0 b=0 0

Figure 10: AND/OR tree for circuit in Figure 9, bold lines
indicate the MIST for implican/@

Importantly, in this work, we completely avoid building the
trees to save memory. In [17], a method has been developed
to extract MISTs with a maximum number of identical
leaves from the D-AND/OR reasoning tree, solely by b
"monitoring" the enumeration process. This method is based

on repeated enumeration, thus we are maintaining linear el —| "
memory requirements at the cost of CPU-time. This q
technigue must be omitted here for reasons of space.

B) Heuristics to select sets of implicants

L - i _ Figure 12: Circuit after redundancy removal
Often it is not sufficient to add a single implicant to a net-

work in order to obtain reductions in other parts of the

network. A different cover of the node function can oftef}, (1] it has been proved that manipulating circuits based
only be obtained if several new implicants are added to0 188 yrime implicants can perform arbitrary transformations
network. If there are several implicants that are all particy; 5 compinational network. This means that the classical
larly "good" according to our heuristics then they all arfiion of prime implicants is not only sufficient to fully
added to the network. This is a pretty rough heuristic anflscripe circuit transformations for two-level circuits but
current research examines whether topological properties gf, to muiti-level circuits. Indeed, all transformations in

the AND/OR tree can give insight what implicants should g,y pinational networks commonly referred to as “division”,

grouped together in the attempt to find a better cover. "decomposition”, "kernel extraction”, "transduction” etc. can
o also be described by operations based on our notion of prime
4 Optimization Procedure implicants in networks, thus extending the classical notions

o)) of two-level theory to multi-level circuits.
The optimization procedure is along the lines of [12] and,

for reasons of space, is only illustrated by an example. R\?Experimental Results
consider the circuit of Figure 9. The function of the circuit is

given by the_following Boole_an expressions: The described methods have been implemented in the pro-
I = ad + b(cd +1) - (@+bcyd + bf gram system HANNIBAL and are applied to the problem of
q=ae+bce+g) = (@+bcje+bg PLA factorization. This application has been chosen because

) . .) this task cannot be accomplished in a satisfactory way by

By manipulating the equations, it can be noted that thefea,ioys implication based minimization techniques [12] or
exists a common kerned, + bc. Minimization can be achie- ATpG_pased methods [8], [9], [16]. Table 2 shows the
ved by sharing this kernel. It was demonstrated for thigqits for some two-level MCNC benchmark circuits which
example in Section 3.3 how to generate the permissibles tactorized into a multi-level description. Since our im-
implicantbc for signala. Note that the suboptimality of the 5 jementation does notceept external don't cares, at this
original circuit is reflect'ed by the existence of a MIST W'”boint we selected only such examples which are completely
several leaves belonging to the same value ass'gnme%:edﬁed. The results of HANNIBAL are compared with
b= 0 andc = 0. In this case it points out a common kerael, g|g1 2 (using resub -a simplify -d followed by
+ be, that can be shared to save area. script.rugged). The area is measured in terms of number of

, connections based on a generic library of the basic gate
If bc is a permissible implicant foa then the circuit is nes For both tools we show results for fixed settings
modified as shown in Figure 11. After adding the implica ingle run ofscript.ruggedfor SIS) and interactive use

to the circuit, redundancy elimination is used to reduce tl’(‘@olumn "multi run” for SIS and column "best" foANNI-
circuit. This results in the circuit of Figure 12. BAL). Column "RL" shows the results if only single literal

Y i implicants (recursive learning) are used.
The optimization in this example can also be obtained by an

algebraic kernel extraction technique [4]. Note however, that,o optimization results of Table 2 show the great promise
the procedures based on AND/OR trees and redundapgyhis approach although CPU-times are not yet satisfactory.
elimination are capable of performingeneral Boolean ag mentioned in Section 3, implicants are determined by
man_lpulatlonsand are not re_strlcted to algebr_alc transforr-epeated enumeration [17] without building the graphs. If

matl_ons. Also note t_hat th!s I_<|no_l of transformation cannot l?ﬁe graphs are actually constructed (at the cost of memory)
obtained by the netlist optimization methods of [8], [9], [12];mpjicants can be determined much faster by simple operati-

ons on the graph. Current research investigates appropriate

trade-offs between memory and time and how to incl&onclusion

de appropriate hashing and caching techniques similarly like

for BDDs. This vill be needed to reduce CPU-times of oulrhis paper has introduced specific AND/OR reasoning
approach. An important attribute of the preserAdlD/OR graphs as a new basis for solving design automation pro-
trees is that they need not be constructed to their full sizelems by implicant-based techniques. Conventional variable
order to be useful. In these experiments, AND/OR trees haaeumeration and its derivates are not the only possibility to
been examined only up to a recursion depth of ‘3'. Thislly explore the functionality of a given circuit. We have
however proved sufficient to obtain the shown optimizatioproved basic theoretical properties of the proposed AND/OR
results. graphs permitting to extend basic concepts of two-level

The experimental results clearly confirm our conjecture thaircuit theory to multi-level circuits.

topological properties of AND/OR reasoning graphs can be
used to guide an optimization process.

Table 2: Experimental results for MCNC PLAs (without
external don't care conditions), Sparc 5 (10]
Our experiments also demonstrate the practical relevance of
the theoretical result given in Theorem 3.1. This can b
nicely observed at the example of the MCNC benchmark
circuit 064 This circuit is small, nevertheless it is impos-
sible to build an OBDD for this circuit. No literal in the
circuit description appears in more than one product terfi?!
(hence the SOP is unate) amtprime implicants are essen-
tial. Therefore no optimization is possible, neither with two—[l3]
level nor with multi-level minimization techniques. SIS1.2
runs out of memory in both script.rugged and
script.algebraicafter about ten minutes of CPU-time in eactpy)
script. However, since the circuit is unate (Theorem 3 %5]
applies) HANNIBAL has no problem with this example. Th
fact that this circuit cannot be further optimized is detectFI‘d6
very fast and only little CPU-time is wasted. This benchma f‘(]
circuit illustrates that the basic theoretical differences betwe-
en variable enumeration andND/OR enumeation that [17]
have been elaborated in this paper have important conse-

guences in practical applications. (18]

References

PLA SIS1.2 HANNIBAL [1] Abramovici M., Breuer M., Friedman A.: “Digital Systems Testing and
tactorization (script rugged) Testable Design'Computer Science Prgsk990.
- - - - [2] Akers S.: “Binary Decision Diagrams"”, IEEE Transactions on Compu-
results srlunr?le rrrllljjrl]tl fixed settings [best RL ters, vol. 27, pp. 509-516, June 1978.
name #e #e. #cl| #d. cpud #c| #c [3] Brayton R. K., Hachtel G. D., McMullen C. T., Sangiovanni-Vincentelli
time A. L.: “Logic Minimization Algorithms for VLSISynthesis"Kluwer
Academic Publisher8Boston, MA, 1984.
5xpl 369 164 159| 79 0:01:58 78 237
— [4] Brayton R. K., Rudell R., Sangiovanni-Vincentelli A., Wang A. R.:
9sym 609 320| 206| 15p0:17:00) 83| 609 “MIS: Multi-level Interactive Logic Optimization System”, IEEE Trans.
clip 1055 195 | 187 11Q o0:10:24 9 52 on CAD, CAD-6(6), pp. 1062-1081, Nov. 1987.
conl 32 30 30 27| 0:00:01(27 30 [5] Brown F.: “Boolean Reasoning”, Kluwer Academic Publishers, Boston,
duke2 995 540 510(416 1.:12:33 3%5 61R MA 1990.
64 2144 253 253| 258 0:15:19 2%3 258 [6] Bryant R.: “Graph-based algorithms for Boolean function manipulati-
on“, IEEE Trans. on Computers, vol. 35, pp. 677-691, August 1986.
misex1 154 77 77 59 0:00:51| 55 81
- — [71 Brand D.: “Verification of Large Synthesized Designs”, Proc. Int. Conf.
misex2 206 121] 121 12§ 0:02:47] 111) 134 on Computer-Aided Design, Santa Clara, Nov. 1993, pp. 534-537.
- - N . 5 =
064 195 195 00008 19p 199 [8] Chang S.C., Marek-Sadowska M.: “Perturb and Simplify: Multi-Level
rd53 176 52 52 36| 0:00:42 34 99 Boolean Network Optimizer”, Proc. International Conf. on Computer-
sa02 501 | 192| 190| 11p0:05:38| 108] 195 Aided Design, San Jose, Nov. 1994.
vg2 914 124 124 118 00320 112 14l [9] Entrena L. A., Cheng K.T: “Sequential Logic Optimization by Redun-

dancy Addition and Removal”, Proc. Intl. Conf. on Computer-Aided De-
sign, Nov. 1993, pp. 310-315.

Jain J., Mukherjee R., Fujita M.: "Advanced Verification Techniques
Based on Learning”, Design Automation Conference (DAC), pp. 420 -
426, June 1995.

Kunz W., Pradhan D.K.: “Recursive Learning: A New Implication
Technique for Efficient Solutions to CAD Problems: Test, Verification
and Optimization”, IEEE Trans. on CAD, vol. 13, #ft43-1158, Sept.
1994,

Kunz W., Menon P.: “Multi-Level Logic Optimization by Implication
Analysis” Proc. Intl. Conference on Computer-Aided Design, San Jose,
pp. 6-13, Nov. 1994.

Muroga S. et al.: "The Transduction Method - Design of Logic Net-
works Based on Permissible Functions", IEEE Trans. on Computers,
Oct. 1989, pp. 1404-1424.

Rich E.: "Artificial Intelligence", McGraw-Hill, 1983.

Roth J. P.: "Diagnosis of automata failures: A calculus & a method",
IBM J. Res. Develop., vol. 10, July 1966, pp. 278-291.

Rohfleisch B., Brglez F.: “Introduction of Permissible Bridges with
Application to Logic Optimization after Technology Mapping” , Proc.
EDAC/ETC/EUROASIC 1994.

Stoffel D., Kunz W., Gerber S.: "AND/OR Graph3&chnical Report
Max-Planck-Society, MPI-1-95-602, 1995.

Kunz W.: "Testing Technigues in Logic Synthesidébilitation Thesis
Department of Computer Science, University of Potsdam, 1996.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

