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Abstract— This paper introduces the notion of cycle-accurate MEMOry modules. Thus a module is completely characterized
macro-models for RT-level power evaluation. These macro- by its capacitance models in the MSB and LSB regions. The
models provide us with the capability to estimate the circuit Preak-point between the regions is determined based on the

power dissipation cycle by cycle at RT-level without the need to @Pplied signal statistics collected from simulation runs. The

invoke low level simulations. The statistical framework allows us Activity-Based Control (ABC) model [4] is proposed to
to compute the error interval for the predicted value from the ©Stimate the power consumption of random-logic controllers.

user specified confidence level. The proposed macro-modelAll Of the above macro-models assume some statistics or
generation strategy has been applied to a number of RT-level Properties about the input sequence.

blocks and detailed results and comparisons are provided. Power macro-modeling formulations in general consist of
. generating circuit capacitance models for some assumed data
- INTRODUCTION statistics or properties. The statistics of input data is gathered

Due to rapid advances in the semiconductor manufacturiflgffing behavioral simulation of the circuit. Power macro-
technology, the chip density and operating frequency 8fodeling problem defined as follows: Given an input vector
today’s IC's are increasing. Consequently, power dissipatigduence of sizd, an RT-level circuit withm modules, and

has emerged as a major concern in today’s IC’s. Low powagsuming\ is large enough to capture the typical operation of

design requires accurate and efficient estimation tools € circuit, derive a simple function such that the function
various design abstraction levels. value of theN vector inputs is as close as possible to the

o ) ) . .power consumption of th¥-vector sequence.
Power estimation at RT-level or higher level is crucial in

achieving a short design period. A hierarchical simulatioff simple power macro-model equation for fiie module in
approach to RT-level power estimation is to functionalljhe circuit may be expressed as:

simulate one circuit and to collect input sequences for each nj

module (major sub-circuit). This information is then passed to P = %Vz of [E G Oswy (1.2
various kinds of gate-level or circuit-level simulation =

programs. The modules are simulated in turn at gate-level\opa et is the clock frequencyy is the number of inputs for
circuit-level using the corresponding input sequences. Final Yejth module,C; is the effecti\]/e capacitance for input pin

the power consumption for all the modules is added togethery s\ is the switching activity for théth pin of thejth

to get the power consumption of the whole circuit. Strictli,oq e’ Note that the above equation is only a typical form of
speaking, this is not an RT-level power estimatiof,q o model and is not unique. For example, we can include

methlo?olc:g):jbecause It {_ndete_d usl,aes gate—lelvelt_or C_II’CUItt-|e\ﬁ§ spatio-temporal correlation coefficients among circuit
simulator to do power estimation. Fower evaluation IS actualiy, s [5] to improve the power prediction results (this will

done at lower level. however significantly increase the number of variables in the

Most RT-level power estimation techniques use capacitan@@cro-model equation and thus the evaluation overhead).
models for circuit modules and activity profiles for data of ot p. genote the power consumption of file module at
control signals [1-3]. Such techniques are commonly knowqy L

: ) ycle k. We can also write the macro-model equation in a
as (power) macro-modeling. The simplest form of the Macr@ycie-based form as follows:
model equation is given by: :

nj
Power= % V2 Of0Gx OSW (1.2) ij = %Vz Oof [E QJ- DSVM< (1.3)
&

whereCe is the effective capacitancBWis the mean of the
input switching activity, and is the clock frequency. The ¢ i module at cyclé. The above equation also illustrate
Power Factor Approximation (PFA) technique USeS @fiat macro-modeling can be used to estimate the power
experimentally determined weighting factor, called the powey

factor. t del th d b onsumption at each cycle, this ability is critical to our
actor, 1o model he average power consumed by a giVEfLiistical approach. We thus distinguish betwaenulative
module over a range of designs.

macro-models (such as eqn.(1.2) ) anydle-basedmacro-
More sophisticated macro-model equations can be usednt@dels (such eqn.(1.3)). The total power based on cumulative
improve the accuracy. Dual Bit Type model, proposed in [2pr cycle-based macro-model can be expressed as:
exploits the fact that switching activities of high order bits m m
depend on the temporal correlation of data while lower order pP= Z P oo R= Z P, (1.4)

1= : =1 :

whereSW is the switching activity (0 or 1) for thiéh input

bits behave similarly to white noise data in the data path or
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where M is the number of modules used in the circuit. Taoefficients. The confidence interval for power prediction of
calculateSW, behavioral simulation is performed from cycleany vector pair can also be evaluated for the purpose of error
1 to cycleN and the mean values of random varis#g are control. This is a very important and useful feature which is
tabulated. LeVj denote the input vector for modylat cycle absent from all other power macro-modeling techniques.

k, 0< k< N. A more general macro-model equation for

modulej at cyclek can be expressed as: Il. BACKGROUND

Pk = Fj (Vjx-1:Vix) (1.5) Our goal is to build a cycle-based macro-model which takes a
pair of vectors as its inputs and produces a power estimate as

whereF; could be any function of input vector pairs. Mgt  jts output. The method of linear regression analysis is applied
denote the collection of input vectors, derived fronio achieve our purpose.

simulation, form modules at cyclg, 0 < k < N. Then total

power equation for cyclkis: The statistical relationship between power dissipation and an
input vector pair can be defined as,
P = F(Vier, Vi) (1.6) _
m P=Bg + By Xy + B Xt 4By X (2.3)
where F = z Fi. whereP is the power dissipation variabl@,,B,,---,B, are

=1 . ..
! constants called the regression coefficients or parameters of

In the past, average power dissipation has been the primgf¥ macro-model, andX,, X,,---, X, are characteristic
focus of power estimation techniques and tools. It has . . .
however become important to estimate the power distributid@iables extracted from the input vector pair.

.Off the circuit over a lllarge r]Juln}berdof clock cy(illes. .Thi.’flegression model is a formal means of describing a statistical
information Is especially useful for determining the CirCUltg|ation between a set of variables and the characteristic under

reliability, performing dc/ac noise analysis, and choosing,,qy " Unlike a functional relation, the statistical relation is

appropriate packaging and cooling techniques for IC's. CyClgat perfect. This means that in general, observations for a
based macro-models enable us to predict the circuit povt%@ression model do not fall directly on the curve defined by
dissipation over time, without the need for low-levele rejationship. There are two essential ingredients of a
simulation. statistical relation which are expressed by a regression model:

In general, the three basic criteria for effective macro-model Tendency of the dependent variaBlgo vary with the

design are: independent variablesX;, X,,--+, X, in a systematic

1. The space and time complexity for collection of fashion,
parameter values fdf and for each evaluation of this. Concentration of points around the surface of statistical
function should be small. relationship.

2. The accuracy of the macro-model should be high. o o )

3. The error sensitivity of the macro-model to variations ihese two characteristics are embodied in a regression model
population behavior should be small. by postulating that:

In this paper we propose a statistical design methodology for There is a probability distribution & for each distinct
developing a good cycle-based macro-models for modules yajye of (X;, X,,---, X, )

(simple or complex cores). The macro-model is built ang . e
analyzed based on the theory of regression analysis. 2A The .exp.ected values of these probablhty dlstr!buno.ns
systematic design flow is proposed for model development (distribution means) vary in some systematic fashion with
and verification and two different variable selection methods X, X,,---, X, .

are discussed. In one approach, detailed information about

module (core) structure and functionality is used to derive Assume that we have been given the equation form of the
specializecclosed form capacitance equation with a relativelgpnacro-model and have done simulation (observationjnon
small number of variables. This approach leads to macn@ndomly sampled vector pairs so that we have obtaimed
model equations with high accuracy and low evaluation cosimulation results (observation values) of power consumption.
However, itd rfequires Ioletaile:jd knowle[\)dg? IIof the mogulﬁhe power linear regression model can be defined as,
structure and functionality and cannot be fully automated. | .

the second approach, Weystart Witgeneral-pur):)osenacro- rb' =BotBuX 1t BoX ot B Xy +E, 1=12--m (2.4)
model equation with a large number of variables (fofhereps are random variates corresponding to observations:
example, all pairwise spatio-temporal correlation coef‘flmenté _ .

among the module inputs). This technique leads to 166&1 X2, s Xk )=(Xi1, % 2, %k )i Bo,Pa--,By are the
accurate macro-models with higher evaluation cost, but th&grssion coefficients;X; , X »,-+, %, are known values
advantage is that it can be fully automated. A variable ™ ) Sl _

reduction algorithm is then applied to eliminate as marflerived from the input vector paiN(y,V,,); and &’s are

variables in the general-purpose equation as possible withgyffependent random variates representing deviation from the

incurring large errors. mean value of power. The multivariate regrssion model can
In the paper we discuss the various sources of error duept®also expressed in matrix form as,

insufficient training of the macro-model and propose a _

training set design methodology to make out macro-model P=XB+e (2.5)
universal (error be less sensitivity to variation in populatioGonsequently, the random vec®thas an expected value of
characteristics). Because of our macro-model, which is Efip]zxﬁ and the variance-covariance matrix &f is
multivariate linear regression model, we are able to compu 5 ) ] ) ]

the confidence interval for the estimation of modeCOV[P]=0"l, wherel is the identity matrix.



Because the “real” values @fande in the regrssion model If detailed information about the module (core) structure and
are unkown, we apply the method of least squares fit to obtimctionality is provide. Then this information can be used to
their estimated ande. We denote the vector of estimatedderive a macro-model form with a relatively small number of

regrssion coefficients as, variables, yet high accuracy. We call thispeecializednacro-
- model. As an example, consider variable selection for
(k+t1))><l= [bo, by, h<] (2.6) MUL16, which has the structure shown below:
The lease squares estimator for the coefficiprase: 1A

. Lot X[ 1B npuT
b=(X X)X P 2.7) F ]
MUL1
It has been proved [6] that the lest square estimator is an
unbiased estimator f@, which means H]= . | ] ouTpPUT

The estimated (fitted) power from macro-model is given byhe structure of MUL16 is basically a plane of 256 AND
the multiplication of input variables and estimategjates integrated with 1-bit full adders. The power dissiation of

coefficients: these adders is determined by the switching activity on their
A A A A1 inputs. We divided the plane into two symmetric parts as
P_[Pl’ Py, Pm]—Xb (2.8) shown above. Part | consists of 120 AND gates and 1-bit

. ' . adders while part Il consists of 136 AND gates and 1-bit
and the residual terms are defined as the difference betwe@fliers. Let us define transition type as either 00, 01, 10, or 11
the fitted power and observed power: transition. We use four variableg (i,j=0,1) to represent the
= e l=p- pP= p- number of transitions of tygeat the ouputs of the AND gates
© [el,ez, e“] P-P PA Xb (2.:9) in part |. Similarly, we use four variableg, (k,I=0,1) to
It is necessary to point out thiat e, and P are all random represent the number of transitions of tikpat the outputs of
variables with certain distributions. We will discuss theithe AND gates in part 1l. We then introduce second order
statistical properties in Section 3. termsX; Xy, X; Y, Y; Yiq for a total of 10+16+10=36 variables.
: . . . total, the number of variables in the specialized MUL16
Some important statistical properties of regression model [kﬂacro-model becomes 44. Note that all variable values can be
are. derived from knowledge of the input patterns which are

Al applied to MUL16, that is, no low-level simulation is
error sum of squares: SS:EZ e repc?uired.

1=1

error mean squaresMSE= SSE m k1) The procedure for generating a specialized macro-model

cannot be fully automated, because it requires detailed

. mo. analysis of the structure and functionality of a module. In our
regrssion sum of squareSSR= Z( P- B general purpose macro-modeling approach, the original
= variable set contains the variables that reflect the transition

regrssion mean squaresviSR= SSR k situation of each input and the pairwise spatial correlation

between every pair of them. A variable reduction algorithm is
coefficient of multiple correlationR = \/SSI?( SSR SPHE then applied to choose a “best” subset from the original
variables as the final selected variable for the macro-model as

1l . BUILDING THE REGRSSIONM ODEL detailed next.

Our workflow of building a good cycle-based macro-model i3-2 Variable reduction
shown in Figure 3.1 Number of variables in the initial macro-model can be in the

hundreds. Thdorward regression proceduri] is the most
suitable automatic search method for a regression model with
Variable Data Collectiof Power this many variables. The search method develops a sequence
Selection and Processing Simulator of regression models, at each step adding or deletingKone
v v variable. The criterion used for adding or deleting variables is
Variable Generation o the F* statistics [6] in regression analysis. The algorithm
Reduction Training Set (which assumes a linear macro-model equation form similar
to Eqn.(2.3)) is described below:
L Least Square Input : Given are a set of candidate variables
Data Fitting { X4, X5,--, Xy }, @ training set, a low thresholg, a high
threshold;. Sis a set of selected variables.

acro-mode
meets requiremen

YES

Step 0: Set SPand C = {X;, X,,---, Xy }-

Step 1 (start) : Fit a one-variable linear regression model for
each of theX variables. TheF* statistic for each model is

Fig.3.1 The workflow of developing a macro-model obtained by:
3.1 Variabel selection « _ MSR X) .
Variable selection is the first important step for building a ' T MSKH %)’ 1=12-N 31

good macro-model.



Assume thak; is the variable with the maximuRt value. If ~cases, results in large errors. Normally this problem can be
E' >t th X f Cto S and denote it asx. solved by doing more experiments and collecting more fitting

j =t then movex; from © 10 > and denote 1t ask, . gata from the available population. Table 3.1 shows the error
Otherwise, no macro-model can be found for the giyen values caused by the C1908 macro-model (66 variables) using

value ¢, must be reduced). The algorithm terminates training sets of different sizes. The units in the training sets
! ' ’ are randomly sampled from the population. Using the training

Step 2 (add variable) : Assun®= { X}, Xj,---, X,}, for sets of different sizes, macro-models with different
. ’ ’ ’ alr

SO ) ] _ coefficients were obtained and applied to estimate the power
eachX; remaining inC, fit the regression model with+1  dissipation for whole population.

variables X;, Xy,-+, X, and X; . For each of them, the | the Table, the average error and sum error is computed by:
partial F test statistics is: N N
SH-3 R

F' = MSR X1 X, %, )*g)z( b, ) (3.2 , = =
! MSK X, ){ ){2 >*S) 9 h} EAP(Error in Average Poweg ————
whereb; is the estimated value @ coefficient ands{ b} is ;Pi (3.4)
the standard deviation d&f. Let X; be the variable with the .
maximum F;" value. If F; >t, then move; form C to Sand ECP(Error in Cycle Powers i% R- P'|
. * . N = PI
denote it as X,,,, increasea by 1, and go to Step 3; 1=
Otherwise the algorithm terminates. where N is the size of the populatiorF,A’i is the estimated

Step 3(delete variable) : Assurs{ X., X,., X.}, and power for uniti, andP; is the corresponding “actual” power
P ' br22 o Pah value.

X, is the latest variable added in Step 2. Compute the partial TABLE 3.1

F test statistics for all other variablesSn THE ERRORCAUSED BY THEMACRO-MODEL TRAINED BY
o « " X TRAINING SETS OFDIFFERENTSIZES
= MSROX| X, %,y Xqy Koy X)

i PR * Training Set Size ECP EAP
MSECX, X %m0 &) (3.3) 100 33.54% 4.90%

- (L)z i=12..a-1 200 19.74% 1.07%
sh 500 14.90% 1.29%

Let x} be the variable with minimurB* value. If Fj* <t, Results show that, when size of the training set is too small,
. the full range of range of values of variables in the macro-
then removeX; formS model equation is not exercised sufficiently, resulting in
larger errors. However, after the size of training set surpasses
tHE lower bound for efficient training, the accuracy of the
macro-model can be hardly improved by using more training
With user defined threshotd andt,, the above algorithm will ,its.
find the “best” variables for the macro-model from the
candidate set. The number of “best” variables retained in tlite magnitude of the error caused by insufficiently trained
model is controlled by assigning appropriate threshold valuesiacro-model of type 1l depends on the difference in the
3.3 Traini t desi characteristic under study (for example, power range)

-0 Training set design between the new sequence and the training set. This problem,
Definition. Population is the set of all possible input vectowhich is called the population-sensitive error problem, is
pairs applied to a module. mor%eglfflcult to overcome and can not be completely
Definition. Training set is a representative subset of thaeVOI '

whole population which is used to estimate coefficients of tHeable 3.2 shows experimental results of the population-
macro-model. sensitive error problem. In the experiment, we used three

) _ o different training sets and their union to train and get four
The general requirement for generating the training set foMlJL16 macro-models with different coefficients. Then we
macro-model is that it should create the ranges of all possilalgplied each one of these macro-models to all three sets and
values of independent variabl¥sand dependent variabR  their union separately to evaluate the errors. The three training
in the original population . When either of these ranges is not , i
sufficiently covered by the training set, we say that the macrg€ts {A, B, C} correspond to input sequences going through a
model is not well trained or, more precisely, it is insufficientfMUL16 in three different applications. Training set A is
trained. According to the source of insufficiency (range diigitalized music waves. Training set B is random white noise
X’'s versus range oP), insufficiently trained macro-models INPUt. Training set C is obtained from a filtering application in
can be classified into type | versus type IL. which one of the data operands is fixed. Because the sizes of

) sets A and B are much larger than set C, the union set is
When applying the macro-model to new subsets of thfminated by sets A and B.

population (i.e., subsets other than the training set), the . L
insufficiently trained macro-model of type | will, in mostBecause sets A and B have similar power characteristics, the

macro-model trained by one of them has good accuracy when

Step 4 : Repeat Steps 2 and 3 until algorithm terminates
Step 2 or there is no variable in the candidat€set



TABLE 3.2 M sub-regions, thus forming strata. According to its power
EXPERIMENTAL RESULTSFOR POPULATION-SENSITIVEERROR ~ consumption, every unit may fall in exactly one of these
PROBLEM strata. Next, we randomly seldcunits from each stratum to
— . put into the training set. Finally, we get the training set of size
Training Size|  Rangg A B c A*B+*Q me=M*k. By using the stratified random sampling technique
Set (W) | ECP| EAP| ECP| EAP| ECP| EAP| ECP| EAP [8], the size of the training set is largely reduced while the
(%) | (%) | @) | (%) | (%) | (%) | (@) | (%) property of the population is captured by the training set. In
A |3000|[14,122] 10| o¢| 11| 64 =| &7 = 67 this way, we ensure that the macro-model will be sufficiently
B |3s00| 6143 13| 14 1] of = 97 = 3d trained to keep type Il error in check.

C 630 [0,57]| 87 669 39p 206 +f of = 37 3.4 Inference about prediction of new observations

A+B+C| 7130 [0,143] 12| 24 13y 15 -1 34 -9 O Information about the estimation error is the key factor to
improve the accuracy. When we apply the macro-model to
predict the power of an input vector pair, we like to know not
ly the estimated power value, but also the estimation error.
ne major advantage of using regression analysis as
described above is that the regression macro-model can
applying to another. But set C has quite differentredict the power consumption for an input pair and give
characteristics from sets A and B. As a result, the macroenfidence interval of the prediction for a given confidence
model trained by set C cause large error on sets A, B and tbeel as detailed next.
union set. The macro-model trained by sets A or B is not . .
applicable to set C either. However, the macro-model trainddlues of regression variable%,s are extracted from each
by the union set, which covers all the power range of set A, Bput vector pair \{i.1;, Vi). These variables are then plugged
C, has very good accuracy on all the sets. into the macro-model equation to yield the power estimation

It is desirable to have a macro-model which remains accuraesult P,,¢ for the vector pair. At this point, we do not know

regardiess of the specific subset of the population it M@e actual value of the observation, that is, the “real”
encounter in practice. One way of doing this is to buil

different macro-models for different sub-populations II§imu|ation result for the vector pair. What we are able to do
practice, we will first analyze the characteristics of the inplh‘towever. is to derive a confidence level for the unknown
data applied to the module, then apply the appropriate macedservation.

model. This methodology is similar to the population-partition_ , ) i

method in building specialized macro-models. However iffiven a confidence level d; the correspondingonfidence
most cases, the population characteristics varies widely andhierval is the interval §i;, u;] such that the probability that

is not possible to derive some well-behaved populatiaRe actual power value lies inside this interval &. 1-
partitioning scheme. Even in the same application, different . ] .

instances of a module may encounter very differefiiven a confidence level d; the confidence interval of the
population characteristics based on the circuit” context @PservatiorPqsis given by:

which they are embedded. As a result, designers prefer to ~ .

have a single static macro-model that can be used in all kinds [Fops ~ t(1—a/2;m= k=D 1§ Rpd,

of applications, in other words, a universal macro-model. P+ t(1-a/2;m- k-1 0§ P J]

Generation of the fraining set is also an important step \Jghere t(1-0/2;m-k-1) is the (1a/2)x100 percentile point of
design a good universal macro-model. In this paper, WRe t distribution with degree of freedom ofk-1) and

gtergte'fr%;et'ontg?\ q rgﬁjjnoirr]r?sarie?lrien;se degc]:pbue%b?]%u[[ation [Popd is standard deviation of the new observation which is
ificati pling i xt. given by:

Prn_ Prax - IPpd =y MSE(L+ Xp(X™X) ™ X (312)

Stratification Note thatX and MSE refer to the training set matrix values
............ and mean square error of the training set as defined in Section
‘ II. In simple terms, the probability that the absolute value of

Random Sampling the difference betweerif’obs and Pgyys exceedst(1-a/2;m-k-

1)§ Py, is a.

Table 3.3 gives the experimental results of error computation
for C1908 general purpose macro-model at a confidence level
In the first step, data is collected from all applications inf 95%. For example row 1 tells us that for the vector pair
which the module is instantiated (for example, throug(selected randomly), the estimated power value was
architectural or behavioral simulation of the system which.302nW, while the actual power (measured by PowerMill
contains the module) or it is generated by automatic sequefite]) was 1.53mW. Furthermore, the confidence interval for
generation techniques [7] (which take signal and/or transiti@n95% confidence level was calculated to be [0.74, h®7]
probability and generate short sequences that satisfy @imce the actual value lies within the confidence interval, we
specified behavior). Assume that this data covers the whdlave a correct prediction. This is not true for the second
range of the power consumed by the module. Rgt and vector pair since the actual value is outside the confidence
Pmax denote the minimum and maximum power among all thaterval. This is statistically possible since we can ensure that
units. We divide equally the region betwdgg, andPrainto only 95% of the time, the actual value will be within the

* When the regression macro-model is applied to its training set, the error
average power is always zero

** Eqn.(3.4) is not applicable for average error computation because th
are units in set C which have zero power consumption

(3.11)

Fig.3.3 Generating the training set using stratified random sampling



confidence interval. Note that when the confidence level &ransforming the cycle-base macro-model to cumulative
decreased, the confidence interval also shrinks, and viemcro-model for estimating average power is very simple.

versa. Assume that the cycle-based macro-model is:
TABLE 3.3 P=PBo + By Xy + B Xot 4By X, (4.1)
EXPERIMENTAL RESULTSROEE'EIE?KODECONF'DENCE'NTERVAL Then, the cumulative macro-model for average power
estimation is:
Vector | Estimated| Confidence Actual Correct 5
: . P =Bo +B1E[ X +BH XJ+-+BH X] (4.2)
Pair | Power MW | Interval mW) [Power MW Prediction
1 1.302 [0.74, 1.87] 1.537 YES If X, X,,---, X, are all 0-1 variables, the cumulative macro-
2 1.323 [0.78, 1.87] 1.944 NO model becomes:
3 1.329 [0.76, 1.90] 1.213 YES P =B, +B,Pro X J+-+B, PropX,] (4.3)
4 1.274 [0.70, 1.85] 1.499 YES
5 1.765 [1.23, 2.30] 1.676 YES V. CONCLUSION
6 3.095 [2.56, 3.63] 2.808 YES In the paper, we intrduced the notion of cycle-based macro-
7 1.994 [1.46, 2.53] 2.325 YES models for RT-level power estimation. In this way we are able

Since the fitted power value follows normal distribution, fronf €Sitmate not only the average power consumption at RT-
our observation on the experimental results for more than Y€l but also the power distribution over all the cycles that

circuits. the average error is approximately 1/4th of th@'® Simulated. The macro-model is built on the basis of
confidence interval. regrssion analysis. Two variable selection strategies were

discussed: specialized and general purpose. The number of
Introducing the notion of the confidence interval into highvariables can be reduced using statistical tests. The statistical
level power estimation provides us the means to control theethodology enables us to not only predict the power values
error and improve the accuracy of the estimates as shoanRT-level without invoking low level simulators, but also
below. compute the error and confidence level for our prediction.
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TABLE 4.1 he IEEE | ional Conf C Aided Desi
EXPERIMENTAL* RESULTSFOR SOME SPICIALIZED AND the nternational Conference on Computer Aided Design

pp.294-299, Nov. 1994.

GENERAL PURPOSEMACRO-MODEL
[6] J. Neter, W. Wasseman, and M. H. Kutn&pplied Linear Regrssion

Module Type No. of Var'y ECP (% EAP (Y) Models Second Edition, Richard D. Irwin, Inc, 1989.

MUL16 Specialized 44 10.6 4.3 [7]1 D. Marculescu, R. Marculescu, and M. Pedram, “Stochastic sequential
- machine synthesis targeting constrained sequence generation”,

6288 Specialized 44 .9 31 Proceedings of the Design Automation Conferempge696-701, Jun.

ADD16 General 64 8.0 1.0 1996.

MUL4 General 80 9.4 1.2 [8] C. Ding, C. Hsieh, Q. Wu, and M. Pedram, “Stratified Random

C1355 General 82 13.3 10.9 |Samplin_g f()IrCPo¥ver Estima(t:ion”, to ag_zezrglogggings of the

nternational Conference on Computer Aided Des .
C1908 General 66 154 23 [9] A. T. Craig and R. V. Hogdntroduction to Mathematical Statistics
C3540 General 78 15.5 5.2 Fourth Edition, Macmillan Publish, 1978.

* In experiments, the training sets are subsets of the whole populations [&0] PowerMill User manual, Release 3.1, EPIC Design Technology, 1994
different modules. The error in cycle power and error in average power are
computed on applying the macro-model to whole population.

It can be seen that the average cycle-based error is 11.4%
while the average total power error is 4%.

When the user only wants to estimate the average power
dissipation of a module, a cumulative macro-model is applied.
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