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Abstract| In this paper we present a fast and com-

putationally e�cient deterministic method for esti-

mating the area of a Register Transfer Level datapath

obtained during high level VLSI synthesis. The esti-

mation makes use of a RT level netlist along with a

pre-synthesized library of RT level components. The

layout area is estimated using a quadratic program-

ming based framework to get a quick module allo-

cation and generating a topological oorplan which

is then followed by heuristic algorithms for mapping

RTL modules and their interconnections on a stan-

dard cell based layout design style. Experiments on a

suite of benchmark examples show promising results

with reliable accuracy.

I. Introduction

High level synthesis is the process of generating e�-

cient register-transfer level (RTL) designs from algorith-

mic behavioral speci�cations. A typical high-level syn-

thesis process can be broadly divided into two phases:

data path synthesis and controller synthesis [2, 4]. Data

path synthesis involves the generation of ALUs (arith-

metic and logic units), storage devices (registers, register

�les, latches) and the interconnect structure (multiplex-

ers, buses, and wires) that together comprise the data

path. Data path components are usually selected from a

parameterized and performance-characterized RTL mod-

ule library. Control synthesis, the process of generating a

�nite state machine to control register transfer sequenc-

ing in the data path, usually follows data path synthesis.

In order to select among alternative designs, the high-

level synthesis algorithms make use of techniques to esti-

mate area and speed (and possibly other attributes such

as power dissipation). Both stochastic methods[8, 1] and a

few constructive methods[22, 15] for estimating the layout

area from RTL structures have been proposed. Accurate

data path area estimation, usually based only on a par-

tially formed data path structure, is crucial to the success

of high-level synthesis. Many researchers have recognized

the futility of simple minded estimates that add up indi-

vidual RTL module areas and the importance of basing

the area estimation on oor-planning and other physical
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design considerations [9, 7, 11]. Unfortunately, complete

physical design can be quite expensive in computer time

and is impractical to carry out during data path synthesis

when many candidate designs have to be quickly evalu-

ated. Hence, fast and accurate techniques for layout area

estimation based on rapid generation of a oor-plan sketch

that takes into account the e�ects of placement and rout-

ing are needed.

A good survey on the various techniques applied in in-

terconnection analysis appears in [16]. Wireability analy-

sis mainly deals with the problem of modeling the behav-

ior of wires on a chip layout with the aim of predicting the

amount of space to be allocated for wiring the intercon-

nections. Almost all the wiring models proposed so far are

stochastic in nature. Probabilistic estimation techniques

make some assumptions on the interconnection length dis-

tributions and predict the layout area without taking into

account the physical details of each design[18, 8]. Some

constructive methods recursively partition the input de-

sign upto the leaf level where the shape and size of the

cells are known. The cells are then combined up to the

root level to generate the complete chip. Zimmerman[22]

uses such a constructive technique. He describes a model

for the prediction of shape functions of the modules in a

hierarchical manner. The model assumes a slicing geome-

try and also assumes that a structural hierarchy exists be-

tween the modules. The problem with these constructive

methods is that they are slow. A layout estimation algo-

rithm for RTL datapaths has been proposed by Nourani

and Papachristou[15] which predicts the layout model us-

ing analytical formulas in a constructive algorithm. This

algorithm �rst places the modules in a single row and

then folds the row to obtain the desired aspect ratio of

the chip. The authors report an average error of about

10-12% on their experiments. Mecha et al.[12] provide a

method to estimate the layout area of datapaths during

the high level synthesis process. They develop di�erent

heuristics to estimate close and distant interconnects and

drive the design process towards better designs in an it-

erative manner. They report an average error of 5% on

small-scale examples. They also provide a brief survey on

the various area estimation approaches.

Many of the techniques proposed so far are time con-

suming in execution. Also, the accuracy of stochastic es-

timates is hard to establish. Motivated with the goal of



layout area estimation, we propose a fast, deterministic

and, constructive method for estimating the layout area

of data paths produced during the high level synthesis.

Our method is very useful for quick area estimation of

RTL datapaths. Also, the proposed method can be uti-

lized for quick elimination of designs that may have exces-

sively large area, thus reducing the design space. Our ap-

proach makes use of a new quadratic-programming based

technique for generating an initial oor-plan, an iterative

readjustment technique based on topological constraint

reduction to eliminate module overlaps in the oor plan,

a module reshaping heuristic to squeeze the oor-plan,

and accurate track and feed-through estimates to deter-

mine the layout area. We present experimental results

on several examples which show that our area estimates

deviate from actual areas by 5% on average.

This paper is organized as follows. Section II gives an

overview of the proposed estimation technique. Section

III details the characterization of the RTL library com-

ponents. The quadratic programming based module allo-

cation is detailed in section IV. The oorplanning tech-

nique appears in section V followed by the area estimation

heuristic in section VI. The experimental results and con-

clusions appear in sections VII and VIII respectively.

II. Overview

The proposed area estimation technique takes a net-list

of register-transfer level modules whose individual bound-

ing box areas are known (but not necessarily their aspect

ratios) and estimates the overall bounding box area of

the net-list based on the generation and evaluation of a

oor-plan sketch which takes into account the overheads

of placement and routing. Our technique has the follow-

ing signi�cant merits.

� A novel mathematical programming and constraint-

driven oorplanning based technique is used

� The design-style speci�c area estimation heuristic

takes into account the e�ects of placement and rout-

ing

� The framework is constructive and uses an extremely

fast approach

� E�cient in accurately estimating the actual layout

area

Briey, our method can be described as follows. The

behavioral level specs of a design are provided as input

to Distributed Synthesis System(DSS)[17]. DSS produces

di�erent RT Level descriptions for the design. The RTL

library cells are characterized as explained in section III.

The RTL design �le and the library information are in-

put to a quadratic programming(QP) based module al-

location procedure (section IV). This results in a topo-

logical distribution where the modules are spread over

the layout area. Due to an assumption made during QP

that modules are point sized objects, the module distribu-

tion will have a lot of overlapping between modules and

thus this is not a feasible solution. Therefore, the output

of the QP based placement is considered to specify only

the relative topological placement of the modules. The

topological ordering of the modules is used as input to a

constraint-based oorplanning method (section V). The

oorplanning step results in an overlap-free distribution

of the modules. This distribution forms an input to a lay-

out area estimation procedure (section VI). The layout

area can be estimated for each RT level description of a

given design and the best schedule can be identi�ed and

taken to the layout level.

Thus, our approach can be viewed upon as a �lter that

identi�es the area-wise good designs from a set of di�erent

RTL schedules for a given design. Typically, a designer is

left with a vast design-space to explore and such a �lter

will help the designer make valuable design decisions, thus

saving considerable time.

III. Area Characterization of the RTL Module

Library

The module library contains parameterized register-

level modules such as n-bit registers, n-bit adders and

n-bit m-to-1 multiplexors. Modules are parameterized

with respect to number of inputs where applicable and

bit-width of each input. The library contains interface

descriptions of each module, description of its parameters

and area characteristics.

Area of a module instance is the bounding box area of

its layout implementation. The area characteristic of a

given library module is a function of its area with respect

to the module's parameters such as bit width and input-

size. Each library module is characterized for area by ac-

tually generating layouts for several instances of the mod-

ule with di�erent parameter values. It should be noted

that the area of RTL modules is comprised of standard

cell area and intra module wiring. For our estimation

purpose, we make use of several such modules and their

interconnection as de�ned by the RTL netlist.

Although, in this work, the area values are computed

for 2� CMOS technology, they can be linearly scaled for

other feature sizes since the standard cell library is a scal-

able CMOS library. Lager IV Silicon Compiler [20] is

employed in synthesizing the layouts from the RTL de-

scriptions.

TABLE I
Area Characteristics for Parameterized Library Modules

(BitWidth � 1)
Module (BitWidth-Layout Area (x103sq: micron))

Not 1-4.59, 2-9.21, 4-15.36, 8-28.99, 16-65.65

Or 1-7.20, 2-16.12, 4-32.03, 8-56.37, 16-134.50

And 1-6.43, 2-14.33, 4-25.92, 8-58.23, 16-117.88

Nand 1-5.66, 2-12.54, 4-22.88, 8-42.75, 16-100.46

Nor 1-5.66, 2-12.54, 4-21.60, 8-42.75, 16-105.60

Xnor 1-7.96, 2-17.92, 4-36.60, 8-72.52, 16-156.28

Xor 1-7.96, 2-17.92, 4-36.60, 8-70.28, 16-147.01

Adder 1-23.29, 2-47.48, 4-90.36, 8-177.00, 16-388.51

Subtractor 1-26.62, 2-48.96, 4-109.87, 8-182.40, 16-398.24

Comparator 1-25.08, 2-54.75, 4-102.76, 8-248.64, 16-582.62

Multiplier 1-26.62, 2-107.52, 4-388.48, 8-1668.74, 16-8713.70

Divider 1-28.28, 2-107.52, 4-434.52, 8-1764.84, 16-9314.28

ShiftRegister 1-74.78, 2-123.90, 4{204.25, 8-409.53, 16-831.09

Latch 1-28.28, 2-50.59, 4-120.33, 8-222.04, 16-402.52

Signal 1-157.44, 2-251.32, 4-343.26, 8-543.60, 16-1089.29

Multiplexor 2-to-1: 1-11.52, 2-23.04, 4-45.79, 8-76.89, 16-1180.08

4-to-1: 1-25.87, 2-56.65, 4-114.00, 8-205.84, 16-471.20

8-to-1: 1-66.31, 2-126.00, 4-225.93, 8-481.46, 16-1149.79



Table I shows the area characteristics for some of the

library modules. For each module, its area characteris-

tic is presented in a tabular form where the �rst entry

is the bit width and the second entry is the area of the

module instance measured in square micron. Interpola-

tion/Extrapolation is assumed for the parameter values

that are missing in the characterization table.

IV. Quadratic Programming based Module

Allocation

The objective here is to obtain a relative ordering of

the modules based on their connectivity. The intercon-

nections between the RTL modules are represented in

the form of a quadratic function, which is solved to ob-

tain the positional coordinates of the modules. The QP

based method for detailed standard cell placement has

been used widely[13, 19, 14]. The Quadratic Program-

ming(QP) based technique has two distinct advantages:

1) it is possible to �nd a solution close to the global op-

timal solution and 2) the solution can be obtained in a

very short time.

Let M = fM1;M2; : : : ;Mng be the set of n RTL mod-

ules. Let the I/O modules be represented by the set

IO = fIO1; IO2; : : : ; IOmg. The positions of the I/O

modules are assumed to be �xed. Let the position of the

center of module i 2 fM[ IOg be represented by a tuple

(xi; yi) in the XY-plane. For the sake of simplicity all the

pins of a module are approximated to the center of the

module. Also, let N = fN1; N2; : : : ; Nkg be the set of k
nets in the design. The circuit is viewed as a hypergraph

and thus each net de�nes interconnections among RTL

modules and I/O modules. Typically in a RTL netlist,

the net is parameterized for a bit-width. In our imple-

mentation we represent bit-width by that many number

of connections between the RTL modules connected by

the net. For each net, there appears term(s) in the objec-

tive function representing its connectivity. Thus, if mod-

ules Ci and Cj are connected by the net Nt, 1 � t � k,

then the term
�
(xi � xj)

2 + (yi � yj)
2
	
is introduced in

the objective function. Thus, the objective function can

be written as,
kX
t=1

X
Mi;Mj2Nt;i6=j

�
(xi � xj)

2 + (yi � yj)
2
	
:

A multi-terminal net of size p (i.e., a net connecting to

p modules) introduces p(p � 1)=2 terms in the objective

function. The minimization of objective function forces a

minimization of placement of modules that form a clique

of size p. Thus multi-terminal nets with large size will

introduce a bias in the objective function. Therefore, a

suitable weighting has to be introduced to eliminate un-

necessary biasing in the objective function. For each net

Nt, a weighting factor ft = 2=p, where p is the number

of modules in net Nt, is introduced. Let a1; a2; : : : ; an be

the area of n modules and let (xc; yc) be the coordinates

of the center of the layout. Then, the constraints,

Pn

i=1 aixi = Axc;
Pn

i=1 aiyi = Ayc,

are introduced. These constraints force a uniform distri-

bution of modules. Here A =
Pn

i=1 ai. The quadratic

programming based placement with modi�ed objective

function can be stated as,

Min

kX
t=1

ft

0
@ X
Mi;Mj2Nt;i6=j

�
(xi � xj)

2 + (yi � yj)
2
	
1
A

subject to

nX
i=1

aixi = Axc;

nX
i=1

aiyi = Ayc.

The above formulation is a standard quadratic pro-

gramming problem with linear equality constraints.

There are several methods that can be used to solve this

QP problem[10]. We use the conjugate gradientmethod[5]

which produces solution to the QP problem in a very short

time.

The solution to the above formulation seems trivial

since the cost function will equal zero if xi = xj; 1 �
i; j � n and yi = yj ; 1 � i; j � n. However, some xi and

yi represent the co-ordinates of �xed IO modules around

the periphery of the layout. These IO modules exert an

outward pull on the modules connected to them and thus

ensure that the solution is not a trivial one.

The QP based minimization views each module as a

point sized object and thus the resulting solution will re-

sult in a module distribution with mutual module over-

laps. This is true since each module has an area associ-

ated with it. In our experience we have found that the

solution to the QP formulation results in a module distri-

bution where modules are distributed around the center of

the layout but do not have uniform distribution over the

entire layout area. The equality constraint favors distri-

bution around the center, while the minimization creates

an inward pull for all of the modules.

In order to minimize overlap and spread the mod-

ules over the entire layout area, the module set is bi-

partitioned using a simple partitioning scheme. The bi-

partitioning is done with respect to the module distri-

bution obtained after solving the quadratic programming

based formulation. Thus module allocation to a parti-

tion is favored by its geometrical co-ordinate position as

produced by the solution of the quadratic program. It

is ensured during bipartitioning that the area of the two

partitions are about the same. The modules are then bi-

ased towards the center of the newly partitioned regions.

The global position of modules (obtained at the end of

quadratic optimization) determines the bias of a module

towards the center of the corresponding partition. At the

end of the partitioning phase, the constraint set is refor-

mulated. The center-spread constraints of the modules

are formulated for each region Ri, i = 1; 2. The new

center-spread constraints can be stated as,P
2

q=1

P
i2Rq

ai;qxi = Axc;q

where ai;q represents the area of module i in region Rq
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a) Module distribution after QP b) After QP, removing overlaps 
and adding constraints

d) After macro reshaping phasec) After constraint-reduction phase

Fig. 1. Illustrating the various stages of the oorplanner

and xc;q represents the x co-ordinate of the center of re-

gion Rq. Similar constraint for the y co-ordinate is also

applied. The problem with the new center-spread con-

straints is again solved for the global optimal positions

for the modules. This will result in positions for the mod-

ules such that the constraints biasing the two groups of

modules to their regions is satis�ed. Since the center of

the two regions are away from each other, this solution

will be more spread out than the �rst level of optimiza-

tion which had just one centering constraint.

This process is carried to multiple levels of optimiza-

tion. After each level of global optimization, the number

of partitions(regions) is doubled and for each partition,

the centering constraints are formed for the cells that be-

long to it. Global optimization followed by partitioning is

iterated until only a few modules are left in each region.

The solution also spreads out across the layout area due

to the bias of each cell towards its respective center. At

this point, the modules are fairly spread on the area of

the layout. The mutual overlaps for various modules still

have to be resolved. Refer �gure 1.a which shows the out-

put after the solution to QP is obtained for an example

design. This is not a feasible oorplan due to the over-

laps between the modules. In the following section we

discuss the way to achieve a non-overlapping oorplan for

the design.

V. Constraint based FloorPlanning

The QP based placement is only a relative placement

step. The relative placement is used to form a set of

topological constraints with respect to the positioning of

the RTL modules in the two-dimensional plane. To ob-

tain an overlap-free oorplan, a modi�ed constraint-based

oorplanning method proposed by Vijayan and Tsay[21]

is used.

If the QP based placement has resulted in a placement

where moduleMi is placed to the left of moduleMj, then

a horizontal constraint is added to the constraint set. Ver-

tical constraints are formulated in a similar way for top

to below relationships. If there is a vertical constraint

between Mi and Mj and if these two modules are over-

lapping, then Mj can be placed just below Mi, abutting

Mi so that there is no overlap betweenMi andMj and the

constraint is satis�ed. A relaxed, non-overlapping oor-

plan of the modules can be formed by repeating this pro-

cess for each constraint in the constraint set. Figure 1.b

shows an example where the overlaps have been removed.

If a pair of modules Mi,Mj have constraints in both

the vertical and horizontal directions, then the constraint

set is said to have redundant constraints between Mi and

Mj . The basic idea with the approach in [21] is to remove

redundant constraints. The removal of a constraint can

amount to a reduction in the oorplan area. After remov-

ing the redundant constraints, the oorplanner reshapes

the modules so that the area can be further minimized.

The constraint reduction is explained in section A and

section B deals with module reshaping.

A. Constraint Reduction

The goal here is to remove some redundant constraints

so that the oorplan area is minimized. A horizontal con-

straint graph GH and a vertical constraint graph GV are

formed from the initial relative placement of the modules.

GH and GV are directed acyclic graphs. The length of a

path of blocks in GH or GV is de�ned to be the sum of the

dimensions of the blocks and the separations(if any) be-

tween them. The path with the longest length is termed

the critical path.

The graphs GH and GV can be topologically sorted

based on the module positions and the critical path can

be constructed by scanning the sort and assigning the

smallest possible value for each module subject to the

constraints between the modules. The constraint reduc-

tion phase repeatedly chooses the most critical path and

removes a strongly redundant edge on the selected critical

path. By removing a redundant edge, the critical path is

broken into two smaller paths, thus yielding a compacted

oorplan. The redundant edge removal is carried on un-

til no more redundant edges remain. The result of the

constraint removal phase will be a oorplan whose area

is minimized. An example output at the end of the con-

straint reduction phase is shown in �gure 1.c.



B. RTL Macro Reshaping

The reshaping heuristic also selects the critical paths in

an iterative fashion. The dimensions of each module on

the selected critical path are reduced by a user-speci�ed

dimension reduction factor. It is ensured that the area of

the modules remain a constant during the reshape pro-

cess. After the reshaping of the modules, the area of the

oorplan is calculated by traversing GH and GV and the

module shapes are updated if the new oorplan resulted

in a smaller area. Repeating the reshaping process for a

user-speci�ed number of iterations results in a compact

oorplan for the design. Figure 1.d illustrates the oor-

plan after the reshaping phase. Please note that the posi-

tion of the I/O modules have been adjusted in �gure 1.d

to account for the new area of the oorplan.

A single run of the constraint reduction and the re-

shaping phases constitutes one pass of the oorplanning

heuristic. For a given design, typically 3 or 4 passes are

made which results in a very compact oorplan.

VI. Area Estimation

The oorplanning technique that has been described so

far will help in estimating the layout area of the modules

only, ie., it does not include the estimate for the routed

interconnect wires between the modules. A proper layout

estimator should also be able to predict the routing re-

quirements. The routing area estimation is explained in

this section.

The DSS tool[17], after synthesizing the RTL design for

the input, invokes the Design Manager (DMoct) of the

Lager[20] tools. The lager tools atten the RTL blocks

and come up with a standard-cell layout for the given

design. Our area estimator is developed to predict the

area of the standard-cell layout. Since we are going to

predict the area with respect to a standard-cell layout as

a target layout style, we are justi�ed in the reshaping of

the pre-synthesized RTL blocks. The fact that we target a

standard-cell layout style forms the basis for the proposed

wire area estimation heuristic.

A. Problem Formulation

Assume that there is an underlying set of standard-

cell rows and interlacing channels over the entire layout

area. The height of the rows are taken to be equal to

the height of the leaf cells in the library. The channel

height is either user de�ned or by default they can be

taken to be equal to that of the standard-cell rows. All

the channels are assumed to be of the same height to

start with. The correct height of each channel can be

obtained after executing the estimating heuristic. Each

channel consists of a number of segmented tracks. Figure

2 illustrates the above concepts.

Let C = fC1; C2; : : : ; Cqg be the set of q channels. Let
R = fR1; R2; : : : ; Rwg be the set of w rows. For each

channel c 2 C, let Tc = fT 1c ; T
2

c ; : : : ; T
z
c g be the set of zc

Channel 0

Channel 1

Channel 2

Channel 3

Row 0

Row 1

Row 2

Segmented
Tracks

Fig. 2. Layout model for wire area estimation

tracks in channel c. Let STc = fS1Tc ; S
2

Tc
; : : : ; SxTcg be the

set of Tcx segments of track Tc in channel c. The goal here

is to obtain the layout area by estimating the number of

tracks zc required for each channel c, 1 � c � q and by es-

timating the number of feedthroughs fr required for each

row r, 1 � r � w. The number of tracks in each channel

can be estimated by �rst estimating the number of seg-

ments required for each net. The estimation heuristic is

explained in the following section.

B. Track Estimation

For each net d 2 N , the mean value Yd in the vertical di-

rection is computed, based on the Y co-ordinate positions

of the modules connected to d. Thus, if M1

d ;M
2

d ; : : : ;M
k
d

is the set of k modules connected to net d, Yd is given by,

Yd =
M1

d +M2

d + : : :+Mk
d

k
:

The channel c closest to Yd is identi�ed. Let X
left

d and

x
right

d be the left-most and right-most co-ordinate points

of the modules connected to net n. From X
left
d and

X
right
d , the segments fSiTc ; S

i+1
Tc

; : : : ; S
j
Tc
g occupied by net

d in some track T k
c , 1 � k � yc can be computed. Let Sd

be the set of segments occupied by net d. This procedure

is repeated for all the nets in the design. The number

of tracks required in each channel is then computed from

Sd, 1 � d � n, using the left-edge algorithm proposed by

Hashimoto and Stevens[6].

The left-edge algorithm used was a simple one without

using doglegs. This resulted in quite a few under-utilized

tracks, that is there were tracks which had only few of

their segments used by some net or the other. This re-

sulted in a lot of wasted space on these under-utilized

tracks. In practical layouts, under-utilization is countered

by introducing doglegs and by local improvements. The

e�ect of under-utilized tracks was signi�cant for area es-

timation of large designs. In order to obtain better and

closer estimates, we pruned the routing space using a sim-

ple heuristic. Thus, after the assignment of all nets to

tracks, if track Tc in channel c consists of s segments of

which only s1 segments are occupied by some nets and if

s1=s < k (k is a constant in the range of 0 to 1), then we



ignore the track Tc. The number of tracks zc in channel

c is then reduced by 1. Experimentally we found k to be

' 0.25.

C. Feedthrough Estimation

To estimate the Feedthrough requirement for each

row, the following heuristic is adopted. Let Md =

fM1

d ;M
2

d ; : : : ;M
m
d g be the set of md modules connected

to net d and let fY 1

d ; Y
2

d ; : : : ; Y
m
d g be the corresponding Y

co-ordinate position of the modules inMd. For each mod-

ule k 2 Md, a vertical Steiner link Lk is drawn between

Y k
d and Yd. The row set RLk = fRi

Lk
; Ri+1

Lk
; : : : ; Rj

Lk
g

through which the link Lk passes can then be computed.

The number of feedthroughs fr required for each row

r 2 RLk is incremented by one. The feedthrough estima-

tion procedure is repeated for all the nets in the design.

D. Layout Area Estimation

Figure 2 illustrates a net which connects two modules

in the Row 0 and a module in Row 2. The horizontal

trunk of the Single-trunk Steiner tree for the net passes

through Channel 1 and it can be seen to occupy three

segments of a track in Channel 1. Also, since the vertical

Steiner link connecting module 1 to the horizontal trunk

passes through Row 1, the feedthrough count for Row 1

is incremented by one. A similar procedure is applied for

all the nets in the design.

The trackwidth Wt and the feedthrough width Wf are

assumed to be speci�ed in a technology �le. The height

Hc of each channel c, 1 � q is then calculated as zc �Wt

where zc is the number of tracks in channel c. (Please note

here that we have assumed that track width also includes

the separation distance between tracks). The total chip

height H can be computed as,

H =

qX
c=1

Hc +

wX
r=1

Hr;

where Hr is the height of row r. The width W of the

layout is computed as,

W = WFP +max(fr �Wf ); 1 � r � w:

Here WFP is the width of the layout obtained at the end

of the oorplanning step. The layout area A can then be

estimated as the product of H and W .

VII. Results and Analysis

The proposed area estimation technique has been im-

plemented as a stand-alone software module and, for ex-

perimentation purposes, interfaced with the data path

generation module of the DSS high-level synthesis sys-

tem [17]. Our area estimation module is used at various

steps during the data path synthesis process in DSS: dur-

ing scheduling, during register optimization and during

interconnect optimization. In each case, bounding box

area of the partially formed data path is estimated for

each alternative data path structure being explored.

To evaluate the e�ectiveness of the proposed estimates,

we have compared our area estimates with the actual

area after the data path is placed and routed using the

standard-cell placement and routing tools in the Lager IV

[3] layout synthesis system. For fair comparison, both the

actual layout generation and the estimation is done for

fully formed data paths following data path synthesis in

DSS for each of the examples shown in Table II. Tra�c

Light Controller (TLC) is used for regulating tra�c at a

road intersection. Compress and Decompress implement

a simple look-up table based compression and decompres-

sion algorithms respectively. Find implements a sort and

search algorithm in hardware. FIFO is a �rst-in �rst-out

queue. Di�eq is a di�erential equation solver. Elliptic is

a �fth order elliptic wave �lter. Viper is a simple 16 bit

microprocessor. The behavioral descriptions of the above

benchmark suite employ various high level constructs such

as conditionals (TLC, FIFO), loops (Find,FIFO), subpro-

grams (Compress, Decompress, Viper), besides straight

line code (Elliptic, Di�eq).

The results are presented in Table II. The column RTL

Area in these tables refers to the sum total of the area

of RTL modules. This area includes the area of the stan-

dard cells that belong to each RTL modules as well as the

area of the intra-module interconnections. A1 in the ta-

ble refers to the estimated area obtained after executing

our heuristic and A2 refers to the actual layout area. All

the areas are in square microns. The last two columns in

Table II shows the percentage of error between the esti-

mated area and the actual layout area and the run-time

for layout area estimation in seconds.

In all cases, our estimates di�er from the actual area by

an average of about 5%. Given that some of our designs

are very large, an error of 5% is quite promising. What

is more important to note is the time spent in �nding

the estimated area. For example, the layout area estima-

tion for viper took a little over a minute of cpu time on

a SUN Sparc-5 against well over �ve hours to compute

actual area on a SUN Sparc-20. This is signi�cant since

this estimation technique can be used to evaluate multiple

RTL schedules for a given design and �lter the bad qual-

ity schedules without going through the time consuming

task of layout generation. The estimates cannot be readily

compared with other works due to the di�erence in syn-

thesized designs and lack of proper frameworks. However,

some of the examples that we have used are the largest

and our area estimates are close to the actual area.

VIII. Concluding Remarks

A fast and deterministic layout area estimation has

been proposed and implemented for use during the high

level VLSI synthesis. The execution time for estimating

the layout area is very small and thus the tool can be

used to estimate areas for various design alternatives at

various stages of the high level synthesis process. Over a

range of examples, the error between the estimated area



TABLE II
Results of Estimation

RTL Estimated Lager run

Design Blocks I/O Nets StdCells Transistors Area Area Area jA1�A2j

A2
time

�106 (A1) �106 (A2) �106 % sec

TLC 33 56 110 306 2694 2.207 2.448 2.573 4.86 4.9
decompress 35 54 175 433 4116 2.972 4.605 4.405 4.54 6.2
compress 37 55 197 479 4345 3.267 5.481 4.883 12.25 6.4

�nd 60 97 299 893 9936 7.858 12.525 13.460 6.95 19.3
di�eq 66 126 381 1009 12194 10.789 15.600 16.401 4.88 39.5
�fo 51 139 576 1289 17524 20.380 31.103 32.203 3.42 23.7

elliptic 100 215 598 1688 20564 16.691 35.211 34.158 3.08 118.0
viper 81 158 816 2509 30442 25.189 63.437 62.412 1.65 64.5

and the actual layout area is very small. Except for two

out of eight designs, the error was contained within 5%

and the average error is also no more than 5%. We believe

that such early and quick estimates can help designers in

speeding up the design decisions.

It should be noted that the technique is generic and

need not be applied only to standard cell based layout

styles. The QP formulation and the constraint-driven

oorplanning remain the same irrespective of the under-

lying layout style. For example, data paths are often

organized into slices to simplify routing overhead. The

area estimation heuristic explained in section VI can be

changed suitably to reect the placement and routing in

such cases.

Currently, the input netlist �le that we have gives the

connectivity information on each net, even if that net be-

longs to a bus. If it is required that the modules con-

nected to a bus should remain together, i.e., if the bit-sizes

of the nets are to be considered, it can easily be incor-

porated into the model by good net-weighting schemes.

Also, module level placement requires bu�ering for long

signal lines. The bu�ers can be modeled into the QP for-

mulation by collapsing the bu�ers into the modules that

drive them so that the placement of modules and their

bu�ers will always be together.

The current implementation deals with area estimation

of RTL datapaths and acts as a �lter in choosing good

RTL schedules from a large set of schedules based on the

area. As part of our on-going work we are investigating

into developing �lters which would consider performance

driven parameters such as delay and power by computing

accurate estimates of delay and power. This would help

the designer to base the decisions based on multiple design

objectives.
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