
ASP-DAC ’97
0-89791-851-7$5.00 1997 IEEE

1

Enhancement of Parallelism for Tearing-based Circuit Simulation

Koutaro Hachiya?, Toshiyuki Saito?, Toshiyuki Nakatay and Norio Tanabez

?ULSI Systems Development Lab., NEC Corporation
yC&C Systems Research Lab., NEC Corporation

zULSI Device Development Lab., NEC Corporation

e-mail:fhachiya,saito,tanabeg@lsi.tmg.nec.co.jp, nakata@csl.cl.nec.co.jp

Abstract| A new circuit simulation system is pre-
sented with techniques \Subcircuit Balancing with Es-
timated Update operation count"(SBEU) and \Asyn-
chronous Distributed Row-based interconnection par-
allelization"(A-DR). SBEU estimates Gaussian elimi-
nation cost of each subcircuit by counting number of
update operations to achieve balanced circuit parti-
tioning. A-DR makes it possible to overlap numeri-
cal operations and interprocessor communications in
parallel Gaussian elimination of interconnection equa-
tions. On a 16-PE distributed memory parallel ma-
chine, an experimental simulation shows 9.9 times
speedup over 1PE and distribution of the time con-
sumed for each subcircuit is within �26% deviation
from the median.

I. Introduction

A parallel direct circuit simulator speeds up simulation

by using a parallel computer, while maintaining SPICE[1]

accuracy. The tearing-based parallelization approach �rst

partitions a given circuit into subcircuits, which corre-

sponds to partitioning the overall equation system into

many subsystems and interconnection equations, then ex-

tracts subcircuit level parallelism. This method involves

circuit partitioning, matrix load-and-solve for each subcir-

cuit, and matrix load-and-solve for the interconnection. It

is feasible for parallel machines with relatively slow inter-

processor communication speed, because neither shared

memory accesses nor interprocessor communications are

needed for the matrix load-and-solve phase of each sub-

circuit. However it needs circuit partitioning which pro-

duces balanced subcircuits in terms of computational cost.

Furthermore, solution time for the interconnection is large

enough to degrade speedup of parallel execution.

Existing tearing-based parallel simulators have resolved

these drawbacks as follows. They incorporate min-cut

based circuit partitioning which balances subcircuits by

predicting their computational costs with number of elec-

trical elements and/or number of nodes(or nets) they

have[2][3][4]. Further, they employ Distributed Row-

based(DR) interconnection or Multi-Level(ML) intercon-

nection [3] to parallelize solving the interconnection equa-

tions, and DR shows good performance. But the exist-

ing simulators still have following three problems: 1) im-

balance of computational costs for each subcircuit occurs

for a matrix-solve intensive circuit because the number of

nodes and elements is not enough to express matrix com-

putational cost accurately, 2) communication overheads in

DR become more and more serious because improvement

of communication speed of modern parallel computers is

relatively slow than that of processor speed, and 3) bal-

anced partitioning of the ML interconnection is di�cult

and has not yet achieved.

In this paper, a new tearing-based parallel circuit sim-

ulator with two new techniques to enhance parallelism is

presented. These techniques reduce two parallel execution

overheads 1) and 2) of existing simulators listed above. To

resolve the problem 1), \Subcircuit Balancing with Es-

timated Update operation count"(SBEU) is used at the

circuit partitioning phase. We will show that SBEU en-

hances speed up of the parallel circuit simulation using

a DRAM circuit which contains large LRC lumped net-

works. To resolve the problem 2), an asynchronous version

of DR(A-DR) which overlaps numerical operations and in-

terprocessor communications in parallel Gaussian elimina-

tion is devised. Our experimental results using distributed

memory MIMD parallel machine Cenju-3[5] show that A-

DR is faster than one with old synchronous DR(S-DR),

and is also faster than ML parallelization described in [3].

In the next section, general foundations of tearing-based

parallelization method are presented. In section III and

IV, we show details of SBEU and A-DR, respectively. In

section V, experimental results using the parallel machine

Cenju-3 is presented. The �nal section contains conclud-

ing remarks.

II. Tearing-based Parallel Circuit Simulation

The concept of tearing method (or diakoptics)[6] is that

to solve a large system, we tear the system into n parts

and solve each part separately then connect together to

get the solution of the overall system. In this section, we

show our solution method by tearing. Circuit partitioning

method to tear a system is described in section III.

Transient behavior of a circuit is described by non-linear

algebraic ordinary di�erential equation system. Through

the application of implicit time integral formula, the dif-

ferential equations are transformed into a non-linear alge-

braic equation system. Given an electrical circuit which

consists of n subcircuits, the non-linear algebraic equation

system has the following form:

Fk(xk; z; tj) = 0 (k = 1; . . . ; n) (1)

Fn+1(x; z; tj) = 0 (2)

where xk is a vector of internal variables, x =

(x1; . . . ; xn)
t, and z is a vector of external variables of

Newton Iteration Loop

SSi: Solve i-th Subcircuit matrix
SLi: Load i-th Subcircuit matrix

SBi: i-th Subcircuit Backward substitution

IL: Load Interconnection matrix
IS: Sove Interconnection matrix

SS

SL

IL

IS

SS

SL

SS

SL

1

1

2

2

n

n

SB SB SB1 2 n

Fig. 1. Flow diagram of solving nonlinear equations for a partitioned
circuit.

all subcircuits or node voltages and currents of the in-

terconnection. The equation (2) is called interconnection

equation.

The non-linear equation system is solved by Newton-

Raphson iteration method. The linearized equation sys-

tem through the method is as follows:

Rk�xk + Tk�z = �Fk (k = 1; . . . ; n) (3)
nX

k=1

Sk�xk + y�z = �Fn+1 (4)

where

Rk =
@Fk

@xk
; Tk =

@Fk

@z
; Sk =

@Fn+1

@xk
; y =

@Fn+1

@z

and �xk and �z are Newton corrections for x and z, re-

spectively.

To solve the equations (3)-(4), we �rst calculate the

Norton equivalent of each subcircuit

(Gk; Jk) = (SkR
�1
k Tk; SkR

�1
k Fk) (5)

by block elimination technique, which can be done in par-

allel. Then the interconnection equation solution �z is

calculated by

�z = Y �1(�Fn+1 +

nX

k=1

Jk); Y := y �

nX

k=1

Gk: (6)

Lastly,

�xk = �R�1
k Fk �R�1

k Tk�z; (k = 1 . . .n) (7)

are also calculated in parallel for each subcircuit.

The whole process to solve the non-linear equations is

depicted in �gure 1. To calculate the Norton equivalent

(5) for each subcircuit, SL and SS steps are done in par-

allel. Then, to derive interconnection solution (6), IL and

IS steps are done. Lastly, SB step of Eq.(7) is done. SL

time, SS time and IS time occupy most of the total time

consumed by a circuit simulation. In general, SS time and

IS time are dominant for large circuits, while SL time is

dominant for small circuits. It is important for e�cient

parallelization to balance combined SL and SS time for

each subcircuit.

III. Subcircuit Balancing with Estimated

Update operation count(SBEU)

Before we mention circuit partitioning, we give brief

de�nitions about hypergraph. Hypergraph G = hV;Ei is

a pair of vertices V = fv1; v2; . . .g and hyperedges E =

fe1; e2; . . .g, where ei � V . For a cluster C(� V), the set

of hyperedges cut by C is given by E(C) = fe 2 E j 0 <

je \ Cj < jejg. An electrical circuit can be represented by

a hypergraph by representing each electrical element as a

vertex and representing each node(or net) as a hyperedge.

The circuit partitioning problem for tearing-based par-

allel circuit simulation can be stated as the following size-

constrained min-cut multiway partitioning:

For a given circuit described in hyper-

graph hV;Ei, �nd n-way partitioning Pn =

fC1; C2; . . . ;Cng which minimize F (Pn) =

j
Sn
h=1 E(Ch)j under size-constraint

jmaxkfw(Ck)g �minkfw(Ck)gj < �; (8)

where Ci \ Cj = ; for all i; j(i 6= j) and Ck � V

for all k; (1 � i; j; k � n), and w(Ck) is a weight

of cluster Ck. The weight w(Ck) is de�ned as

w(Ck) = kt �Nt(Ck) + ku �Nu(Ck); (9)

where Nt(Ck) and Nu(Ck) are number of tran-

sistors in Ck and number of update operations

needed to derive the Norton equivalent of Ck,

respectively, and kt; ku are constant coe�cients.

In general, n should be set to total number of PEs. Min-

imizing F (Pn) is corresponding to minimizing the size of

interconnection matrix Y in Eq.(6) which reduces the time

for step IS in the solution method described in section II.

The constraint (8) maintains balanced partitioning which

avoids PE idling in combined SL and SS step in the so-

lution method. The weight of a cluster w(Ck) models

the sum of SL time and SS time. SL time is modeled by

number of electrical elements, especially transistors which

are the most time consuming elements for model evalua-

tion in SL step. SS time is modeled by number of update

operations needed for block elimination in SS step. All ex-

isting methods have used number of nodes in Ck to model

SS time. However, it cannot express computational cost

for SS accurately, since Rk (k = 1 � n) in Eq.(3) have

di�erent sparsity. So, existing methods sometimes pro-

duce imbalanced partitioning results for SS-intensive cir-

cuits. The values of coe�cients kt; ku are determined such

that kt : ku = htime taken for a transistor in step SLi :

htime taken for an update operation in step SSi, which is

almost independent of the given circuit.

To realize the above multiway partitioning, we use two-

step partitioning: �rst contract a given circuit by cluster-

ing(initial clustering) then apply Fiduccia and Matthey-

ses(FM)[8] min-cut bipartitioning repeatedly until n sub-

circuits are obtained. The initial clustering enables FM

to handle large circuits and to give stable solutions.

Although we can count Nt(Ck) easily, counting Nu(Ck)

is di�cult and time consuming. A straight-forward way

to derive Nu(Ck) is doing the same process in SL and SS

steps of the solution method, setting up a matrix with

modi�ed nodal analysis(MNA) for Ck and counting the

number of update operations while eliminating the ma-

trix. Since numerical values of the matrix elements are

not needed for the counting, model evaluation for Ck is

not needed and the underlying graph which represents

the non-zero pattern of the matrix can be used instead

of the matrix itself. For a square matrix A = faijg of size

N, the underlying graph of the matrix A is de�ned as a

directed graph Ge = hVe;Eei, where Ve = f1; 2; . . . ; Ng

and Ee = fhi; jijaij 6= 0g. When aii 6= 0, the number of

update operations nop needed to eliminate i-th variable

is the product of the number of incoming edges and the

number of outgoing edges of the vertex i:

nop = jEI(i)j � jEO(i)j (10)

where EI(i) = fhj; ii 2 Ee j j 2 Ve; j 6= ig and EO(i) =

fhi; ki 2 Ee j k 2 Ve; k 6= ig. After the elimination, the

underlying graph is changed to

G0

e = hVe � fig; (Ee �EI(i)�EO(i)� hi; ii)

[(VI(i)� VO(i))i; (11)

where VI(i) = fj 2 Ve j for all j 6= i; hj; ii 2 Eeg, VO(i) =

fk 2 Ve j for all k 6= i; hi; ki 2 Eeg, and VI(i) � VO(i) =

fhj; ki j for all j 2 VI(i) and k 2 VO(i)g.

Since counting Nu(Ck) is needed for each merging in

initial clustering and for each move in FM, the count-

ing by the straight-forward way is too time consuming al-

though it gives an accurate count. To reduce the counting

cost, we estimate the update operation count by applying

block elimination technique. Consider we calculate the

weight of the resulting cluster C after merging m clusters

Ck(k = 1 � m) by eliminating the matrix for C. First,

we assume that external variables of Cks are eliminated

after all internal variables of Cks are eliminated. Under

this assumption Nu(C) can be calculated by

Nu(C) =

mX

k=1

Nu(Ck) + nu(Ein) (12)

where Ein =
Sm
k=1 E(Ck)�E(C) is the set of new internal

nodes generated by the merging, and nu(Ein) is the num-

ber of update operations needed to eliminate all voltage

variables of nodes in Ein from the matrix generated by

eliminating all internal variables of Cks from the matrix

for C. To make the above elimination order assumption

hold, as far as possible, merging order must be controlled

so that the order of the eliminations which are generated

by mergings follow the matrix reordering criteria used in

the solution method. Because we use Markowitz reorder-

ing criteria[7], we contract the node �rst which has min-

imum degree in an underlying graph in initial clustering.

Also,in the case of jEinj > 1 in (12), we follow the same

criteria for eliminations to count nu(Ein).

Since there is no unmerging in initial clustering, we can

count update operations by �rst constructing the underly-

ing graph for a whole given circuit and then eliminating all

new internal variables generated by each merging in ini-

tial clustering. But in FM min-cut, an unmerging occurs

whenever a cluster is moved from one block to another.

Reverse elimination of variables which are once eliminated

from an underlying graph needs complicated mechanisms

and will take very high computational cost, so we em-

ploy an additional assumption. In FM min-cut phase,

the underlying graph(or uneliminated part of the matrix)

produced by initial clustering is dense enough with many

�ll-ins to enable us to look it as a rather dense matrix hav-

ing uniform density Kd. The uniform density assumption

makes it possible to calculate nu(Ein) statistically as

nu(Ein) = K2
d

jE
in

j+jE(C)j�1X

k=jE(C)j

k2 (13)

without any graph manipulation, where Ein is a set of new

internal nodes generated by a cluster merging, and E(C)

is a set of external nodes of the cluster C. Although the

value of Kd depends on the given circuit, it can be easily

calculated from the underlying graph obtained after initial

clustering.

Whole steps of our circuit partitioning with SBEU is

briey depicted in �gure 2.

IV. Asynchronous Distributed Row-based

(A-DR) Interconnection Parallelization

Even if we employ the min-cut circuit partitioning men-

tioned in section III, the size of a matrix Y in Eq.(6) tends

to be large and IS time in the solution method also tends

to be long when a given circuit is large and it is parti-

tioned into many subcircuits. In this section, we describe

two existing parallelization methods to solve Eq.(6) and

then propose a new technique to enhance the parallelism

of one of those methods.

A. Existing Parallelization Methods

Parallelization of solving Eq.(6) can be achieved by

parallel Gaussian elimination or hierarchical application

of tearing. Since the matrix Y is dense with many

�ll-ins, parallel Gaussian elimination called Distributed

Row-based interconnection(DR) can be applicable, which

extract row level parallelism by assigning same num-

ber of rows to each PE. The other approach, multi-

find the node with minimum
degree in Ge

contract the node

count Nu(Ein) by eliminating
the node from Ge

derive actual w(C) by Eq.(12)

make underlying graph Ge
for the whole circuit matrix

Is predicted w(C)
 less than Wmax?

no more node
to contract?

FM min-cut bipartitioning
with size-constraint Eq.(8)

repeat until
n subcircuits
are obtained.

start

end

yes

no

yes

no

Fig. 2. Flow diagram of circuit partitioning with SBEU

level interconnection(ML), partitions a given circuit hi-

erarchically, namely a like binary tree, and produces sub-

interconnections, where the overall matrix has a nested

BBD structure.

Although DR shows better performance than ML for

the large circuit in [3], which of the two is better depends

on the execution platform. Since DR is rather �ne grain

parallelization, its performance is sensitive to the relative

speed of interprocessor communication compared to the

operation speed of PEs. An experimental simulation with

the same circuit on a di�erent platform with di�erent rela-

tive communication speed is shown in �gure 6. The details

are described in section V.

Abstract program code of DR parallelization of LU fac-

torization is shown in �g.3. At the beginning of an elim-

ination for each variable, all PEs are synchronized with

each other by \barrier" statement, then \broadcast" a

pivot-row. So, we call it Synchronous DR (S-DR) here-

after. The barrier is needed to avoid over-writing a single

pivot-row bu�er on each PE before the elimination of the

previous variable has �nished. Since it is assumed that

it is implemented on a distributed shared memory paral-

for k:=1 to n do

barrier();

if (is_PE_contains_Pivot_Row) then

broadcast A[k,j] (j=k to n);

endif

for all i in k+1 to n which concerns this PE do

A[i,k] := A[i,k]/A[k,k];

for j:=k+1 to n do

A[i,j] := A[i,j] - A[i,k]*A[k,j];

done

done

done

Fig. 3. Abstract program of synchronous DR(S-DR) method

lel machine which has no hardware support for synchro-

nization and broadcasting, barrier and broadcast are

implemented by writing to memory on remote PEs. The

barrier is implemented by hand-shaking between one PE

and the all other PEs, and the broadcast is implemented

by hierarchical sending in binary method where half of all

PEs are concerned in the sending.

To simplify further discussions, consider the elimination

of only one of variables and assume the following simple

model:

� There is no congestion in remote write operation.

� It takes time TC to write data of any size to remote

memory and the writing PE is blocked until the write

completes.

� The latency of a remote write is also TC and is inde-

pendent of data size

� Time to read data of any size from local memory is

negligible.

� Time TU for update operations in eliminating a vari-

able is the same on every PE, and is equal to TS=n

where TS is elimination time when all eliminations are

done by only one PE,and n is number of PEs used in

DR.

A time chart of S-DR for 4-PE case is shown in �g.4

based on the above simple model; The time TSDR needed

to eliminate a variable by S-DR is

TSDR =
TS

n
+ TC � n+ TC log2 n: (14)

The �rst term is time for the update operations, the sec-

ond term is time for a barrier, and the third term is

time for a broadcast. The barrier time is proportional to

number of PEs and the broadcasting time is proportional

to the level of sending hierarchy log2 n.

B. Proposed Method

Now we propose an asynchronous version of DR,A-DR,

which enables DR to overlap numerical operations and in-

terprocessor communications and makes it less sensitive

to communication speed. We remove the barrier by giv-

ing local memory space for all matrix rows to all PEs,

which avoid over-writing the previous pivot-row. Further,

we implement the broadcasting of a pivot-row by sending

the row data sequentially with one PE to which the row

k-th
broadcast

(k+1)-th
broadcast

numerical Ops. remote write wait

k-th barrier k-th
update Ops. (k+1)-th

barrier

PE0

PE1

PE2

PE3

Fig. 4. Time chart of Synchronous DR(S-DR) method

k-th
broadcast

(k+1)-th
broadcast

(k+2)-th
broadcast

(k+3)-th
broadcast

k-th
update Ops.

(k+1)-th
update Ops. (k+2)-th

update Ops.

PE0

PE1

PE2

PE3

Fig. 5. Time chart of Asynchronous DR(A-DR) method

is assigned. The sequential sending allows the other PEs

to start elimination of the next variable immediately. To

minimize bubbles (non-numerical operation time), the se-

quential sending must �rst send a pivot-row to the PE to

which the next pivot-row is assigned. The time chart of

A-DR for 4-PE case is shown in �g.5, which is also based

on the above simple model. The amount of bubbles in A-

DR is much fewer than in S-DR. The time TADR needed

to eliminate a variable by A-DR is

TADR =
TS

n
+ TC (15)

in throughput, which shows that communication time is

independent of number of PEs used.

Experimental results are shown in the next section. Par-

allel Gaussian elimination with A-DR can be applied to

any dense matrix. It is also applied to Monte Carlo device

simulation[9] and reveals its e�ectiveness.

V. Experimental Results

In this section, we show experimental results of con-

ventional methods using Cenju-1 and Cenju-3 �rst, then

show results of proposed methods using parallel machine

Cenju-3.

Both Cenju-1 and Cenju-3 are MIMD parallel machines

with distributed shared memory, the relative communica-

tion speed of Cenju-3 is about 200 times slower than that

of Cenju-1 while PE speed of Cenju-3 is about 30 times

faster than that of Cenju-1 (table I). In reality the result

above is somewhat exaggerated since the latency is mea-

sured under the condition where no conicts are incurred

Cenju-1 Cenju-3

MFLOPS 1.6 50

remote latency (�sec) 5.2 37

write throughput(Mbyte/sec) 5 34.7

relative latency(write/ops) 0.12 0.00054

speed throughput (byte/op) 3.1 0.69

TABLE I

Performance comparison of Cenju-1 and Cenju-3

name # of Trs. # of LRCs # of nodes

CKT1 15826 11252 14051

CKT2 6873 1180 3831

TABLE II

Size of the benchmark circuits for experiments

by other remote memory accesses which makes it more

ideal for bus based Cenju-1 rather than for Cenju-3 which

has a multistage interconnection network. Because of the

di�rence between their relative communication speeds,

speedup performances of the conventional simulators on

Cenju-3 are worse than that on Cenju-1(�g.6). Bench-

mark circuits used here are DRAM circuits and their sizes

are shown in table II. CKT1 includes many LRCs to

model power lines.

With SBEU and A-DR, simulation speed for CKT1 is

about 2 times faster at 8 PE and 16PE than that with-

out SBEU and with ML(�g.7). The speedup over 1PE of

the new simulator almost reaches to 10 times at 16PE.

Distribution of total computational time for each sub-

circuit(SL+SS time) in the simulations of CKT1 with

and without SBEU is shown in �g.8. Coe�cients in

Eq.(9) and (13) are set to kt : ku = 100 : 1;K2
d =

0:075, which are optimal values derived by some ex-

periments on Cenju-3, and the circuit partitioning time

with SBEU is only 44.5sec using a workstation NEC

EWS4800/360EX(R4400SC 200MHz). Deviations from

the median of the time for each subcircuit are within

�26% in the simulation with SBEU, although the devia-

tions span to�62% in the simulation without SBEU.With

SBEU,the maximum SL+SS time is reduced to about half

compared to that without SBEU. When we vary n,number

of PEs for A-DR, total time for numerical operations is

inversely proportional to n, and total time for communi-

cation is almost constant(�g.9). This result follows the

relation predicted by Eq.(15).

On the other hand, the simulation of CKT2 with ML

has already been e�cient enough(�g.7) because the cir-

cuit is partitioned into ballanced subcircuits and ballanced

sub-interconnections even without SBEU. The simulation

of CKT2 with A-DR and SBEU shows almost the same

performance as that with ML.

2

4

6

8

10

12

14

16

2 4 8 16
[Number of PEs]

[Speedup]

S-DR Cenju-1

ML Cenju-1

S-DR Cenju-3

ML Cenju-3

CKT1

2

4

6

8

10

12

14

16

2 4 8 16
[Number of PEs]

[Speedup]

S-DR Cenju-1
ML Cenju-1

S-DR Cenju-3

ML Cenju-3

CKT2

Fig. 6. Speedup of the conventional simulators on Cenju-1 and
Cenju-3

2

4

6

8

10

12

14

16

2 4 8 16
[Number of PEs]

[Speedup]

CKT1

SBEU,A-DR

ML

S-DR 2

4

6

8

10

12

14

16

2 4 8 16
[Number of PEs]

[Speedup]

CKT2

SBEU,A-DR

ML

S-DR

Fig. 7. Speedup of the new simulator on Cenju-3

VI. Conclusion

We have presented a new parallel circuit simulator

with tearing, with two new techniques, SBEU and A-DR.

SBEU counts the number of update operations with ap-

proximations and predicts matrix-solve time for clusters

or subcircuits, then enables circuit partitioning to produce

balanced subcircuits, which enhances speedup of the simu-

lator. A-DR enables parallel Gaussian elimination to over-

lap numerical operations and interprocessor communica-

tions and makes it less sensitive to communication speed,

which reduces interconnection matrix solution time. The

new simulator can simulate a matrix-computation inten-

sive circuit about two times faster than conventional sim-

ulators. But interconnection solution time is still too long.

For future work, applying the levelized solver with incom-

plete LU factorization [10] to the simulator is a good can-

didate to reduce the interconnection solution time.

Acknowledgements

The authors would like to thank Mr.Fujitaka and

Dr.Takamizawa who support our development of the sim-

ulation system. We would also like to thank C.Mizuta,

M.Kanoh, S.Tajino, K.Shimano and C.Katoh for develop-

ing and maintaining the system. Also, we would like to

thank Y.Hoshino for establishing know-how to apply the

system to practical memory chip design.

0

2

4

1000 6000
0

2

4

1000 6000

[#of Subcircuits] [#of Subcircuits]

[msec] [msec]
100msec step

1950 33501350 5750

without SBEU with SBEU

CKT1 on Cenju-3(partitioned into 16 subcircuits)

Fig. 8. Histogram of computational times for each subcircuit

0

4000

8000

12000

16000

20000

2 4 8 16
0

4000

8000

12000

16000

20000

2 4 8 16

[msec] [msec]

Numerical Ops.Numerical Ops.

communication communication

[number of PEs] [number of PEs]

S-DR A-DR

CKT1 on Cenju-3(partitioned into 16 subcircuits)

Fig. 9. Comparison of S-DR and A-DR time taken to solve inter-
connection equations

References

[1] L.W.Nagel, \SPICE2:A computer program to simulate semi-
conductor circuits," Memo No. ERL-M520, Electronics Re-
search Lab. University of California, Berkeley, May 1975.

[2] D.C.Yeh and V.B.Rao,\Partitioning Issues in Circuit Simula-
tion on Multiprocessors," Proceedings of ICCAD-88,1988.

[3] H.Onozuka,M.Kanoh,C.Mizuta,T.Nakata and N.Tanabe, \De-
velopment of Parallelism for Circuit Simulation by Tearing,"
Proceedings of European Design Automation Conference, 1993.

[4] T.Kage, F.Kawafuji and J.Niitsuma, \A Circuit Partitioning
Approach for Parallel Circuit Simulation," IEICE Trans. Fun-
damentals, Vol.E77-A,No.3,Mar.1994.

[5] K.Muramatsu,S.Doi,T.Washio,T.Nakata, \Cenju-3 Parallel
Computer and its Application to CFD," Proceedings of the
1994 International Symposium on Parallel Architectures, Algo-
rithms, and Networks, Dec.1994.

[6] G.Kron, \Diakoptics { The Piecewise Solution of Large-Scale
Systems,"
London,England,Macdonald,1963.

[7] W.J.McCalla, \Fundamentals of Computer-Aided Circuit Sim-
ulation," Kluwer Academic Publishers, 1988.

[8] C.M.Fiduccia and R.M.Mattheyses, \A Linear-Time Heuristic
for Improving Network Partitions," Proceedings of 19th DAC,
1982.

[9] K.Shigeta,T.Nakata,T.Iizuka, and H.Katoh, \Parallel Calcula-
tion of Monte Carlo Device Simulation," Technical Report of
IEICE, ED93-90,DSM93-104,VLD93-45,1993.

[10] K.M.Eickho� and W.L.Engl, \Levelized Incomplete LU Factor-
ization and its Application to Large-Scale Circuit Simulation,"
IEEE Trans. on CAD, Vol.14, No.6, June 1995.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

