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Abstract

A new technique is presented for computing noise in
nonlinear circuits. The method is based on a formula-
tion that uses harmonic power spectral densities (HPSDs),
using which a block-structured matrix relation between
the second-order statistics of noise within a circuit is
derived. The HPSD formulation is used to devise a
harmonic-balance-based noise algorithm that requires
O(nN logN ) time and O(nN ) memory, where n rep-
resents circuit size and N the number of harmonics of
the large-signal steady state. The method treats device
noise sources with arbitrarily shaped PSDs (including
thermal, shot and 
icker noises), handles noise input
correlations and computes correlations between di�er-
ent outputs.

The HPSD formulation is also used to establish the
non-intuituive result that bandpass �ltering of cyclosta-
tionary noise can result in stationary noise.

The new technique is illustrated using an exam-
ple that exhibits noise folding and interaction between
harmonic PSD components. The results are validated
against Monte-Carlo simulations. The noise perfor-
mance of a large industrial integrated RF circuit (with
>300 nodes) is also analyzed in less than 2 hours using
the new method.

1 Introduction

In communication and signal-processing circuits, the
random electrical noise that emanates from devices has
a direct impact on critical higher-level speci�cations
like SNR (signal to noise ratio) and BER (bit error
rate). This makes it important to calculate circuit noise
at the design stage. The complexity of most modern
circuit designs makes computer-aided analysis the only
practical means of predicting noise performance accu-
rately.

Existing algorithms for noise computation in non-
linear circuits require computation and memory that
scale quadratically or worse with the number of nonlin-
ear devices. Until recently, this was not a limiting fac-
tor because traditional high-frequency communication
circuitry used to be composed largely of linear elements
and a few nonlinear devices. The present trend towards
integration of RF circuitry is, however, reversing this
paradigm. With IC techniques being applied to the de-
sign of on-chip RF circuitry, nonlinear devices are nu-
merous and purely linear elements relatively few. Ex-
isting algorithms are impractically expensive for noise

computation in such circuits.
Recently, e�cient harmonic-balance algorithms for

�nding the steady state of large nonlinear circuits were
proposed independently by R�osch and others [1, 2, 3]
and Melville et al [4]. The algorithms achieve almost-
linear performance by decomposing the harmonic bal-
ance jacobian matrix into simpler matrices that can
be applied e�ciently. This development alone does
not, however, solve the problem of calculating nonlin-
ear noise, because existing noise formulations cannot
take advantage of the e�cient harmonic balance de-
composition. In this work, a new cyclostationary noise
formulation is described that allows the e�cient decom-
position to be used, leading to the main contribution,
an almost-linear algorithm for nonlinear noise.

The new formulation, an extension of the approach
of Str�om and Signell [5], uses harmonic power spec-
tral densities (HPSDs) to represent the time-varying
second-order statistics of cyclostationary noise. In Sec-
tion 2, Str�om and Signell's results are generalized to
cyclostationary inputs and extended to obtain a block-
structured matrix equation relating \output" noise statis-
tics to \input" noise statistics. By exploiting circulant
block structure, an e�cient noise calculation procedure
requiring O(nN logN ) computation and O(nN ) mem-
ory is obtained (n is the circuit size, N the number of
signi�cant harmonics in its steady state).

Using the new algorithm, it is possible to compute
the total noise at a speci�c output, correlations be-
tween noise at di�erent outputs, as well as individual
contributions from each noise generator to a speci�c
output. Moreover, the noise formulation is capable
of taking into account noise generators with any PSD
shape (e.g., modulated shot, thermal and 
icker noises)
and can also handle correlated generators e�ciently.

In a separate application of the HPSD formula-
tion, it is proved (Section 3) that one-sided (or single-
sideband) �ltering of cyclostationary noise removes cy-
clostationary components to leave stationary noise. This
non-intuitive result is con�rmed in Section 4 by simu-
lation with the new algorithm and also through exten-
sive Monte-Carlo simulations. The usefulness of the
algorithm for practical circuits is demonstrated by an-
alyzing a large integrated-RF circuit, consisting of in-
phase and quadrature �lters and mixers, with about
360 nodes. The new algorithm calculates noise in this
circuit in less than two hours using 50MB of memory.



2 E�cient cyclostationary noise computa-
tion algorithm

The equations of any nonlinear circuit can be expressed
in the form:

_q(x(t)) + f(x(t)) + b(t) +Au(t) = 0 (1)

x(t) are the time-domain circuit variables or unknowns,
b(t) is a vector of large-signal excitations, f and q rep-
resent the \resistive" and \dynamic" elements of the
circuit respectively. The last term Au(t) represents
\small" perturbations to the system, e.g., from noise
sources in devices. All these quantities are vectors of
dimension n. u(t) has dimension m, representing the
number of noise sources in the circuit. A is an inci-
dence matrix of size n �m which describes how these
noise sources are connnected to the circuit.

Since the noise sources u(t) are small, their e�ects
can be analyzed by perturbing the noise-free solution
of the circuit. Let x�(t) represent the large signal solu-
tion of Equation 1 with u(t) set to zero. Performing a
time-varying linearization of Equation 1 about x�, the
following linearized small-signal di�erential equation is
obtained:

C(t) _x+ G(t)x+ Au(t) = 0 (2)

x(t) in Equation 2 now represents the small-signal devi-
ations of the perturbed solution of Equation 1 from the
noise-free solution x�. C(t) and G(t) are the derivative
matrices of f(�) and q(�).

Equation 2 is a linear di�erential equation with
time-varying coe�cients. It therefore describes a linear
time-varying (LTV) system with input u(t) and output
x(t). The LTV system is characterized completely by
its time-varying impulse response (or kernel) h(t2; t1),
a n � m matrix. The dependence of h on C(t), G(t)
and A will be examined in Section 2.2; the propagation
of noise through LTV systems is analyzed next.

2.1 Propagation of noise through a linear time-

varying (LTV) system

The input-output relation of the LTV system described
by Equation 2 is:

x(t2) =

Z
1

�1

h(t2; t1)u(t1) dt1 (3)

The objective of this section is to obtain a relation
between the statistics of u and x if they are stochastic
processes. Assuming that they are nonstationary pro-
cesses, their covariance matrices are de�ned as [6, 7, 5]:

Rpp(t1; t2) = E
�
p(t1)p

T (t2)
�

(4)

where p is u or x. A straightforward analysis establishes
the following relation between Rxx and Ruu:

Rxx(t1; t2)=

1Z

�1

1Z

�1

h(t1; �1)Ruu(�1; �2)h
T (t2; �2) d�1 d�2 (5)

Most nonlinear systems of practical interest involve
periodic waveforms. If x�(t), the unperturbed solution
of Equation 1, is periodic with period T , then C(t) and
G(t) of Equation 2 are also T -periodic. Hence h(t2; t1)
describes a linear periodic time-varying (LPTV) sys-
tem, and h(t2; t1) is periodic with respect to displace-
ments of T in both its arguments, i.e.,

h(t2 + T; t1 + T ) = h(t2; t1) (6)

The periodicity of h implies that it can be expanded in
a Fourier series:

h(t2; t1) =
1X

i=�1

hi(t2 � t1) e
ji!0t2 ; !0 =

2�

T
(7)

hi in the above equation are functions of one variable,
and will be referred to as the harmonic impulse re-
sponses of the LPTV system. Moreover, their Fourier
transforms will be denoted by Hi and referred to as the
harmonic transfer functions of the LPTV system, i.e.,

Hi(!) =

Z
1

�1

hi(t) e
�j!t dt (8)

Next, two-dimensional power spectral densities are
de�ned by taking two-dimensional Fourier transforms
of Rxx and Ruu [6, 5]:

Spp(!1; !2)=

1Z
�1

1Z
�1

Rpp(t1; t2) e
�j!1t1 e�j!2t2 dt1 dt2 (9)

By Fourier transforming Equation 5 and using the
de�nitions in Equations 8-9, an expression relating Sxx
and Suu is obtained:

Sxx(!1; !2) =
1X

i;k=�1

Hk(!1�k!0)Suu(!1�k!0; !2�i!0)
HT

i
(!2�i!0)

(10)

The assumption that both input and output noises
are cyclostationary is now introduced. The cyclosta-
tionary assumption implies that Rxx and Ruu do not
change if T is added to both arguments, i.e.,

Rpp(t1 + T; t2 + T ) = Rpp(t1; t2) (11)

Hence both can be expressed as Fourier series:

Rpp(t1; t2) =
1X

i=�1

Rppi
(t2 � t1) e

ji!0t2 (12)

Rxxi
and Ruui

are functions of one variable and will be
referred to as the harmonic covariances of the output
and input noise respectively. Their (one-dimensional)
Fourier transforms will be denoted by Sxxi and Suui
and referred to as harmonic PSDs or HPSDs, i.e.,

Sppi(!) =

Z
1

�1

Rppi
(t) e�j!t dt (13)



The harmonic covariances and PSDs have simple physi-
cal interpretations. Rxx(t; t) represents the time-varying
power of the cyclostationary noise; hence by Equa-
tion 13, Rxxi

(0) (the harmonic covariances evaluated
at 0) represent the Fourier components of the periodi-
cally varying noise power. In particular, Rxx0

(0) is the
average value, or stationary component, of the power.
From the de�nition of the harmonic PSDs, it follows
that the harmonic covariances evaluated at 0 are equal
to the corresponding harmonic PSDs integrated over
the entire frequency axis. Hence Sxx0(!) integrated
equals the stationary component of the output noise
power. Sxx0 and Suu0 will be therefore be termed sta-
tionary PSDs.

When the T -periodic assumption of Equation 11
and the de�nitions of Equations 12 and 13 are ap-
plied to Equation 9, the following form is obtained for
the two-dimensional power spectral densities Sxx and
Suu [5]:

Spp(!1; !2) =
1X

i=�1

Sppi(�!1) �(!1 + !2 � i!0) (14)

Using Equation 14, the relation between the two-
dimensional power spectral densities (Equation 10) is
rewritten in terms of the (one-dimensional) harmonic
PSDs Sxxi and Suui :

Sxxl(�!) =
1X

k;i=�1

Hi(! � i!0)Suuk(�! + i!0)

HT

l�(i+k)(�! + (i + k)!0)
(15)

Equation 15, relating the harmonic PSDs of the in-
put and output noise, is an extension to cyclostation-

ary noise inputs of a similar equation by Str�om and
Signell [5]. An interesting and useful observation about
Equation 15 is that the output harmonic l appears only
in the last term HT

l�(j+k). This suggests that Equa-

tion 15 can be written in block matrix form. It can
be veri�ed by direct multiplication that Equation 15 is
equivalent to the following block matrix equation:

Sxx(!) = H(!)Suu(!)H�(!) (16)

where H� denotes the Hermitian of H. Sxx, Suu and H
are block matrices with an in�nite number of blocks,
given by (denoting w + k!0 by wk for conciseness):

H(!) =

2
6666666664

...
...

...
...

...
� � � H0(!2) H1(!1) H2(!0) H3(!�1) H4(!�2) � � �
� � � H�1(!2) H0(!1) H1(!0) H2(!�1) H3(!�2) � � �
� � � H�2(!2) H�1(!1) H0(!0) H1(!�1) H2(!�2) � � �
� � � H�3(!2) H�2(!1) H�1(!0) H0(!�1) H1(!�2) � � �
� � � H�4(!2) H�3(!1) H�2(!0) H�1(!�1) H0(!�2) � � �

...
...

...
...

...

3
7777777775

(17)

Sxx(!) =

2
66666666664

...
...

...
...

...
� � � Sxx0 (�!2) Sxx1(�!2) Sxx2(�!2) Sxx3(�!2) Sxx4 (�!2) � � �
� � � Sxx

�1
(�!1) Sxx0(�!1) Sxx1(�!1) Sxx2(�!1) Sxx3 (�!2) � � �

� � � Sxx
�2
(�!0) Sxx

�1
(�!0) Sxx0(�!0) Sxx1(�!0) Sxx2 (�!0) � � �

� � � Sxx
�3
(�!�1) Sxx

�2
(�!�1) Sxx

�1
(�!�1) Sxx0(�!�1) Sxx1 (�!�1) � � �

� � � Sxx
�4
(�!�2) Sxx

�3
(�!�2) Sxx

�2
(�!�2) Sxx

�1
(�!�2) Sxx0 (�!�2) � � �

...
...

...
...

...

3
77777777775

(18)

Suu(!) =

2
66666666664

...
...

...
...

...
� � � Suu0(�!2) Suu1(�!2) Suu2(�!2) Suu3(�!2) Suu4(�!2) � � �
� � � Suu

�1
(�!1) Suu0(�!1) Suu1(�!1) Suu2(�!1) Suu3(�!2) � � �

� � � Suu
�2
(�!0) Suu

�1
(�!0) Suu0(�!0) Suu1(�!0) Suu2(�!0) � � �

� � � Suu
�3
(�!�1) Suu

�2
(�!�1) Suu

�1
(�!�1) Suu0(�!�1) Suu1(�!�1) � � �

� � � Suu
�4
(�!�2) Suu

�3
(�!�2) Suu

�2
(�!�2) Suu

�1
(�!�2) Suu0(�!�2) � � �

...
...

...
...

...

3
77777777775

(19)

Equation 16 expresses the relation between the out-
put and input harmonic PSDs compactly using block
matrices. Note from Equation 18 that the output har-
monic PSDs evaluated at ! (= !0) are given by the
central block-row of Sxx. The HPSDs of the self- and
cross-powers of the pth output xp are available in the

pth row of this block. Denote the transpose of this row
by ST

xx(�;0)(�;p)
; this is obtained by transposing Equa-

tion 16 and postmultiplying by a unit block-vector E0

followed by the pth unit vector ep:

ST
xx(�;0)(�;p)

(!) = H(!)ST
uu
(!)HT (!)E0 ep (20)



where

E0 =

2
666666664

...
0
0

In�n
0
0
...

3
777777775
 0th block ; ep =

2
66666664

0
...
...
1
...
0

3
77777775

 1st entry

 pth entry

 nth entry

(21)

In�n represents the n � n identity matrix. Note that
E0 ep is a vector. Hence the computation of ST

xx(�;0)(�;p)
(!)

in Equation 20 can be performed by matrix-vector prod-
ucts with the block matrices HT , ST

uu
and H. Despite

the fact that these matrices are, in general, dense, prod-
ucts with them can be performed e�ciently, as dis-
cussed next in Sections 2.2 and 2.3.

2.2 Fast application of HT
and H exploiting

harmonic balance

To apply HT and H e�ciently to a vector, it is neces-
sary to represent H in terms of C(t), G(t) and A (refer
Equation 2). Since C(t) and G(t) are T -periodic, they
are expanded in Fourier series:

C(t) =
1X

i=�1

Ci e
ji!0t; G(t) =

1X
i=�1

Gi e
ji!0t (22)

The Fourier coe�cients Ci and Gi will be referred to
as the harmonics of C(t) and G(t) respectively. It can
be shown [8] that H can be expressed in terms of these
harmonics as:

H(!) = J�1(!)A; J(!) = G + j
(!) C (23)

where

C =

2
666666664

...
...

...
...

...
� � � C0 C�1 C�2 C�3 C�4 � � �
� � � C1 C0 C�1 C�2 C�3 � � �
� � � C2 C1 C0 C�1 C�2 � � �
� � � C3 C2 C1 C0 C�1 � � �
� � � C4 C3 C2 C1 C0 � � �

...
...

...
...

...

3
777777775

(24)

G =

2
666666664

...
...

...
...

...
� � � G0 G�1 G�2 G�3 G�4 � � �
� � � G1 G0 G�1 G�2 G�3 � � �
� � � G2 G1 G0 G�1 G�2 � � �
� � � G3 G2 G1 G0 G�1 � � �
� � � G4 G3 G2 G1 G0 � � �

...
...

...
...

...

3
777777775
(25)


(!) =

2
66664

. . .
!�1I

!0I
!1I

. . .

3
77775 (26)

A =

2
666666664

. . .
A

A
A

A
A

. . .

3
777777775

(27)

J(!) is known as the conversion matrix [8] of the cir-
cuit; J(0) is the Jacobian matrix of the harmonic bal-
ance equations at the circuit's steady state x�.

For numerical computation, the in�nite block ma-
trices in Equations 17-19 and 24-27 are truncated to
a �nite number of blocks N = 2M + 1. M is the
largest positive harmonic considered. For the purposes
of the analysis, it is assumed that no signi�cant har-
monic PSD of degree greater than M=2 exists for the
input noise u(t) or the output noise x(t). Since the

energy content of the ith harmonic is always a dimin-
ishing function of i in practical RF circuits, a value for
M can always be found satisfying this assumption.

With this assumption, it can be shown that the
Toeplitz block structure in the above matrices can be
approximated by circulant block structure without loss
of accuracy in the matrix-vector product. For example,
C truncated to N = 7 blocks can be approximated by
�

C, given by:

�

C=

2
666664

C0 C�1 C�2 C�3 C3 C2 C1
C1 C0 C�1 C�2 C�3 C3 C2
C2 C1 C0 C�1 C�2 C�3 C3
C3 C2 C1 C0 C�1 C�2 C�3
C�3 C3 C2 C1 C0 C�1 C�2
C�2 C�3 C3 C2 C1 C0 C�1
C�1 C�2 C�3 C3 C2 C1 C0

3
777775
(28)

Note that the fourth, �fth and sixth sub- and super-

diagonals of
�

C di�er from those of C truncated to 7

blocks. Matrix-vector products with
�

C and the trun-
cated C, however, produce identical results upto the
�rst harmonic location if the vector being multiplied
contains no signi�cant components in the second and
third harmonic locations.

The utility of the circulant approximation is that

it enables
�

C and
�

G to be decomposed into products
of sparse block-diagonal matrices, permutations, and
Fourier transform (DFT) matrices [4, 2, 3]. This en-

ables matrix-vector products with
�

C and
�

G to be per-
formed as a sequence of products with sparse block-
diagonal matrices (O(nN ) operations), permutations
(no cost), and Fourier transforms (O(nN logN ) opera-
tions); hence the overall computation is O(nN logN ).
Further, since only the sparse block-diagonal matrices
need to be stored, the memory requirement is O(nN ).
Note that 
(!) is a diagonal matrixwith a-priori known
entries !k, hence its application to a vector is O(nN )
in computational cost, with no memory required for its
storage. The net e�ect of the circulant approximation,
therefore, is that J(!) can be applied to a vector in
O(nN logN ) computation and O(nN ) memory.



From Equation 23, it follows that to obtain the re-
quired matrix-vector product withH(!), matrix-vector
products with A and J�1(!) are necessary. Since A
is a sparse block-diagonal matrix with identical blocks
A (the noise source incidence matrix), it can be ap-
plied in O(nN ) time and O(n) memory. Iterative lin-
ear solvers [9, 10] can obtain the matrix-vector prod-
uct with J�1 using only matrix-vector products with J .
The use of iterative linear techniques, together with the
decomposition of J allowing its application in O(nN logN )
time, is the key to the fast harmonic balance algorithms
of R�osch [2, 1, 3] and Melville et al [4]. With suit-
able preconditioning included in the iterative solution,
the number of J-vector products required to compute
a J�1-vector product is small and approximately inde-
pendent of the size of J . Hence the J�1-vector product
can be computed in approximately O(nN logN ) time
and O(nN ) memory, leading to the same computation
and memory requirements for the desired product with
H.

From Section 2.1, products are required with HT

and H for cyclostationary noise computation. Applica-
tion of HT is carried out using the same decomposition
and iterative linear methods as for H, but using trans-
poses of the matrices involved. The product with H is
carried out using the relation H z = H z.

2.3 Fast application of ST
uu

The principal sources of noise in circuits are thermal,
shot and 
icker (1=f) noises from devices. When the
linearized small-signal circuit (Equation 2) is time-invariant
(i.e., the circuit is in DC steady state), these noise
sources are stationary stochastic processes with known
power spectral densities. Thermal and shot noises are
white, with PSD values that are constant, independent
of frequency; 
icker noise PSDs exhibit a 1

f
variation

with frequency. The expressions for the power spec-
tral densities of these noise sources (see, e.g., Van der
Ziel [11]) typically involve some component of the DC
solution; for example, the PSD of the shot noise cur-
rent uD(t) across a diode's p-n junction is proportional
to the DC current ID through the junction, i.e.:

SuDuD
(!) = 2qID (29)

where SuDuD
(!) is the (stationary) PSD of the shot

noise and q is the electronic charge.
From the viewpoint of second-order statistics, the

diode's shot noise is equivalent to the hypothetical pro-
cess generated by multiplying a white noise process
w(t) of PSD value 2q by a constant factor of

p
ID :

uD(t) =
p
ID w(t); Sww(!) = 2q (30)

For this reason, shot noise is often said, in a loose sense,
to be proportional to

p
ID.

For circuits operating in DC steady state, expres-
sions for PSDs of stationary noise generators are well
established from theoretical considerations and/or through
measurement. For circuits operating in time-varying

steady state, unfortunately, there are as yet no stochas-
tic models for the nonstationary noise generation pro-
cess that are well established. Nevertheless, there is
general consensus that for white processes like shot and
thermal noise, the generated nonstationary or cyclo-
stationary noise can be represented by the modulation
of stationary white noise by deterministic time-varying
parameters that depend on components of the large-
signal steady state. For the diode shot noise example
above, Equation 30 generalizes to:

uD(t) =
p
ID(t)w(t); Sww(!) = 2q (31)

where ID(t) is a time-varying waveform. Arguments
supporting this deterministic modulationmodel are based
on the short-term nature of the autocorrelations of ther-
mal and shot noise; see, e.g., [12, 13, 14].

For noise with long-term correlations (notably 
icker
noise), there is a general belief that the above deter-
ministic modulation of stationary noise model is inade-
quate [15]. The physical processes responsible for long-
term correlations are expected to be modi�ed by the
time-varying large-signal waveforms. Unfortunately,
neither theoretical analyses nor experimental data are
available at this time, to the authors' knowledge, to
validate the modulated stationary noise model or pro-
pose an alternative. Demir [13] uses the modulated sta-
tionary noise model for analyzing nonstationary 
icker
noise, and this model also appears to be commonly
used among designers of RF circuits. The modulated
stationary noise model is therefore reluctantly adopted
in this work for all cyclostationary noise generators.

Under this noise generation model, the noise input
u(t) in Equation 2 can be expressed as:

u(t) = M (t)us(t) (32)

where us(t) is an m-dimensional vector of stationary
noise sources and M (t) is an m�m diagonal matrix of
T -periodic deterministic modulations.

Equation 16 can be used to analyze the relation
between statistics of u(t) and us(t) by recognizing that
Equation 32 represents an LTV system with input us(t)
and output u(t). The time-varying impulse response of
the LTV system is:

h(t2; t1) = �(t2 � t1)M (t2) =
1X

i=�1

Mi �(t2 � t1) e
ji!0t2 (33)

Mi denote the Fourier coe�cients of the periodic mod-
ulation M (t). The harmonic transfer functions Hi(!)
are independent of ! and simply equal to Mi. Equa-
tion 16 applied to this LTV system results in the follow-
ing block-matrix relation between the harmonic PSDs
of u(t) and us(t):

Suu(!) =MSusus(!)M� (34)

Susus(!) represents the block Toeplitz matrix of the
harmonic PSDs of the stationary noise sources. Since
the sources are stationary, all their harmonic PSDs are
zero except for the stationary PSD Susus0 (!); hence



Susus(!) is block diagonal with diagonal entries [� � �,
Susus0(�!2), Susus0(�!1), Susus0(�!0), Susus0(�!�1),
Susus0(�!�2), � � �]. M in Equation 34 is block Toeplitz
with Mi in the diagonals:

M =

2
666666664

...
...

...
...

...
� � � M0 M1 M2 M3 M4 � � �
� � � M�1 M0 M1 M2 M3 � � �
� � � M�2 M�1 M0 M1 M2 � � �
� � � M�3 M�2 M�1 M0 M1 � � �
� � � M�4 M�3 M�2 M�1 M0 � � �

...
...

...
...

...

3
777777775
(35)

Using Equation 34, the product of Suu with a vector
can be performed through matrix-vector products with
the matrices M, M� and Susus0 . Products with the
block-Toeplitz matricesM andM� can be performed
in O(mN logN ) time and O(mN ) memory, approxi-
mating M by a block-circulant matrix and applying
the same decomposition as for G in Section 2.2. Appli-
cation of the block-diagonal matrix Susus(!) is equiv-
alent to N matrix vector products with Susus0(�). If
the device noise generators are uncorrelated, Susus0(�)
is diagonal; if correlations exist, they are usually be-
tween small groups of noise generators, hence Susus0(�)
is sparse. In either case, each product with Susus0(�) is
O(m) in computation with no storage required. Hence
matrix-vector products with Susus0 O(Nm) time and
O(1) memory. The overall matrix-vector product with
Suu can therefore be performed in O(mN logN ) time
and O(mN ) memory.

It should be noted that the noise modulationM (t)
can be absorbed into the circuit equations (Equation 1).
The noise inputs u(t) to the circuit can then be as-
sumed to be stationary without loss of generality. This
procedure, however, increases the size of the harmonic
balance system for obtaining the steady state x�. To
avoid this and to separate the implementation of the
noise algorithm from the harmonic balance steady state
algorithm, the formulation of this section is preferred.

3 Bandpass �ltering of cyclostationary noise

Str�om and Signell [5] have shown that low-pass �lter-
ing of cyclostationary noise results in stationary noise if
the bandwidth of the low-pass �lter is less than half the
frequency of cyclostationarity !0. This result has been
used by Hull and Meyer [16] to simplify their analysis.
In this section, the e�ect of LTI band-pass �ltering on
cyclostationary noise is considered. It is shown that
if cyclostationary noise is passed through a one-sided
(i.e., single-sideband) band-pass �lter of bandwidth less
than !0

2 , the output noise is stationary. This result is
obtained using a simple visualization of the propaga-
tion of harmonic PSDs.

Denote the input noise to a band-pass �lter by n(t)
and the output noise by x(t). Assume that the input
n(t) is cyclostationary with period T = 2�

!0
. Denote the

transfer function of the band-pass �lter by H(!). The
relationship between the harmonic PSDs of n(t) and
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−3w0 0−w0

H(w+w0)

−2w0 0

H(w)

0−w0 w0

0 2w0

H(w−w0)

0 w0 3w0
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Figure 1: H(!) overlaid with H(! + i!0) for i= 2, 1,
-1 and -2

0 w0 3w0

H(w−2w0)

H(w)

0−w0 w0

H(w+2w0)

−3w0 0−w0

Figure 2: One-sided H(!) overlaid with H(!+ i!0) for
i= 2 and -2



x(t), derived from Equation 20 by using the fact that
H is block diagonal for a LTI network, is:

Sxxi(!) = H(�!)Snni(!)HT (! + i!0) (36)

Note that the ith harmonic PSD of the output is deter-
mined completely by the corresponding harmonic PSD
of the input, shaped by the product of the �lter func-
tion H(!) with a shifted version of itself HT (! + i!0).
For the scalar input-output case under consideration,
the relation simpli�es to:

Sxxi(!) = H(�!)H(! + i!0) Snni (!) (37)

Since the magnitude of H(!) for a real �lter is sym-
metric about zero, H(�!) has the same magnitude
characteristic as H(!). By overlaying the magnitudes
of H(!) and H(! + i!0) for di�erent values of i (il-
lustrated in Figure 1), it can be seen that the product
H(�!)H(!+ i!0) is nonzero only for i=0, 2, and -2 if
the bandwidth of H(!) is less than !0

2 . For all other
values of i, there is no frequency at which H(�!) and
H(! + i!0) are both nonzero, hence their product is
identically zero.

This immediately implies the following result:
Result 1: Bandpass �ltering with bandwidth less

than !0

2 eliminates all harmonic PSDs except the sta-
tionary and second harmonic PSDs.

Moreover, if the band-pass �lter is one-sided with
respect to !0, then the product H(!)H(! + i!0) is
identically zero also for i=2 and -2, as illustrated in
Figure 2. In this case, the bandwidth of the �lter can
be greater than !0

2 but should be less than !0. The
only nonzero PSD of the output is then the stationary
PSD. This implies

Result 2: One-sided (or single-sideband) bandpass
�ltering (with bandwidth less than !0) of cyclostation-
ary noise results in stationary output noise.

4 Experimental Results

The fast cyclostationary noise algorithm of Section 2
has been prototyped in a Bell Labs internal simulator.
Two circuit examples are presented in this section.

4.1 Mixer and bandpass �lter

High−Q
bandpass
filter

Local Oscillator
  Cos(2 Pi f0 t)

Mixer output
noise x(t)

Stationary
Input noise
    n(t)

Filter output
 noise y(t)

          Mixer

Figure 3: Mixer and bandpass �lter
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Figure 4: Bandpass �lter characteristic

Motivated by the result of Section 3, a mixer and band-
pass �lter circuit (Figure 3) is analyzed for cyclosta-
tionary noise propagation. The mixer is an ideal mul-
tiplier that modulates the incoming stationary noise
with a deterministic LO oscillator signal cos(2�f0t).
The �lter has a high-Q bandpass characteristic (illus-
trated in Figure 4) with a center frequency of approxi-
mately 1.592 Mhz and a bandwidth of about 50 KHz.
The stationary input noise is bandlimited with double-
sided bandwidth of about 200 KHz.

Two simulations are carried out, with f0 set to 1.592
Mhz and 1.5 Mhz respectively. In the �rst situation,
the bandpass �lter is centered at the LO frequency; in
the second, the �lter characteristic is o�set to the right
of the LO frequency, strongly attenuating the lower
sideband with respect to f0 while passing the upper
sideband. Harmonic PSDs at all nodes in the circuit
were computed over frequencies from 1Mhz to 2Mhz.

Using the results of Section 2.1, it can be shown
that only the stationary and second harmonic PSDs of
the mixer output x(t) are nonzero, related to the PSD
of the stationary input by:

Sxx0(!) =
Snn0 (! � !0) + Snn0(! � !0)

4

Sxx
�2
(!) =

Snn0(! � !0)

4
; Sxx2(!) = Sxx

�2
(�!)

The stationary and second harmonic PSDs of the
�lter output y(t) for f0=1.592 Mhz (double sideband
�ltering) are shown in Figures 5 and 6. It can be seen
that both PSDs have the same magnitude, hence there
is a large cyclostationary component in the noise. The
same PSDs for the f0=1.5 Mhz case (single sideband
�ltering) are shown in Figures 7 and 8. The second
harmonic PSD can be seen to be about two orders of
magnitude smaller than the stationary PSD. Hence the
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Figure 5: Syy0(f) with f0=1.592 Mhz (double-sideband
�ltering)
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�ltering)

 

Set 0

Noise power x 10-21

6Hz x 10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

1.00 1.20 1.40 1.60 1.80 2.00

Figure 8: Syy
�2
(f) with f0=1.5 Mhz (single-sideband

�ltering)



Set 0

power x 10-3

-6time x 10-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

0.00 20.00 40.00 60.00 80.00 100.00

Figure 9: Time-varying �ltered noise power from
Monte-Carlo: f0=1.592 Mhz (double-sideband)

�ltered noise is virtually stationary, as predicted in Sec-
tion 3. The second harmonic PSD is not identically
zero because the non-ideal single-sideband �lter does
not perfectly eliminate the lower sideband.

The above results were also veri�ed by simulations
using the Monte-Carlo method. The nonlinear di�eren-
tial equations of the circuit in Figure 3 were solved nu-
mericallywith 60,000 samples of the input noise n(t) [17].
The input noise PSD was normalized to 1 to avoid cor-
ruption of the results by numerical noise generated dur-
ing di�erential equation solution. The 60,000 samples
of the mixed and �ltered noise y(t) were squared and
averaged, on a per-timepoint basis, to obtain the noise
power at the output as a function of time. The vari-
ation of noise power with time is shown in Figures 9
and 10 for the double-sideband and single-sideband cases.
When analyzed in the time domain, the circuit re-
quires some time to reach large-signal steady state,
hence the steady state noise power is approached to-
ward t = 100ms; in contrast, harmonic balance cal-
culates this steady state directly. The cyclostation-
arity of the noise in the double-sideband case can be
seen from the variation of the power between zero and
its maximum value of about 0:0022. In the single-
sideband case, the power approaches a steady value
of about 130 � 10�6, with a cyclostationary variation
of about 10%. Accounting for the normalization of
the input PSD, these values are in excellent agreement
with the total integrated noise of Syy0(f) and Syy�2 (f)
(Figures 7 and 8); Monte-Carlo simulation results are
within 2% of the results produced by the new algo-
rithm.
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Figure 10: Time-varying �ltered noise power from
Monte-Carlo: f0=1.5 Mhz (single-sideband)

4.2 I-Q mixer/bu�er circuit

An integrated RF design, consisting of mixers and bu�ers
in the in-phase and quadrature signal paths of a re-
ceiver, was simulated for cyclostationary noise. The
circuit consisted of more than 50 bipolar devices and
about 360 nodes. Previous algorithms for nonlinear
noise are unable to analyze circuits of this size on ac-
count of their large computation and memory require-
ments.

The circuit was simulated on one processor of a
high-end SGI workstation1. Noise was analyzed at 20
frequency points, swept from 100kHz to 2Mhz. 22 har-
monics were used to account for nonlinearities. The
simulation completed in 1 hour and 29 minutes of CPU
time and used 50MB of memory. The stationary com-
ponent of the noise at one of the nodes of the circuit is
shown in Figure 11.

5 Conclusion

A e�cient frequency-domain algorithm has been pre-
sented for computing noise in nonlinear circuits. The
method uses harmonic PSDs in its noise formulation. A
block-structured matrix equation for the output noise
statistics is the central result enabling the fast algo-
rithm.

The new formulation was used to prove that one-
sided bandpass �ltering of cyclostationary noise pro-
duces stationary noise. This extends a previously known
result for lowpass �ltering.

Results from the new algorithmwere shown to match
Monte-Carlo simulation outputs to an accuracy of 2%.

1An IRIX64 machine with 4 processors and 1.5GB of memory,

running Irix6.2.
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Figure 11: Stationary PSD for the I-Q mixer/bu�er
circuit

A large industrial RF circuit, containing more than 300
nodes, was simulated for noise in less than two hours
on a fast workstation.
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