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Abstract| Three types of ternary decision diagrams (TDDs)

are considered: AND TDDs, EXOR TDDs, and Kleene TDDs.

Kleene TDDs are useful for logic simulation in the presence of

unknown inputs. Let N(BDD : f), N(AND TDD : f), and

N(EXOR TDD : f) be the number of non-terminal nodes in the

BDD, the AND TDD, and the EXOR TDD for f , respectively. Let

N(Kleene TDD : F) be the number of non-terminal nodes in the

Kleene TDD for F , where F is the Kleenean ternary function cor-

responding to f . Then N(BDD : f) � N(TDD : f). For parity

functions, N(BDD : f) = N(AND TDD : f) = N(EXOR TDD :

f) = N(Kleene TDD : F). For unate functions, N(BDD : f) =

N(AND TDD : f). The sizes of Kleene TDDs are O(3n=n), and

O(n3) for arbitrary functions, and symmetric functions, respectively.

There exist a 2n-variable function, where Kleene TDDs require O(n)

nodes with the best order, while O(3n) nodes in the worst order.

I. Introduction

Various methods exist for representing logic functions.
A truth table is the most straightforword method. An-
other method is a sum-of-products expression (SOP). Bi-
nary Decision Diagrams (BDDs)[2] are commonly used
in logic synthesis[8, 9], since they can represent com-
plex functions with many variables. Recently, Ternary
Decision Diagrams (TDDs) have been developed as an
alternative representation of logic functions[10]. TDDs
are similar to BDDs, except that each non-terminal
node has three children. Some TDDs have terminals
other than constant 0 and 1. In this paper, we con-
sider three types of TDDs: AND TDDs, EXOR TDDs,
and Kleene TDDs. AND TDDs represent the sets of
the implicants implicitly[11]. They can treat functions
for which the conventional cube-based method[4] fails.
EXOR TDDs are useful to minimize AND-EXOR logic
expressions[12]. The TDD presented by Jennings (here-
after, we will call it Kleene TDD) is useful to evaluate
logical functions in the presence of unknown inputs[5].
In this paper, we will show some properties of

Kleene TDDs.

II. Evaluation of Logic Functions in the

Presence of Unknown Inputs

Let B = f0; 1g. An n-variable switching function
f represents the mapping: f : Bn

! B. Let a =
(a1; a2; : : : ; an) be a binary vector, where ai 2 B. We
often have to evaluate the value f(a) for a, where some
ai are unknown[1]. When we do logic simulation for se-
quential circuits, we have to consider such inputs. In this
section, we will review the method to evaluate f in the
presence of unknown inputs.
Let T = f0; 1; ug, where u is the truth value showing

an unknown input. Let � = (�1; �2; : : : ; �n) be a ternary
vector, where �i 2 T . If �i is either 0 or 1 for all i, then
� 2 Bn. In this case f(�) is either 0 or 1. If �i = u
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Fig. 2.1. Ternary AND, OR, NOT, EXOR, and Alignment

operations

for some i, then � 2 Tn { Bn. In this case, for some
�, f(�) is either 0 or 1, but for other �, f(�) cannot
be determined. Therefore, it is convenient to introduce a
three-valued logic function, F : Tn

! T , which is derived
from f . Note that f uniquely de�nes F .

De�nition 2.1 Let � 2 Tn. A(�) denotes the set of all
the binary vectors that are obtained by replacing all u with
0 or 1.

Let k be the number of u's in �, then the set A(�)

consists of 2k binary vectors.

De�nition 2.2 Let f be a two-valued logic function, and
� 2 Tn.

f(A(�)) = ff(a) j a 2 A(�)g:

F(�) =

(
0 if f(A(�)) = f0g
1 if f(A(�)) = f1g
u if f(A(�)) = f0; 1g

Example 2.1 Consider the expression f(x1; x2; x3) =
x1�x2_x2x3. For the inputs �1 = (0; 0; u) , �2 = (1; u; 1),
and �3 = (1; u; u), F(�1), F(�2), and F(�3) are derived
as follows:

f(A(�1))=ff(0; 0; 0); f(0; 0; 1)g = f0g;
f(A(�2))=ff(1; 0; 1); f(1; 1; 1)g = f1g; and
f(A(�3))=ff(1; 0; 0); f(1; 0; 1); f(1; 1; 0); f(1; 1; 1)g = f0; 1g:

By De�nition 2.2, we have

F(�1) = 0; F(�2) = 1; and F(�3) = u:

When we do gate-level logic simulation, we extend bi-
nary operations to ternary logic as shown in Fig.2.1. This
is the Kleenean strong ternary logic[6]. In this case, sig-
nals are evaluated from the primary inputs to the primary
outputs by using Fig.2.1.

Example 2.2 Fig. 2.2 shows an AND{OR network that
realizes the expression in Example 2.1. When we evalu-
ate the output f for the input �2 = (1; u; 1) by using a
naive method, we have the output u as shown in Fig.2.2.
However, Example 2.1 shows that

F(�2) = 1:

Thus, the naive method does not always produce accurate
results.

Several methods exist to evaluate output values ac-
cording to De�nition 2.2: including representations using
SOPs, using BDDs[3], and using Kleene TDDs[5].
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Fig. 2.2. A naive method to evaluate the function

III. BDDs and TDDs

In this section, we will give formal de�nitions for BDDs
and TDDs.

De�nition 3.1 A BDD is a rooted, directed graph with
node set V containing two types of nodes:
A non-terminal node v has as attributes an argu-
ment index index(v) 2 f1; : : : ; ng, and two children
low(v); high(v) 2 V . A terminal node v has as attribute
a value value(v) 2 B.
For any non-terminal node v, if low(v) is also non-
terminal, then index(v) < index(low(v)). Similarly,
if high(v) is also non-terminal, then index(v) <
index(high(v)). The correspondence between BDDs and
Boolean functions is de�ned as follows:
For a terminal node v:

If value(v) = 1; then fv = 1:
If value(v) = 0; then fv = 0:

For a non-terminal node v:
Let X = (x1; x2; : : : ; xi�1; xi+1; : : : ; xn).
If index(v) = i, then fv is a function such that

fv(x1; : : : ; xn) = �xi � flow(v)(X) _ xi � fhigh(v)(X).
Note that the root node represents the function f itself.

De�nition 3.2 A BDD is a Reduced Ordered Binary De-
cision Diagram (ROBDD) if it contains no node v with
low(v) = high(v), and if it does not contain distinct nodes
v1 and v2 such that the subgraph rooted by v1 and v2 are
equivalent.

Example 3.1 Fig. 3.1(a) shows the ROBDD for the
function in Example 2.1. The number 0(1) attached to
each edge incident to v denotes low(v)(high(v)).

TDDs are similar to BDDs, except that each non-
terminal node v has three children, low(v) , high(v), and
middle(v).

De�nition 3.3 A TDD is a rooted, directed graph with
node set V containing two types of nodes:
A non-terminal node v has as attributes an argument
index index(v) 2 f1; : : : ; ng, and three children low(v),
high(v), and middle(v) 2 V . A terminal node v has as
attribute a value value(v) 2 T . For any non-terminal
node v, if low(v) is also non-terminal, then index(v) <
index(low(v)). Similarly, if high(v) is non-terminal, then
index(v) < index(high(v)). Also, if middle(v) is non-
terminal, then index(v) < index(middle(v)).

De�nition 3.4 A TDD is a Reduced Ordered Ternary
Decision Diagram(ROTDD) if it contains no node v with
low(v) = high(v), and if it does not contain distinct nodes
v1 and v2 such that the subgraph rooted by v1 and v2 are
equivalent.

Di�erent assignments of operations to the third child
produce di�erent TDDs.
De�nition 3.5 Fig. 2.1 shows the ternary operation
Alignment. Let a; b 2 T .

a� b =
n
a if a = b
u otherwise

The correspondence between AND TDD (EXOR TDD,
Kleene TDD) and a function f is de�ned as follows:
For terminal node v:

(b) Binary Dicision Tree
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Fig. 3.1. BDD and TDDs

If value(v) = 1; then fv = 1.
If value(v) = 0; then fv = 0.

For non-terminal node v: If index(v) = i, then fv and
fmiddle(v) are the functions such that

fv(X) = �xi � flow(v)(X) _ xi � fhigh(v)(X).

� In the case of an AND TDD:
fmiddle(v)(X) = flow(v)(X) � fhigh(v)(X):

� In the case of an EXOR TDD:
fmiddle(v)(X) = flow(v)(X) � fhogh(X):

� In the case of a Kleene TDD:
fmiddle(v)(X) = flow(v)(X) � fhigh(v)(X):

If the above relation does not hold, then there is no func-
tion for the TDD.

Example 3.2 Fig. 3.1 shows the AND TDD, the
EXOR TDD, and the Kleene TDD for f and F in Ex-
ample 2.1. By expanding the ROBDD in (a), we have the
complete binary decision tree (b). In Fig. 3.1(c), the new
edge at the root node is generated, and the subgraph is cre-
ated by using the AND operation to derive the AND TDD.
In other words, f200 is obtained as the AND of f000 and
f100. When EXOR is used to generate the middle child,
we have an EXOR TDD. When Alignment is used to gen-
erate the middle child, we have a Kleene TDD. Here, 0,
1, and 2 attached to each edge denote low(v), high(v),
and middle(v), respectively. For each subsequent node,
create the third node recursively down to the leaves, and
we have the complete ternary decision tree shown in (d).
By eliminating all the redundant nodes, and sharing all
the equivalent sub-graphs, we obtain an AND TDD, an
EXOR TDD, and a Kleene TDD as shown in (e), (f),
and (g), respectively.

AND TDDs represent the set of implicants
implicitly[11]. EXOR TDDs are useful to minimize AND-
EXOR expressions[12]. Kleene TDDs are useful to evalu-
ate logic functions in the presence of unknown inputs[5].

Example 3.3 We can evaluate F(�) in Example 2.1 by
using the Kleene TDD in Fig.3.1(g). F(�) is obatained by
tracing the edges from the root node to a terminal node ac-
cording to the value of �. When the input is �1 = (0; 0; u),
trace the edges, 0, 0, and 2, and reach the terminal node
0. Thus, we have F(0; 0; u) = 0. Similarly, when the in-
put is �2 = (1; u; 1), trace the edge, 1, 2, 1, and reach the
terminal node 1. Thus, F(1; u; 1) = 1. When the input
is �3 = (1; u; u), by tracing 1,2,2, and reach the terminal
node u. Thus, we have F(1; u; u) = u.



IV. Complexities of TDDs

De�nition 4.1 Let N(BDD : f)!$N(AND TDD : f),
and N(EXOR TDD : f) be the number of non-terminal
nodes in the BDD, the AND TDD, and the EXOR TDD
for f , respectively. Let N(Kleene TDD : F) be the num-
bers of non-terminal nodes in the Kleene TDD for F.

Theorem 4.1

N(BDD : f)�N(AND TDD : f);
N(BDD : f)�N(EXOR TDD : f); and
N(BDD : f)�N(Kleene TDD : F):

Theorem 4.2

N(AND TDD : f) � N(Kleene TDD : F):

Theorem 4.3 Let f be a parity function. Then, we have

N(BDD : f)=N(AND TDD : f) = N(f : EXOR TDD)
=N(Kleene TDD : F):

Theorem 4.4 Let f be a unate function. Then,
N(BDD : f) = N(AND TDD : f).

The number of nodes in a complete ternary decision tree
for an n-variable function is:

1 + 31 + 32 + : : :+ 3n = (3n+1 � 1)=2:

However, in a reduced TDD, only one sub-graph is realized
for each sub-function. Thus, the number of nodes can be
reduced.
We can state the following:

Lemma 4.1 All the functions of k or fewer variables can

be represented by an Kleene TDD with at most 33
k

nodes.

Theorem 4.5 An arbitrary n-variable function can be
represented by a Kleene TDD with at most

n

min
k=1

(
3k+1 � 1

2
+ 33

n�k
)

nodes.

Corollary 4.1 An arbitrary n-variable function can be
represented by a Kleene TDD with O(3n=n) nodes.

Theorem 4.6 An arbitrary symmetric function of n-
variables can be represented by a Kleene TDD with O(n3)
nodes.

Theorem 4.7
N(BDD : f) = N(BDD : �f):

N(EXOR TDD : f) = N(EXOR TDD : �f):
N(Kleene TDD : f) = N(Kleene TDD : �f):

However, in general,
N(AND TDD : f) 6= N(AND TDD : �f):

V. Experiments and Observation

A. Sizes of TDDs

We developed TDD algorithms, and generated TDDs
for various benchmark functions. Multiple-output func-
tions are represented by shared BDDs and shared TDDs.
Table 5.1 compares the number of non-terminal nodes
in BDDs, AND TDDs, EXOR TDDs, and Kleene TDDs.
From this table, we observe the following:

1. Except for e64, rd84, t481, xor5, and z5xp1,
N(AND TDD : f) < N(EXOR TDD : f) holds.

2. TDDs are considerably larger than corresponding
BDDs.

3. xor5 is a parity function. Thus,
N(BDD : f) = N(AND TDD : f)
= N(EXOR TDD : f) = N(Kleene TDD : F).

Table 5.2 shows the sizes of Kleene TDDs for randomly
generated functions. We can observe that the sizes of
Kleene TDDs are O(3n=n) for n-variable randomly gen-
erated functions.
Table 5.2 also shows the sizes of Kleene TDDs for

the Achilles' heel function: f = x1y1 _ x2y2 _ : : : _
xnyn. The size is O(3n) when the variable order is
x1; x2; : : : ; xn; y1; y2; : : : ; yn, while 5n � 2 when the vari-
able order is x1; y1; x2; y2; : : : ; xn; yn. This shows that the
sizes of TDDs greatly depends on the variable ordering.

TABLE 5.1

Sizes of BDDs and TDDs
function in out BDD TDD

AND EXOR Kleene

9sym 9 1 33 60 70 94
apex1 45 45 1332 6249 47814 18401
apex2 39 3 410 542 3575 3500
apex3 54 50 935 3161 34574 7119
apex5 117 88 1078 3039 3282 4204
cordic 23 2 75 83 153 271
cps 24 109 987 1457 4808 5653
duke2 22 29 336 522 2176 2555
e64 65 65 1379 1379 1379 2693
ex5 8 63 278 381 444 628
misex1 8 7 36 45 70 92
misex2 25 18 81 81 138 204
misex3 14 14 542 1219 3644 3262
pdc 16 40 560 1024 2321 3031
rd84 8 4 59 79 72 121
sao2 10 4 85 114 216 305
seq 41 35 1248 3873 67414 18745
spla 16 46 581 717 2237 2315
t481 16 1 32 48 43 66
vg2 25 8 194 399 865 961
xor5 5 1 9 9 9 9
z5xp1 7 10 68 79 75 158

TABLE 5.2

Sizes of Kleene TDDs for n-variable randamly generated
functions and Achilles’ heel functions

n Random f = x1y1 _ : : : _ xnyn

function worst optimum

3 { 42 13
4 { 127 18
5 28 378 23
6 68 1123 28
7 139 3342 33
8 295 9967 38
9 592 29778 43
10 1357 89083 48
11 2898 266742 53
12 6165 799207 58
13 12905 2395578 63

B. Dependency on the number of true minterms

We generated pseudo-random logic functions of n = 14
variables for di�erent number of true minterms s(0 < s <
2n), and counted numbers of nodes in BDDs and TDDs.
Fig. 5.1(a) shows the numbers of BDD nodes for di�er-
ent s. As shown in Theorem 4.7, the graph is symmetric
with respect to s = 2n�1. Also, the number of nodes
takes its maximum when s = 2n�1. Fig. 5.1(b) shows
the number of TDD nodes. As shown in Theorem 4.7
the graphs for EXOR TDDs and Kleene TDDs, are sym-
metric with respect to s = 2n�1. However, the graph for
AND TDDs is asymmetric. Surprisingly, the number of
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Fig. 5.1. Dependency on the number of true minterms

nodes in Kleene TDDs takes its maximum for two values
of s, and takes its local minimum for s = 2n�1. This is
quite di�erent from the case of BDDs.

C. CPU time

Although Kleene TDDs are greater than BDDs,
Kleene TDD-based logic simulation are more e�cient
than BDD-based one.
In logic simulation for design veri�cation, expected out-

puts for networks are 1 or 0, rather than u. For a given
logic function, input vectors can be generated as follows:

� To verify the ON set.
Let F be an irredundant sum-of-products expression
(ISOP) for f . For each product pj of F , we have a
corresponding input vector � such that f(�) = 1 as
follows:

� = (�1; �2; : : : ; �n), where

�i =

(
0 : pj contains the literal �xi;
1 : pj contains the literal xi;
u : otherwise:

� To verify the OFF set.

Let �F be an ISOP for �f .
For each product qj of �F , we have a corresponding
input vector � such that f(�) = 0 as follows:

� = (�1; �2; : : : ; �n), where

�i =

(
0 : qj contains the literal �xi;
1 : qj contains the literal xi;
u : otherwise:

Note that the total number of input vectors is equal to
the sum of products in F and �F .
Fig.5.2 compares simulation time for adders (adr6�

adr12) for the vecters generated in the above method.
This �gure shows that Kleene TDD-based simulation is
faster than BDD based one.

D. Observation

The facts in 5.B can be interpreted as follows:

1. In AND TDDs, 1-paths correspond to the implicants
of f . The average number of implicants of n-variable
functions with s true minterms is given by [7].

G(n; s) =

nX
k=0

2n�k
�
n

k

��w�wk
s�wk

�
�
w
s

� ;

where w = 2n; and wk = 2k:
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G(n; s) takes its maximum when s is near to 2n. Sup-
pose that the number of nodes in the TDD is mono-
tone increasing with the number of paths. Then the
graph for AND TDD has similar shape as the graph
for G(n; s).

2. In a Kleene TDD, 1-paths correspond to the impli-
cants of f , and 0-paths correspond to the implicants
of �f . Thus, a Kleene TDD denotes implicants of f
and �f at the same time. The average number of im-
plicants for f and �f is given by

G(n; s) +G(n; 2n � s):

Thus, the shape of the graph is symmetric with re-
spect to s = 2n�1, and the graph takes its maximum
for two values of s.
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