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Abstract| Ordered Kronecker Functional Decision

Diagrams (OKFDDs) are a data structure for e�cient

representation and manipulation of Boolean functions.

OKFDDs are very sensitive to the chosen variable or-

dering and the decomposition type list, i.e. the size

may vary from linear to exponential.

In this paper we present an Evolutionary Algorithm

(EA) that learns good heuristics for OKFDD min-

imization starting from a given set of basic opera-

tions. The di�erence to other previous approaches to

OKFDD minimization is that the EA does not solve

the problem directly. Rather, it develops strategies

for solving the problem. To demonstrate the e�ciency

of our approach experimental results are given. The

newly developed heuristics combine high quality re-

sults with reasonable time overhead.

I. Introduction

Decision Diagrams (DDs) are often used in CAD sys-
tems for e�cient representation and manipulation of
Boolean functions. The most popular data structure
is the Ordered Binary Decision Diagram (OBDD) [1].
OKFDDs are a generalization of OBDDs and OFDDs as
well and try to combine the advantages of both represen-
tations by allowing the use of Shannon decompositions
and (positive and negative) Davio decompositions in one
and the same DD [3].
OKFDDs are very sensitive to the variable ordering.

In addition to the position of a variable in the order-
ing a so-called decomposition type has to be chosen for
OKFDDs. Thus, there is a need for heuristics to choose a
suitable variable ordering and decomposition type list for
OKFDDs.
In the last few years many authors presented heuristics

for �nding good variable orderings for OBDDs. The most
promising methods are based on dynamic variable order-
ing [7, 8]: OBDDs for some Boolean functions could be
constructed for which all other topology oriented meth-
ods failed. In [3] it has been shown that dynamic vari-
able ordering methods for OBDDs can also be applied to
OKFDDs.
Recently, a new method based on evolutionary algo-

rithms has been proposed for OKFDD minimization [5].
The major drawback of this approach is that in general it
obtains good results with respect to quality of the solu-
tion, but the runtimes are often much larger than that of
classical heuristics. Due to the high complexity of the de-
sign process of CAD of ICs often \fast" heuristics are im-
portant. Recently, a theoretical model for learning heuris-
tics by Genetic Algorithms (GAs) has been presented [4].
The new aspect of this model is that the GA is not di-
rectly applied to the problem. Instead, the GA develops
a good heuristic for the problem to be solved. A �rst ap-
plication of this model to OBDD minimization has been
reported in [6].

In this paper we present an Evolutionary Algorithm
(EA)1 based approach to learn heuristics for OKFDD
minimization. Our EA learns heuristics starting from
some simple basic operations that are based on dynamic
reordering. The learning environment is a set of bench-
mark examples, that is called the training set. We show
by experiments that our EA designs heuristics that im-
prove the results obtained by iterated DTL-sifting [3] by
about 10%. Furthermore, the runtimes of the developed
heuristics are low, since the costs of the heuristic are min-
imized during the learning process.

II. The Learning Model

In [4] a learning model has formally been introduced.
In this section we brie
y review the main notations and
de�nitions to make the paper self-contained.
It is assumed that the problem to be solved has the fol-

lowing property: There is de�ned a non-empty set of opti-
mization procedures that can be applied to a given (non-
optimal) solution in order to further improve its quality.
(These procedures are called Basic Optimization Modules
(BOMs).) These BOMs are the basic modules that will
be used. Each heuristic is a sequence of BOMs. The goal
of the approach is to determine a good (or even optimal)
sequence of BOMs such that the overall results obtained
by the heuristic are improved.
The set of BOMs de�nes the setH of all possible heuris-

tics that are applicable to the problem to be solved in
the given environment. H may include problem speci�c
heuristics but can also include some random operators.
To each BOM h 2 H we associate a cost function cost

that estimates the resources that are needed for a heuristic
with respect to given examples. We measure the �tness
�t of a string s = (h1; h2; : : : ; hl) of length l (representing
a heuristic composed from l BOMs) for the underlying
maximization problem by

�t(s) = cc=fitc(s) + cq � fitq(s):

The cost �tness

�t
c
(s) =

# of examplesX

i=0

l�1X

j=0

cost(hj ; examplei)

of string s has to be minimized and the quality �tness

�t
q
(s) =

# of examplesX

i=0

quality(examplei)

1In our application we make use of a modi�ed GA, i.e. the GA
works on multi-valued strings. Thus following the standard termi-
nology we call our implemented algorithm an EA.



of string s has to be maximized. cc and cq are problem
speci�c constants.
The cost �tness measures the time for the application of

the string. The quality �tness measures the quality of the
heuristic that is represented by the string s by summing
up the results for a given training set.
For more details about the learning model see [4, 6].

III. Problem Domain

A. Kronecker Functional Decision Diagrams

For the de�nition of Ordered Kronecker Functional De-
cision Diagrams (OKFDDs) we refer to [3]. The size of
OKFDDs is very sensitive to the variable ordering and
the choice of the Decomposition Type List (DTL). We now
consider the following problem that will be solved using
our EA:

How can we determine a good heuristic to per-
form variable ordering and DTL choice for an
OKFDD representing a given Boolean function
f such that the number of nodes in the OKFDD
is minimized?

B. Dynamic Variable Ordering

It is well-known for decision diagrams that the sizes can
be minimized by exchanging adjacent variables [7]. In the
following we brie
y describe the algorithms that are used
as BOMs in our approach in the next section:

Sifting (S) [8]: By the sifting algorithm, the variables
are sorted into decreasing order based on the number of
nodes at each level and then each variable is traversed
through the OKFDD in order to locate its local optimal
position while all other variables and the DTL remain
�xed.

Siftlight (L): Siftlight is a restricted form of sifting that
does not allow the algorithm to do any hill climbing,
i.e. the variables are directly located in the next mini-
mum.

DTL-sifting (D) [3]: By DTL-sifting the variables are
sorted into decreasing order based on the number of nodes
at each level. Then each variable traverses for all three
di�erent decomposition types the OKFDD analogously to
sifting.

Exact (E): Perform the exact minimization algorithm
for OKFDDs for only three adjacent levels (=window).
A window is chosen for optimization, if the sum over all
nodes in these levels is maximal.

Inversion (I): The variable ordering is inverted.

IV. Evolutionary Algorithm

In this section we brie
y describe the Evolutionary Al-
gorithm (EA) that is applied to the problem given above.

A. Representation

In our application we use a multi-valued encoding, for
which the problem can easily be formulated. Each posi-
tion in a string represents an application of a BOM. Thus
a string represents a sequence of heuristics. If a string has
n components at most n applications of BOMs are possi-
ble. (This upper bound is set by the designer and limits
the runtime of the heuristic.) Thus, each element of the
population corresponds to an n-dimensional multi-valued
vector.
In the following we consider six-valued vectors over the

alphabet fS;L;D;E; I;Ng: S(L;D;E; I) represents sift-
ing (siftlight, DTL-sifting, exact, inversion). N (no op-
eration) means that no operation is performed. The op-
eration N takes no ressources and thus the costs of the

resulting heuristic can be minimized. (We restrict to these
alternatives, since they have shown to work very well in
our application.)

B. Objective Function and Selection

As an objective function that measures the �tness of
each element we apply the heuristics to benchmark train-
ing sets. Obviously the choice of the benchmarks largely
in
uences the results. On the other hand the designer
can create several di�erent heuristics for di�erent types
of circuits, e.g. a fast but simple heuristic for very large
problem instances or a relative \time consuming" heuris-
tic for small examples. For the calculation of function
quality the OKFDD has been constructed using the ini-
tial variable ordering and Shannon decompostion in each
node. Then the heuristic represented by the considered
element is performed and the number of nodes has been
counted. The function is then given by the equation
quality = 1=nodes, since the number of nodes has to mini-
mized. Function costmeasures the computation time that
is used to evaluate an element, i.e. the time that is needed
to reorder the OKFDD, in 10�2 CPU seconds.
The selection is performed by roulette-wheel selection,

i.e. each string is chosen with a probability proportional
to its �tness. Additionally, we also make use of steady-
state-reproduction [2].

C. Operators

As genetic operators we used reproduction, crossover
and mutation and some slightly modi�ed operators. All
operators are directly applied to six-valued strings of �nite
length that represent elements in the population. The
parent(s) for each operation is (are) determined by the
mechanisms described above. All genetic operators only
generate valid solutions, if they are applied to the multi-
valued strings.

D. Algorithm

Using the genetic operators our algorithm works as fol-
lows:

1. The initial population of size 10 is generated ran-
domly and the length of the strings is set to 20.

2. Then pop

2
elements are generated by the genetic op-

erators that are applied with a corresponding proba-
bility. The newly created elements are then mutated
with a probability of 15%. After each iteration the
size of the population is constant.

3. If no improvement is obtained for 50 generations the
algorithm stops.

V. Experimental Results

In this section we present results of experiments that
were carried out on a SUN Sparc 20 workstation. All
runtimes time are given in CPU seconds. The benchmark
functions are taken from LGSynth91. The best results are
given in bold in the following.
In a �rst series of experiments we developed a heuristic

for OKFDD minimization on a small training set that is
composed of only �ve functions. The learning time for all
heuristics takes about 12-14 CPU hours.
The results are given in Table I, where in (out) de-

notes the number of inputs (outputs) of the corresponding
benchmark and size gives the number of nodes. DTL de-
notes the results after DTL-sifting iteratively applied until
no further improvement could be obtained. (Thus, DTL-
sifting implicitly makes use of a more powerful \do-until"-
operator. Nevertheless our results demonstrate that our



TABLE I
Training set

name in out DTL EA1: cc = 1 EA2:cc =
1

10
EA3:cc =

1

100
EA4: cc = 0

size time size time size time size time size time
add6 12 7 24 0.3 68 < 0:1 25 0.2 23 0.3 23 0.6
alu2 10 6 138 1.0 157 0.1 127 0.9 120 1.2 119 2.4
frg1 28 3 70 1.2 79 < 0:1 75 0.9 74 1.3 72 1.6
x6dn 39 5 217 1.7 244 0.1 203 2.2 196 2.7 196 4.4
Z5xp1 7 10 28 0.2 41 0.2 28 0.4 28 0.4 28 1.1

TABLE II
Application to new benchmarks

name in out DTL EA1 EA2 EA3 EA4
size time size time size time size time size time

addm4 9 8 126 0.6 163 0.1 130 0.8 126 1.0 125 2.1
apex2 39 2 310 147.8 553 22.6 274 153.0 243 198.1 273 178.3
apex7 49 37 264 2.3 300 0.3 225 2.7 230 3.1 220 4.8
bc0 26 11 431 2.3 522 0.3 426 2.5 423 3.1 423 4.5
bcd 26 38 565 6.1 574 0.8 568 6.2 569 8.5 561 11.2
cm85a 11 3 35 < 0:1 35 < 0:1 26 0.1 20 0.1 20 0.2
chkn 29 7 260 16.8 324 1.8 246 11.7 228 15.3 246 17.2
cps 24 109 573 10.7 726 1.1 545 7.0 563 9.3 548 11.2
ex5 8 63 234 0.6 241 0.1 304 0.9 234 1.1 281 2.9
ex7 16 5 75 0.8 77 0.1 62 1.0 60 1.3 60 1.8
gary 15 11 286 0.9 297 0.1 282 1.1 280 1.5 292 2.3
in7 26 10 64 0.9 83 0.2 73 1.3 76 1.7 75 1.9
m181 15 9 53 0.6 54 0.1 55 0.8 53 1.0 56 1.9
mlp4 8 8 107 0.5 134 0.2 108 1.0 108 1.3 108 2.7
pdc 16 40 572 1.6 605 0.8 649 5.8 639 7.9 663 10.2
rd73 7 3 30 0.1 30 < 0:1 21 0.1 21 0.2 21 0.6
risc 9 8 56 0.1 65 < 0:1 56 0.1 56 0.2 56 0.6
sqn 7 3 47 0.1 55 < 0:1 51 0.1 51 0.2 51 0.4
t1 21 23 103 0.1 114 0.1 126 0.4 119 0.6 120 0.7
tial 8 31 550 6.4 613 0.8 489 4.8 473 9.7 454 10.0
ts10 22 16 131 2.0 145 2.4 160 7.2 160 10.3 131 10.9
vg2 25 8 186 0.5 193 0.1 95 0.9 94 1.2 76 1.8

TABLE III
Extended training set

name in out DTL EA1 EA2 EA3 EA4
size time size time size time size time size time

add6 12 7 24 0.3 41 < 0:1 24 0.2 23 0.2 23 0.6
alu2 10 6 138 1.0 149 0.1 137 0.5 122 1.1 124 2.2
frg1 28 3 70 1.2 94 < 0:1 77 1.1 75 1.1 72 2.4
x6dn 39 5 217 1.7 232 0.1 215 1.8 213 3.2 203 5.7
Z5xp1 7 10 28 0.2 29 0.1 28 0.2 28 0.3 28 1.2

pdc 16 40 572 1.6 574 0.2 564 4.5 564 6.2 565 12.9
sqn 7 3 47 0.2 56 < 0:1 47 0.1 47 0.1 47 0.5
t1 21 23 103 0.1 111 < 0:1 110 0.2 103 0.5 102 1.1



methods obtains better results with \weaker" operators.)
The four rightmost columns show the results after apply-
ing the newly developed heuristics that are learned by our
EA for varying parameter settings of cc. For each EA cq
is �xed by a problem speci�c constant factor and cc is
chosen in the range from 0 to 1; the exact settings of cc
are given in Table I in the top row. The larger cc is chosen
the larger is the in
uence of the timing aspect in our EA.
The results obtained by EA1, where runtime is the main

optimization goal, in all cases are worse than DTL-sifting,
but the corresponding runtimes are much better, i.e. never
larger than 0.2 CPU seconds. If the in
uence of the timing
aspect is decreased, the quality of the results gets higher.
EA2 produces better results than DTL-sifting on aver-
age and the runtimes are also often faster. The heuristic
that is developed by EA4 does not consider any timing
optimization. As can be seen EA4 determines the best
OKFDD sizes on average on the training set. The run-
times are still in an acceptable range, i.e. it takes only a
few seconds.
In a next series of experiments we applied the developed

heuristics to new benchmarks that were not included in
the training set, i.e. functions that were unknown dur-
ing the optimization process of the EA. The results are
given in Table II. As can easily be seen the timing be-
haviour of the heuristics is similar to the �rst experiment.
The application of DTL-sifting obtains best solutions for
about 40% of the considered Boolean functions. For EA3
and EA4 the best solutions are obtained for nearly 50%
even though the resulting heuristics were not trained on
these functions. It is important to notice that the learned
heuristic EA4 is never more than 20% worse than DTL-
sifting. On the other hand DTL-sifting gets stuck very
early in some cases and gets results that are more than
50% worse (see e.g. vg2).
In a next experiment we extended the training set by

three further examples that obtained unsatisfying results,
i.e. functions pdc,t1 and sqn from Table II. For these func-
tions DTL-sifting created smaller OKFDDs. The goal is
to improve the heuristics by adapting them to the ex-
tended training set. The results of this experiment are
given in Table III. As can easily be seen the results (es-
pecially on the new examples) get much better than for
DTL-sifting.
Finally, the new heuristics that were learned on the

extended training set are applied to the remaining bench-
marks (that were again unknown during the optimiza-
tion). The results are given for EA3 and EA4 in Table
IV. (EA3 and EA4 are chosen because of their perfor-
mance concerning the quality of the results.) The exper-
iments show that EA4 is now only in one case, i.e. chkn,
worse than DTL-sifting (and the di�erence in this case is
only one node). For all other benchmarks EA4 is (much)
better or equal to DTL-sifting. The runtimes are still rea-
sonable, i.e. less than 20 CPU seconds for most examples.
All in all, the experiments have shown that our EA is

able to design a heuristic that is more powerful than a
\hand-designed" heuristic. The larger the training set is
chosen the higher is the average gain in the quality of the
results. This also enables the option to add new examples
to the EA run and in this way to dynamically adapt the
heuristic to new problem instances.

VI. Conclusions

We presented an Evolutionary Algorithm (EA) that
learns strategies for OKFDD minimization. The EA de-
pends on a parameter set that in
uences the quality and
the runtimes of the resulting heuristic.

TABLE IV
Application to new benchmarks II

name DTL EA3 EA4
size time size time size time

addm4 126 0.6 126 0.9 125 2.4
apex2 310 148.4 323 170.9 273 270.1
apex7 264 2.3 259 2.9 187 7.4
bc0 431 2.3 431 2.3 431 7.3
bcd 565 6.1 561 7.1 561 13.4
cm85a 35 < 0:1 35 0.1 33 0.3
chkn 260 16.8 315 13.6 261 24.7
cps 573 10.7 556 7.9 560 18.9
ex5 234 0.6 234 0.9 234 2.6
ex7 75 0.8 75 1.1 75 2.2
gary 286 0.9 292 1.3 279 3.3
in7 64 0.9 78 1.5 64 3.0
m181 53 0.6 53 1.0 53 2.5
mlp4 107 0.5 108 1.1 107 3.1
rd73 30 0.1 30 0.2 21 0.7
risc 56 0.1 56 0.2 56 0.6
tial 550 6.4 533 5.7 471 13.4
ts10 131 2.0 131 8.1 131 13.2
vg2 186 0.5 187 1.1 184 3.6

The EA learns the heuristic on a training set composed
of examples of Boolean functions. The resulting heuris-
tic works very well with respect to quality and costs on
these examples. The application to new benchmarks that
were unknown during the learning process demonstrates
the e�ciency of the new heuristic. Furthermore, the inte-
gration of new examples into the learning set improves the
quality of the newly developed heuristic. This technique
enables the designer to create problem speci�c heuristics,
e.g. for a speci�c class of circuits.
Finally, it should be mentioned that our methods can

be direcly applied to more restricted classes of DDs, like
OBDDs and OFDDs.
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