
AQUILA: An Equivalence Verifier for Large Sequential Circuits

Kuang-Chien Chen
Fujitsu Labs. of America
3350 Scott Blvd. Bldg 34
Santa Clara, CA 95054
kchen@fla.fujitsu.com

Shi-Yu Huang Kwang-Ting Cheng
Department of Electrical & Computer Engineering

University of California, Santa Barbara
Santa Barbara, CA 93106

huang@yellowstone.ece.ucsb.edu timcheng@ece.ucsb.edu

Abstract
In this paper, we address the problem of verifying the equiva-

lence of two sequential circuits. A hybrid approach that combines
the advantages of BDD-based and ATPG-based approaches is intro-
duced. Furthermore, we incorporate a technique called partial justi-
fication to explore the sequential similarity between the two circuits
under verification to speed up the verification process. Compared
with existing approaches, our method is much less vulnerable to the
memory explosion problem, and therefore can handle larger
designs. The experimental results show that in a few minutes of
CPU time, our tool can verify the sequential equivalence of an
intensively optimized benchmark circuit with hundreds of flip-flops
against its original version.

1. Introduction
State-of-the-art synthesis tools optimize circuits with respect to

various constraints such as area, performance, power dissipation
and testability. These tools can apply sequential transformations to
a circuit and therefore may result in an optimized network with a
different number of flip-flops [14,4,20]. Even though these transfor-
mations are correct by construction, the software programs that
implement these transformations are highly complicated and may
not be error-free. Therefore, verifying the correctness of an
optimized circuit is necessary. For those circuits that have been
manually changed to satisfy the timing or power dissipation
requirements in the late design cycle, verification is even more
important. Recently, several efficient approaches for verifying a
sequential circuit based on Binary Decision Diagrams (BDD’s)
have been proposed [6,5,21,8]. In these approaches, the circuits are
regarded as finite state machines and characterized by a transition
relation and a set of output functions using BDD’s. A product
machine is constructed and its state space is traversed. Most of them
assume a reset state, and employ a breadth-first traversal algorithm
to compute the set of reachable states. The equivalence of these two
machines can be proved by checking the tautology of every primary
output of the product machine. Due to the memory explosion
problem, these approaches can easily fail for large designs. The use
of BDD dynamic ordering techniques [19] can extend the capability
of these state-traversal-based approaches. However, this extension
still has limitations in handling large designs.

Exploring the structural similarity between the two circuits
under verification has been shown to be effective to reduce the com-
plexity of verifying combinational circuits [2,13,12,18,11,15]. We
extended this idea to verify sequential circuits [9]. In this extension,
sequential Automatic Test Pattern Generation (ATPG) techniques
[3,7] are used to identify equivalent flip-flop pairs and equivalent
internal signal pairs. A computational model calledmiter [7,2] is
constructed and sequential backward justification technique is
employed. We implicitly regard the verification problem as a search

process for an input sequence that can differentiate the given two
circuits, instead of trying to compute all reachable states in one
shot. The problem is divided into a set of easier sub-problems:
verifying equivalent flip-flop pairs and internal signal pairs. But
because the search space for each sub-problem is still very high, we
further developed several techniques to cut down the search space.
A pre-processing algorithm was recently developed for retimed
circuits [10] to increase the internal structural similarity of the
retimed and the reference circuits. Through such an algorithm, the
complexity of verifying retimed circuits is dramatically reduced.

The efficiency of this approach relies on the techniques for
identifying the equivalent internal signal pairs. Based on an obser-
vation that a high percentage of equivalent pairs can be identified
by only considering a small subcircuit surrounding the candidate
signal pair, we developed an algorithm for identifying these signal
pairs for combinational circuits by only constructing local BDD’s.
The BDD’s are incrementally expanded on demand during the veri-
fication process. This enhancement makes our approach less
sensitive to the circuit’s structural similarity.

Two other new developments further strengthen our approach.
First, a more effective procedure that combines the advantages of
the BDD-based and ATPG-based techniques is introduced.
Secondly, we extend the local BDD-based verification engine for
sequential circuits. This technique, referred to aspartial justifica-
tion, enables our framework to handle much larger sequential
designs.

The rest of this paper is organized as follows. In Section 2, we
review our earlier framework. In Section 3, we describe our new
procedure and the algorithm of partial justification. We present the
experimental results in Section 4 and give the conclusion in
Section 5.

2. Preliminary
2.1 Computational model

A sequential circuit is regarded as a set of interconnected com-
ponents with primary inputs and primary outputs. These compo-
nents could be flip-flops or logic gates. If the circuit cannot be reset
to an unique reset state externally, several different definitions of
sequential equivalence, such aspost-synchronization equivalence
[16], safe replaceability[17], and3-valued safe replaceability [9]
can be used. We assume the circuit has an external reset state in this
paper, but the discussion can be easily extended for checking other
definitions of equivalence. The verification is performed on the
computational model calledmiter as shown in Fig. 1. Each primary
output pair is connected to an exclusive-OR gate (whose output is
denoted asg). The specification and implementation are denoted as
C1 andC2 respectively. For simplicity without losing generality, we

assumeC1 andC2 are both single output circuits, and their outputs

ASP-DAC ’97
0-89791-851-7$5.00 1997 IEEE

areo1 ando2 respectively. The problem is to decide if the response

of o1 is equivalent too2 for all possible input sequences.

Definition 1 (Signal pair): (a1, a2) is called a signal pair ifa1 is a

signal ofC1, anda2 is a signal ofC2.

2.2 The basic ATPG-based framework

We review the procedure of using a sequential ATPG program
for verification in this sub-section. We first build the miter of the
two circuits, and then perform a modified ATPG process to search
for a test ofg stuck-at-0 fault using the reverse-time processing

technique on the iterative array model as shown in Fig. 2. Since we

are dealing with an output fault, the forward fault-effect propaga-
tion is not necessary. The search process consists of two stages: (1)
fault injection, and (2) sequential backward justification.

During the process of backward justification, value assignments
at the present state lines of each time-frame is called a state require-
ment, denoted assr, which can be considered as a state-cube. We
decompose a state requirement into two parts: the state requirement
for C1, sr1; and the state requirement forC2, sr2. For example,

sr = (sr1 | sr2) = (uuu | uu0), whereu means “no requirement” at

that particular state bit. We monitor each state requirement
generated during this process. If the reset state, e.g., (000 | 000), is
contained in a newly generated state requirement, then it indicates a
test sequence has been found and the justification process termi-
nates. In the example of Fig. 2,T = (v3v2v1) is a test sequence forg

stuck-at-0 because the reset state is contained in a state requirement
(uuu | uu0) after the justification of 3 time frames. On the other
hand, if the state requirement does not contain the reset state, it
needs to be further justified by expanding another time frame until
it is eventually justified or proven unjustifiable. If all the state
requirements ever generated in this backward justification process
are proven unjustifiable, then no distinguishing sequence exists and
C1 is equivalent toC2. Note that this is a recursive search process,

and the number of state requirements may grow rapidly. For the
cases when the given two circuits are indeed equivalent, the above

Fig. 1: The computational model for equivalence checking.

PI’s

(specification)

(implementation)

⊕ g
o1

o2

C1

C2

FF’s

FF’s

v3

C1

C2

v2

C1

C2

v1

C1

C2

 g=1
⊕

0

uuu

uu

Fig. 2: A example of backward justification.

branch-and-bound search would be very time-consuming, and thus,
requires some speed-up techniques. We developed a procedure to
take advantage of the similarity between the circuits for this
purpose. This procedure has two major steps: (1) identify equiva-
lent flip-flop pairs, and (2) identify equivalent internal pairs.

2.3 Identifying equivalent flip-flop pairs

The main idea of identifying equivalent flip-flop pairs is to pair
up candidate equivalent pairs by name comparison, if possible, or
by simulation of some random patterns at the beginning. A signal
pair will be a candidate pair if their responses to the random
sequence are identical. After the initial candidate set has been con-
structed, we employ an iterative process to incrementally filter out
thosefalse candidate flip-flop pairs (flip-flop pairs that are actually
inequivalent). At each iteration of this filtering process, we
construct a new intermediate model as shown in Fig 3. In this

model, every candidate flip-flop pair isassumed equivalent and
connected together. In Fig. 3, the initial candidate set is {(y1, z1),

{y 2, z2)}. Also the inputs of the candidate flip-flop pairs are treated

as pseudo primary outputs and referred to ascandidate next-state
line pairs (NS-pairs), e.g., {(Y1, Z1), {Y 2, Z2)} in Fig. 3. Equiva-

lence checking is performed for every candidate NS-pair on this
model. If a candidate NS-pair is not equivalent in this model, then
its associated flip-flop pair is a false candidate, and should be
removed from the candidate set. As soon as a false candidate flip-
flop pair is identified, the assumption of the present state line pairs
(PS-pairs) of all candidate pairs including the identified false pair
being equivalent is proven incorrect. Therefore, the identified false
pair is removed and a new iteration starts with a smaller candidate
set. This iterative process will stop when all candidate NS-pairs are
proven equivalent in the intermediate model. It can be proved by
induction that when such a stable condition is reached, all candidate
pairs that survive this filtering process are indeed equivalent, and
those flip-flop pairs that are filtered out are indeed inequivalent.

This filtering procedure may need several iterations to reach a
stable condition. However, it is still much more efficient than a
primitive method that identifies equivalent flip-flop pairs directly
without assuming the equivalence of every candidate PS-pair. The
efficiency of this method is due to three main reasons: (1) The
search spaceof the distinguishing sequences for each candidate
NS-pair is dramatically reduced because of the bounding effects
created by merging the PS lines of every candidate pair. (2) The

Fig. 3: The intermediate model for identifying equivalent FF pairs.

primary

(specification)

(implementation)

C1

C2

y1
y2
y3

z1
z2

inputs

candidate flip-flop pairs: {(y1, z1), (y2, z2)}
candidate next-state line pairs: {(Y1, Z1), (Y2, Z2)}

Y1
Y2

Z1
Z2

o1

o2

* y1 and y2 are replaced by z1 and z2 respectively in this model.

number of flip-flops are reduced in the intermediate model at each
iteration. (3) Merging the candidate flip-flop pairs creates more
common supports for the two circuits’ combinational portions.
Therefore, a lot ofsequentially equivalent internal signal pairs are
converted intocombinationallyequivalent. These pairs can then be
explored much more easily.

At each iteration of the above procedure, checking the equiva-
lence of each candidate NS-pair is still computationally expensive
for large circuits. Identifying and merging the internal equivalent
signal pairs can further improve the efficiency. In [11], a process of
verifying combinational equivalence is performed in stages. The
internal equivalent pairs are identified from the primary input side
towards the primary output side using a modified ATPG. Once an
equivalent pair is identified, they are merged to prune themiter and
speed up the subsequent verification process. We integrate the
BDD-based and the ATPG-based techniques to extend this idea for
sequential circuits. We identify not only combinationally equivalent
but also sequentially equivalent signal pairs.

2.4 Identifying equivalent internal signal pairs

The ATPG-based approach is efficient if the given two circuits
have significant structural similarity. But for circuits optimized
through extensive transformations, a pure ATPG-based technique
may not be sufficient. For such cases, proving equivalent internal
signal pairs can be done by constructinglocal BDD’s [11,15]. Fig. 4

shows the idea of proving an internal equivalent pair for combina-
tional circuits by constructing local BDD’s. Suppose the primary
inputs arex1, x2, andx3; and the target pair is (a1, a2). We select a

set of supporting signals in the fanin cones of signalsa1 anda2. If

we can prove that for all value combinations at these supporting
signals, (a1, a2) is an equivalent pair, then they are indeed equiva-

lent. Otherwise, we expand the support towards the inputs incre-
mentally until a proper support is found to prove the equivalence, or
the number of expansions exceeds a pre-defined limit. Our experi-
ments on the combinational benchmark circuits optimized by
extensive scripts (such asscript.rugged) show that a large number
of equivalent pairs can be identified using this sufficient criterion.
In Section 3, we will show how to incorporate this idea into the
basic ATPG-based framework for sequential circuits.

3. Hybrid Algorithm
In this Section, we describe the integrated procedure for

verifying sequential circuits. The procedure is based on the combi-
nation of a robust local BDD-based engine and the effective search
for a counter-sequence using ATPG. The overall flow is shown in

C1
o1

x1
x2
x3

C2
o2

a1

a2

dynamic support

Fig. 4: The dynamic support that expands towards the primary
inputs for verifying the equivalence of (a1, a2).

Fig. 5. There are three major phases: (1) Run simulation with a
random sequence to find the candidate equivalent flip-flop pairs and
internal pairs. (2) Identify equivalent flip-flop pairs and simplify the
miter. This phase is very efficient and is based on both BDD-based
and ATPG-based techniques. In detail, this phase is an iterative
process and has three steps for each iteration. First, we assume that
every candidate flip-flop pair is equivalent, and therefore connect
the present state lines (PS lines) of each candidate pair together.
Second, based on this assumption, internal equivalent pairs are
identified and merged in stages. Third, the next state lines of each
candidate flip-flop pairs are verified to decide if the process has sta-
bilized. If yes, exit the loop. Otherwise, remove the false candidate
pair from the candidate list and continue with another iteration.
Note that this is a monotone filtering process, and thus, the process
will always terminate. Identifying equivalent signal pairs in this
process is based on a symbolic backward justification technique to
be described in the next subsection. (3) Check the equivalence of
each primary output pair. We use the local BDD-based approach
followed by an ATPG search if necessary.

3.1 Symbolic backward justification

In this sub-section, we describe a symbolic algorithm to check
the equivalence of a signal pair (a1, a2). The process is performed

on the iterative array model of the miter. The difference is that we
do the backward justification in a symbolic way instead of perform-
ing a branch-and-bound search.

At the last time frame of this procedure, we treata1 anda2 as

pseudo outputs and compute the set of value combinations at
primary inputs (PI’s) and present state lines (PS’s) that can differen-
tiate this target pair (i.e., settingg to ‘1’). Fig. 6 shows an illustra-
tion. We call the characteristic function of this set as the

discrepancy function at time frame 0, denoted asDisc0(a1, a2). We

smooth out all the primary inputs to obtain a new function in terms

of the present state lines only. This new function, denoted asSR0(a1,

a2), characterizes the set of the state requirements at the last time

miter

simulation
 candidate PS-pairs

candidate FF-pairs
& internal pairs

original
simplify miter

(merging equiv pairs)

Checking PO-pairs
(using local BDD’s)

Checking PO-pairs
(using ATPG)equivalent?

Fig. 5: Overall algorithm.

Verifying candidate NS-pairs
(using local BDDs)

Stable?

connecting together

no

yes

No false candidate
(stable criterion)

filter out false
candidate FF-pairs

FF-pair exists

frame for differentiating (a1, a2). For the rest of the paper, the

superscript of a notation indicates the index of the associated time
frame. The index of the last time frame is 0 and it increase in a
backward manner as shown in Fig. 6.

Once we have derivedSR0(a1,a2), the symbolic backward justi-

fication process in the following should be performed to decide

whetherSR0(a1, a2) can be justified. This is done by a series of pre-

image computations. At each time framei, (i >0), SRi(a1, a2) is

derived by computing the pre-image ofSR(i-1)(a1, a2) followed by

smoothing out all primary inputs. A number of existing techniques
using BDD’s for pre-image computation can be directly applied.
Similar to our original ATPG-based framework, the terminating
conditions should be checked at each time frame to see if another
backward time frame expansion is needed. Assume the current time
frame index isi, then the three terminating conditions are as
follows. (1) Justified condition: when the reset state is contained in

SRi(a1, a2). (2) Conflict condition: whenSRi(a1, a2) is the zero

function. (3) Fixed-point (or cyclic) condition: whenSRi(a1, a2) is

contained inSRj(a1, a2) for some j < i. During this symbolic

backward justification, if conditions (2) or (3) are encountered, then
the target signal pair are equivalent. Otherwise they are not equiva-
lent. The algorithm is detailed in Fig. 7.

3.2 Partial justification

The above symbolic backward justification may cause memory
explosion for circuits with a large number of flip-flops. Hence, we

 g=1⊕

Fig. 6: Symbolic backward justification for checking ifa1 = a2.

a1

a2

SR0SR1
pre-image

computation

Terminating conditions:

Time-frame 0Time-frame 1

1. justified
2. zero function
3. fixed-point

 Symbolic-Equivalence-Checking (a1, a2)
{

compute discrepancy functionDisc0(a1, a2) at the last time frame.

derive the state requirement functionSR0(a1, a2) by smoothing out PI’s.

SR = SR0(a1, a2);
/*------ symbolic backward justification ------*/
while(1)

c = check_terminating_conditions(SR);
switch(c){

caseJUSTIFIED: return(DIFFERENT);
caseCONFLICT: return(EQUIVALENT);
caseFIXED-POINT: return(EQUIVALENT);
default:New=compute_preimage_and_smooth_out_PI’s(SR); break;

}
SR = SR∪ New;

}

}

Fig. 7: The symbolic algorithm to check the equivalence of a signal pair.

further incorporate a simple technique calledpartial justification to
target for some practical designs. This technique can be used during
the process of identifying the equivalent flip-flops pairs, internal
equivalent pairs, and the process of checking primary output equiv-
alences.

Assume that all the candidate present state line pairs are
connected together at each time frame and the identified equivalent
internal pairs in the fanins of (a1, a2) have been merged. Now the

verification process proceeds to check ifa1 is equivalent toa2. At

the last time frame, instead of computing discrepancy function in
terms of the PI’s and PS’s directly, we select a local cutset in this

air’s fanins. This cutset is denoted asλ0. We use

to denote the characteristic function of the set of value combina-
tions atλ0 that can differentiate (a1, a2). Note that all cutset signals

n λ0 should be previously identified as equivalent to their corre-

sponding signals, and have been merged with their corresponding
signals. Suppose we incrementally backward expand this cutset for
a number of logic levels within the same time frame and still cannot

prove the target pair is equivalent (i.e., is not the

zero function), then we stop and pessimistically assume that they
are not combinationally equivalent. We then proceed to the partial
justification process to check if they are sequentially equivalent.

To start this process, we first smooth out the signals inλ0 that

are not present state lines from to obtain a partial

state requirement function . This function character-

izes a necessary condition that should be satisfied at the present
state lines to differentiate (a1, a2). Similar to the complete symbolic

justification, a number of time frames may need to be explored until
one of the three terminating conditions is met. For simplicity, we
only select one cutset at each time frame i, denoted asλi. We derive

 from by pre-image computation

and smoothing out non-PS supporting signals inλi. After this

process of partial justification, if the objective of differentiating (a1,

a2) turns out to be unjustifiable, then (a1, a2) is equivalent. But on

the contrary, if the partial state requirement function can be justi-
fied, then no conclusion can be made.

Selecting a good cutset is essential for improving the perfor-
mance of verification. Similar to the combinational cases (as shown
in Fig. 4), we expand the cutset dynamically from the target pairs
towards the primary inputs and present state lines at each time
frame. We use a simple heuristic that looks backwards for a number
of levels to select a cutset with a small number of signals. Our
experiments showed that this simple heuristic for expanding the
cutset dynamically results in a very high percentage of equivalent
pairs even for a fully optimized circuit. When no conclusion can be
reached using this heuristic, the false negative problem may occur,
i.e., our algorithm fails to identify an equivalent pair even though
they are indeed equivalent. In that case, if the target pair are internal
signals, we assume they are inequivalent pessimistically. If the
target pair is a flip-flop pair or primary output pair, then we rely on
the ATPG to resolve the false negative problem or to find a distin-
guishing sequence.

Discλ0

0
a1 a2,

Discλ0

0
a
1

a
2

,

Discλ0

0
a
1

a
2

,

SRλ0

0
a
1

a
2

,

SRλi

i
a
1

a
2

,
 SRλi 1–

i 1–
a
1

a
2

,

3.3 Example

Fig. 8 shows an example. This example has four primary inputs
x1, x2, x3, andx4. C1 andC2 contain sequential sub-networks,sub1
and sub2, respectively. Suppose the outputs of these two sub-

networks,s1 ands2, are proven equivalent. In addition to these two

sub-networks,C1 (C2) has two flip-flops denoted asZ1 andZ2 (Y1

andY2) respectively. We make no differentiation between a logic

gate and its output signal except for the flip-flops. The outputs ofZ1

andZ2 (Y1, andY2) are the present state lines and denoted asz1 and

z2 (y1 andy2). The verification procedure is detailed as follows.

(Step 1): Perform simulation for a large number of random vectors
to find the set of candidate flip-flop pairs {(Z1, Y1), (Z2, Y2)}, and

the set of candidate internal pairs {(a1, a2), (b1, b2), (c1, c2), (d1,

d2), (s1, s2)}.

(Step 2): Identify the equivalent flip-flop pairs.

(2.1) Assume the candidate present state lines pairs {(z1, y1), (z2,

y2)} are equivalent and connect each PS-pair together.

(2.2) Verify the equivalence of {(Z1, Y1), (Z2, Y2)}. Signal pairs

{(a1, a2), (b1, b2), (c1, c2)} can be easily verified as equivalent

incrementally, and so can {(Z1, Y1), (Z2, Y2)}. Hence, we conclude

that the assumption made in (2.1) is correct and the process has sta-
bilized. (Z1, Y1) and (Z2, Y2) are indeed equivalent flip-flop pairs.

(Step 3): Check the equivalence of primary output pair (o1, o2).

(3.1) Further explore the similarity by checking if (s1, s2) and

(d1, d2) are equivalent pairs. Suppose that (s1, s2) is equivalent and,

thus, we replaces1 by s2. The process moves on to check (d1, d2).

Fig. 9 shows a snapshot of the miter at this moment. Suppose we

select = {y1, y2, s2} as the cutset. Then the distinguishing vector

at this cutset is {(y1, y2, s2) = (0, 1, 1)}. Let the characteristic

function of this set be . Since signals2 is not a

present state line, it should be smoothed out from to

derive the set of state requirement, which would be {(y1, y2) = (0,

1)}. None of the three terminating conditions is met. Hence the
backward justification process starts. At the next time frame, the
pre-image of {(Y1, Y2) | (0, 1)} is an empty set, and thus a conflict

Y1

Y2

sub-network

b2
a2

x1

o2

x2
x3

x4

c2

d2

y1

y2

Z1

Z2

sub-network

b1
a1

x1

o1

x2
x3

x4

c1

d1

z1

z2

s2

s1

Fig. 8: An example to illustrate the entire procedure.

(sub1)

(sub2)

C1: specification

C2: implementation

λ

Discλ
0

d
1

d
2

,

Discλ
0

d
1

d
2

,

has been reached. Signal pair (d1, d2) is sequentially equivalent and

can be merged together.
(3.2): Check output pair (o1, o2) using local BDD’s. They can be

proved equivalent by selecting {y1, d2} as the cutset.

(Step 4): Run an ATPG program on the simplified miter. This is not
necessary in this example.

4. Experimental Results
We have implemented the described framework in C language

in the SIS environment [8]. It also integrates a sequential ATPG
programstg3 [1]. We tested it on a suite of ISCAS89 benchmark
circuits optimized byscript.rugged script using SIS. The optimiza-
tion process reduces the number of flip-flops for circuits s641, s713,
s5378, s13207, and s15850. For these circuits, combinational verifi-
cation programs cannot be used even if the inputs (outputs) of the
flip-flops are treated as pseudo-outputs (pseudo-inputs). Our
program automatically verified that these optimized circuits are
indeed sequentially equivalent to their original version directly.

Table 1 shows the results of the experiments. The meaning of
each column is explained as follows. (1)# nodes (original / opti-

Y1

Y2

sub-network

b2
a2

x1

o2

x2

x3
x4

c2

d2

y1

y2

o1

d1

s2

Fig. 9: A snapshot of miter before checking equivalence of (d1, d2).

⊕
g

Circuit
nodes

original /
optimized

FFs
orig. / opt.

internal
equiv. pairs
(comb / seq)

equivalent
FF-pairs

(comb. / seq.)

equivalent
PO-pairs

(comb. / seq.)

Verify
Time
(sec)

s208 66 / 42 8 / 8 9 / 0 8 (8 / 0) 1 (1 / 0) 1
s298 75 / 65 14 / 14 17 / 0 14(14/ 0) 6 (6 / 0) 2
s344 114 / 102 15 / 15 29 / 0 15 (15 / 0) 11(11 / 0) 1
s349 117 / 101 15 / 15 29 / 0 15 (15 / 0) 11 (11 / 0) 1
s382 101 / 92 21 / 21 28 / 0 21 (21 / 0) 6 (6 / 0) 1
s386 118 / 60 6 / 6 7 / 0 6 (6 / 0) 7 (7 / 0) 1
s400 108 / 88 21 / 21 27 / 0 21 (21 / 0) 6 (6 / 0) 1
s420 140 / 84 16 / 16 19 / 0 16 (16 / 0) 1 (1 / 0) 1
s444 121 / 85 21 / 21 25 / 0 21 (21 / 0) 6 (6 / 0) 1
s510 179 / 115 6 / 6 8 / 0 6 (6 / 0) 7 (7 / 0) 1
s526 141 / 106 21 / 21 31 / 0 21 (21 / 0) 6 (6 / 0) 1
*s641 128 / 100 19 / 17 4 / 0 17 (2 / 15) 23 (16 / 7) 11
*s713 154 / 99 19 / 17 4 / 0 17 (2 / 15) 23 (14 / 9) 12
s820 256 / 137 5 / 5 16 / 0 5 (5 / 0) 19 (19 / 0) 1
s832 262 / 130 5 / 5 16 / 0 5 (5 / 0) 19 (19 / 0) 1
s838 288 / 162 32 / 32 39 / 0 32 (32 / 0) 1 (1 / 0) 1
s1196 389 / 273 18 / 18 40 / 0 17 (17 / 0) 14 (14 / 0) 3
s1238 429 / 286 18 / 18 46 / 0 17 (17 / 0) 14 (13 / 1) 4
s1423 491 / 390 74 / 74 109 / 0 72 (72 / 0) 5 (5 / 0) 3
s1488 550 / 309 6 / 6 29 / 0 6 (6 / 0) 19 (19 / 0) 3
s1494 558 / 305 6 / 6 30 / 0 6 (6 / 0) 19 (19 / 0) 3
*s5378 1074 / 858 164 / 162 223 / 0 162 (142 / 20) 49 (49 / 0) 12
s9234 1081 / 599 135 / 135 156 / 0 135 (135 / 0) 39 (39 / 0) 5

*s13207 2480 / 1175 490 / 453 301 / 32 419 (379 / 40) 121 (77 / 44) 122
*s15850 3379 / 2435 563 / 540 608 / 20 526 (523 / 3) 87 (73 / 14) 634
s35932 12492 / 7050 1728 / 1728 2048 / 0 1728 (1728 / 0) 320 (320 / 0) 75
s38417 8623 / 7964 1464 / 1464 1860 / 0 1464 (1464 / 0) 106 (106 / 0) 241

Table 1: Results of verifying circuits optimized byscript.rugged of SIS

* Circuits whose numbers of flip-flops are reduced
after the logic optimization process.

mized): the numbers of nodes of the original and optimized circuits
after being cleaned up by SIS command“sweep” and then decom-
posed into AND/OR gates. (2)# FFs (orig. / opt.): the numbers of
flip-flops in the original and optimized circuits. For instance,
s13207 has 490 flip-flops, but only 453 left in the optimized circuit.
(3) # equiv. internal pairs (comb / seq): the number of internal
signal pairs that are identified as combinationally equivalent and
sequentially equivalent in our program respectively. Identifying
these pairs play an important role in reducing the run-time complex-
ity. (4) # equivalent FF-pairs (comb. / seq.): the numbers of equiva-
lent flip-flop pairs that are verified as combinationally equivalent
and sequentially equivalent respectively. Among the (490 / 453)
flip-flops of original and optimized s13207, 419 pairs are identified
as equivalent using our program, where 379 pairs are combination-
ally equivalent and 40 pairs are sequentially equivalent. (5)# equiv-
alent PO-pairs (comb. / seq.): the numbers of combinationally and
sequentially equivalent primary output pairs.

The verification time on a Sun-sparc5 with 128-Mbyte memory
in seconds is given in the last column. Table 2 shows the results of
using our program to verify the circuits after sequential redundancy
removal. Among the total 23 circuits, thirteen (including s1423,
s5378 and s9234) are sequentially equivalent instead of combina-
tionally equivalent to their original version. It is worth mentioning
that, to our knowledge, no pure FSM-traversal technique has suc-
cessfully verified the ISCAS89 benchmark circuits larger than
s1423.

5. Conclusion
Existing state-traversal-based verification approaches for

equivalence checking are subject to combinatorial explosion, and
thus, only applicable to small to medium-sized circuits. In an
attempt to handle larger circuits, we propose a hybrid method that
combines the advantages of local BDD-based and ATPG-based
approaches. To speed up the verification process, we devise a robust
engine to explore the sequential similarity between circuits under
verification based on the idea of partial justification. Because of
using local BDD’s, our approach is less sensitive to the degree of

Circuit
nodes

original /
optimized

FFs
orig. / opt.

internal
eq. pairs

(comb / seq.)

equivalent
FF-pairs

(comb. / seq.)

equivalent
PO-pairs

(comb. / seq.)

Verify
Time
(sec)

s208 66 / 66 8 / 8 65 / 0 8 (8 / 0) 1 (1 / 0) 1
*s298 75 / 74 14 / 14 63 / 0 14(11 / 3) 6 (6 / 0) 1
*s344 114 / 113 15 / 15 102 / 0 15 (15 / 0) 11(10 / 1) 1
*s349 117 / 113 15 / 15 102 / 0 15 (15 / 0) 11 (11 / 1) 1
s382 101 / 100 21 / 21 56 / 0 21 (9 / 12) 6 (6 / 0) 2
*s386 118 / 111 6 / 6 78 / 0 6 (4 / 2) 7 (2 / 5) 1
*s400 108 / 101 21 / 21 55 / 0 21 (9 / 12) 6 (6 / 0) 2
s420 140 / 140 16 / 16 139 / 0 16 (16 / 0) 1 (1 / 0) 1
*s444 121 / 105 21 / 21 49 / 0 21 (9 / 11) 6 (6 / 0) 7
s510 179 / 179 6 / 6 172 / 0 6 (6 / 0) 7 (7 / 0) 1
*s526 141 / 139 21 / 21 90 / 0 20 (11 / 9) 6 (6 / 0) 20
*s641 128 / 120 19 / 18 97 / 0 17 (2 / 15) 23 (16 / 7) 2
s713 154 / 111 19 / 19 79 / 0 19 (19 / 0) 23 (23 / 0) 2
s820 256 / 256 5 / 5 237 / 0 5 (5 / 0) 19 (19 / 0) 1
s832 262 / 256 5 / 5 217 / 0 5 (5 / 0) 19 (19 / 0) 1
s838 288 / 288 32 / 32 287 / 0 32 (32 / 0) 1 (1 / 0) 1

*s1196 389 / 387 18 / 18 364 / 0 17 (17 / 0) 14 (12 / 2) 2
*s1238 429 / 386 18 / 18 305 / 0 17 (17 / 0) 14 (12 / 2) 8
s1488 550 / 550 6 / 6 550 / 0 6 (6 / 0) 19 (19 / 0) 3
s1494 558 / 548 6 / 6 523 / 0 6 (6 / 0) 19 (19 / 0) 2
*s1423 491 / 463 74 / 74 441 / 0 71 (68 / 3) 5 (5 / 0) 96
*s5378 1074 / 919164 / 139 891 / 18 139(139 / 0) 49 (43 / 6) 120
*s9234 1081 / 1067135 / 131 1052 / 0 125 (122 / 3) 39 (38 / 1) 46

Table 2: Results of verifying circuits after redundancy removal.

* Redundancy removed circuits that are sequentially equivalent,
but not combinationally equivalent, to their original version.

structural similarity as compared to the pure ATPG-based
approaches. We presented the experimental results of verifying
large ISCAS89 benchmark circuits that have been fully optimized
by SIS, and circuits after sequential redundancy removal to show
the capability of this promising approach.

References

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital Systems
Testing and Testable Design,”IEEE Press(1990).

[2] D. Brand, “Verification of Large Synthesized Designs,”Proc. Int’l
Conf. on CAD, pp. 534-537 (Nov. 1993).

[3] W.-T. Cheng, “The BACK Algorithm for Sequential Test Generation,”
Proc. Int’l Conference on Computer Design(ICCD-88), pp. 66-69
(Oct. 1988).

[4] K.-T. Cheng, “Redundancy Removal for Sequential Circuits Without
Reset States,”IEEE Trans. on CAD,pp. 652-667 (Jan. 1993).

[5] H. Cho, G. D. Hachtel, S. W. Jeong, B. Plessier, E. Schwarz, and F.
Somenzi, “ATPG Aspects of FSM Verification,”Proc. Int’l Conf. on
CAD,pp. 134-137 (Nov. 1990).

[6] O. Coudert, C. Berthet, and J. C. Madre, “Verification of Synchronous
Sequential Machines Based on Symbolic Execution,”Automatic Veri-
fication Methods for Finite State System, LNCS no. 407, Springer Ver-
lag (1990).

[7] A. Ghosh, S. Devadas, and A. R. Newton, “Test Generation and Veri-
fication for Highly Sequential Circuits,”IEEE trans. on CAD,pp.
652-667 (May 1991).

[8] Y. V. Hoskote, “Formal Techniques for Verification of Synchronous
Sequential Circuits”, Dept. of ECE, Univ. of Texas at Austin, Ph.D.
Dissertation (Dec. 1995).

[9] S.-Y. Huang, K.-T. Cheng, K.-C. Chen, and U. Glaeser, “An ATPG-
Based Framework for Verifying Sequential Equivalence,”Proc. Int’l
Test Conference, pp. 865-874 (Oct. 1996).

[10] S.-Y. Huang, K.-T. Cheng, and K.-C. Chen, “On Verifying the Cor-
rectness of a Retimed Circuit,”Proc. Great-Lake Symposium on VLSI,
pp. 277-280 (March 1996).

[11] S.-Y. Huang, K.-C. Chen, and K.-T. Cheng, “Error Correction Based
on Verification Techniques,”Proc. 33-th Design Automation Confer-
ence, pp. 258-261 (June 1996).

[12] J. Jain, R. Mukherjee, and M. Fujita, “Advanced Verification Tech-
niques Based on Learning,”Proc. 32-th ACM/IEEE Design Automa-
tion Conference,pp. 420-426 (June 1995).

[13] W. Kunz, “HANNIBAL: An Efficient Tool for Logic Verification
Based on Recursive Learning,”Proc. Int’l Conf. on CAD,pp. 538-543
(Nov. 1993).

[14] C. E. Leiserson and J. B. Laxe, “Retiming Synchronous Circuitry,” In
Algorithmica,6(1) (1991).

[15] Y. Matsunaga, “An Efficient Equivalence Checker for Combinational
Circuits,” Proc. ACM/IEEE Design Automation Conference,pp. 429-
634 (June 1996).

[16] C. Pixley, “A Theory and Implementation of Sequential Hardware
Equivalence”,IEEE Trans. on CAD,pp. 1469-1494, (Dec. 1992).

[17] C. Pixley, V. Singhal, A. Aziz, and R. K. Brayton, “Multi-level Syn-
thesis for Safe Replaceability,”Proc. Int’l Conf. on CAD,pp. 442-449
(Nov. 1994).

[18] S. M. Reddy, W. Kunz, and D. K. Pradhan, “Novel Verification
Framework Combining Structural and OBDD Methods in a Synthesis
Environment,” Proc. 32-th ACM/IEEE Design Automation Confer-
ence,pp. 414-419 (June 1995).

[19] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision
Diagram,”Proc. Int’l Conf. on CAD,pp. 42-47 (Nov. 1993).

[20] N. Shenoy and R. Rudell, “Efficient Implementation of Retiming,”
Proc. Int’l Conf. on CAD, pp. 226-233 (Nov. 1994).

[21] H. J. Touati, H. Sarvoj, B. Lin, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Implicit State Enumeration of Finite State Machines
Using BDD’s,”Proc. Int’l Conf. on CAD,pp. 130-133 (Nov. 1990).

[22] “SIS: A System for Sequential Circuit Synthesis,” Report M92/41,
University of California, Berkeley (May 1992).

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

