
An Optimal Scheduling Method for Parallel Processing System of
Array Architecture

Kazuhito Ito Tadashi Iwata Hiroaki Kunieda

Dept. of Elec. and Elect. Syst. Dept. of Elec. and Elect. Eng.
Saitama University Tokyo Institute of Technology

Urawa, Saitama 338, Japan Meguro-ku, Tokyo 152, Japan
Tel: +81-48-858-3731 Tel: +81-3-5734-2574
Fax: +81-48-855-0940 Fax: +81-3-5734-2911

kazuhito@elc.ees.saitama-u.ac.jp ftiwata,kuniedag@ss.titech.ac.jp

Abstract— In high-level synthesis for digital signal processing
systems of array structured architecture, one of the most impor-
tant procedures is the scheduling. By taking into account the al-
location of operations to processors, it is mandatory to take into
account the communication time between processors. In this pa-
per we propose a scheduling method which derives an optimal
schedule achieving the minimum iteration period and latency for a
given signal processing algorithm on the specified processor array.
The scheduling problem is modeled as an integer linear program-
ming and solved by an ILP solver. Furthermore, we improve the
scheduling method so that it can be applied to large scale signal
processing algorithms without degrading the schedule optimality.

I. INTRODUCTION

With the development of VLSI technology, wire delay is be-
coming relatively larger than gate delay [1]. To implement a
high speed VLSI, it is very important to estimate not only the
gate delay but the wire delay even in the high-level design. The
parallel processing system on an array architecture is one of the
suitable architectures for high speed VLSIs of the next gener-
ation since it realizes parallel processing which is the key to
fully utilize an enormous number of gates on a VLSI [2, 3].
In the array architecture, the direct data communications are
limited to PEs which are physically adjacent on a VLSI chip.
The data communication between not physically adjacent PEs
is achieved by intermediate PEs relaying the data. In this com-
munication model, it is easy to estimate the wire delay (data
communication delay) in high-level design of an array archi-
tecture. The data communication time is proportional to the
distance of the source and the destination PEs.

One of the most important procedures of high-level synthesis
is scheduling. In this paper, a scheduling method for a paral-
lel processing system of an array architecture is proposed. In
general, scheduling consists of time assignment and processor
allocation. The time assignment is to determine when each op-
eration is executed. The processor allocation it to determine
which PE executes the operations. It is well known that the
optimal scheduling must consider the time assignment and the
processor allocation simultaneously and it is a NP-hard prob-

lem [4]. To improve CPU time for the scheduling, some of the
existing scheduling techniques divide the scheduling problem
into the time assignment and the processor allocation at the cost
of the solution optimality. However, the scheduling for an array
architecture do have to consider time assignment and processor
allocation simultaneously. This is because the processor allo-
cation affects the data communication time between operations
and the time assignment depends on the data communication
time. In addition, the time assignment to resolve resource con-
flict affects the processor allocation. To precisely obtain the
optimal scheduling, it is modeled as an integer linear program-
ming (ILP) problem and solved by an ILP solver [5, 6, 7]. In
this paper, an ILP model of scheduling for an array architecture
is formulated. The ILP model contains a large number of vari-
ables and constraints and therefore the CPU time is very long
to solve the ILP model. A technique to find an optimal sched-
ule by using modified ILP models to improve the CPU time is
proposed in this paper.

II. SCHEDULING MODEL FOR HIGH-LEVEL SYNTHESIS

The scheduling model of array architecture is defined as fol-
lows.

1. Array topology
The number of PEs and the topology of array structure are
given as a specification.

2. Processing element
A Processing element (PE) can execute operations and
data communications with adjacent PEs simultaneously.
In addition, a PE can relay data from an adjacent PE to
another adjacent PE as long as no conflict on communica-
tion links occur.

3. Data communication
Data communication links are limited between physically
adjacent PEs. Data communication between physically
distant PEs is achieved by intermediate PEs relaying the
data. Therefore, data communication time is proportional
to the distance between the sender PE and the receiver PE.

ASP-DAC ’97
0-89791-851-7$5.00  1997 IEEE

P1 P3P2

P4 P5 P6
W14

W12

W13

W11

W10

W1

W2

W3

W4

W5

W6

W7W8

W9

IN[0:7]

OUT[0:7]

Fig. 1. Hardware model of array architecture.

4. Data Input/Output
The locations of PEs which input and/or output the data
are given as specification. Moreover, if the processing al-
gorithm consumes and produces multiple data, then the
data format of input and output is also specified.

Based on the scheduling model defined above, scheduling is
done to satisfy the following scheduling constraints.

1. Satisfy precedence relations
If there exists data dependency between operations, the
precedence relation between these operations must be sat-
isfied. Namely, if an operation depends on the data pro-
duced by another operation, the former operation cannot
start until the latter completes the execution and the pro-
duced data is sent to the former operation.

2. No resource conflict
Let resource conflict be defined as the situation that the
resource is used at the same time by more than one execu-
tions. Hence if resource conflict occurs in a schedule, the
schedule cannot be realized. No more than one operations
can be executed on a PE at the same time. In addition, no
more than one data can be sent/received on a data com-
munication link at the same time.

The objective of the scheduling is to find a schedule which
achieves the minimum iteration period for a given processing
algorithm and a given array topology. If there exist more than
one such schedule, then choose one which achieves the mini-
mum latency. Latency is defined as the time difference between
input of data and output of related data. In this paper, register
minimization is not considered. Namely, a PE is assumed to be
able to store any number of data.

III. BASIC SCHEDULING METHOD

A. Scheduling strategy

At first, we construct an ILP model to decide whether a
schedule of a processing algorithm exists or not which satisfies
all the scheduling constraints for a specified iteration period and
latency on a PE array of a given topology. This ILP model is
called complete model since the model completely checks the
existence of resource conflict.

The basic scheduling method by using the complete model
is illustrated in Fig. 2. First, the lower bound of iteration period

yes

no

no

yes

Processing algorithm
Array topology
Data I/O specification

Compute the lower bound
of iteration period Ti

Compute the lower bound
of latency Lt

Is
solved?

Does Lt exceed
the upper bound?

Increment Ti

Increment Lt

Optimal
solution

Complete Model

Fig. 2. Basic scheduling method.

and the lower bound of latency are computed and set a guess it-
eration period and a guess latency to these lower bounds. Then
the complete model is generated and run to decide whether a
schedule exists. If the complete model does not terminate with
a solution, i.e., no schedule satisfying scheduling constraints
exists for the guess iteration period and the guess latency, then
increase the latency or the iteration period, and generate and
run the complete model again. By repeating the process, the
complete model eventually terminates with a solution, i.e., a
schedule satisfying all the scheduling constraints. At this point,
a valid schedule achieving the minimum iteration period and
the minimum latency has been obtained. It must be noted that
the above repetition always terminates and therefore an optimal
schedule is always obtained. This is because a schedule where
all the operations are executed sequentially on one of the PEs
is a valid schedule and it can be obtained if the iteration period
and the latency are sufficiently large.

B. Complete model

The complete ILP model is defined as Eq. (1) to (10) to de-
cide whether a schedule of a processing algorithm exists which
satisfies all the scheduling constraints for a specified iteration
period and latency on a given topology of PE array.

The following terminology is used.

N the set of operation nodes.
IN the set of nodes to input data.
OUT the set of nodes to output data.
P the set of processing elements.
W the set of data communication links between

PEs.
Lt the latency of the processing algorithm.
Ti the iteration period of the processing algorithm.
Ci the computation latency of operation i 2 N .
Li the pipeline period of operation i 2 N .
Di;ip the number of delay elements on edge (i ;i p).

FIXji the time when data i 2 IN (OUT) is
input(output).

FIXki the index of PE where data i 2 IN (OUT) is
input(output).

Xi;j;k a binary variable. Xi;j;k = 1 implies that opera-
tion i 2 N starts at time j on PE k.

Yi;j;l a binary variable. Yi;j;l = 1 implies that a data
produced by operation i 2 IN+N is sent at time
j through data communication link l.

ASAP i the earliest starting time of operation i 2 N .
ALAP i the latest starting time of operation i 2 N .
Rxi the time interval in which operation i can start.

Rxi = fAS AP i; AS AP i + 1; . . . ; ALAP ig

AS AP yi the earliest starting time of communication of a
data produced by operation i.

ALAP yi the latest starting time of communication of a
data produced by operation i.

Ryi the time interval in which communication of a
data produced by operation i can start.
Ryi = fAS AP yi; AS AP yi + 1; . . . ; ALAP yig

frl the source PE of data communication link l 2

W .
tol the sink PE of data communication link l 2W .

The computation latency is the time difference from an opera-
tion is started until the operation result is output. The pipeline
period is the smallest time interval between successive invoca-
tion of operations on a PE. Basically there is no restriction on
the data communication time between adjacent PEs in the pro-
posed ILP model. In this paper, a data communication between
adjacent PEs is assumed to take one unit of time.

Here i) ip implies a data dependency from operation i to
operation ip.

Eq. (1) ensures that an operation of each node is executed
only once. Eq. (2) ensures that at most one operation is exe-
cuted at the same time on each PE and hence resolves resource
conflict for functional units. Eq. (3) ensures that each data is
sent from one PE to another only once. Eq. (4) ensures that
at most one data is sent at the same time on each data com-
munication link and hence resolves resource conflict for data
communication link. Eq. (5) and eq. (6) constrain precedence
relations between data communication and data communica-
tion and between operation and data communication, respec-
tively, in the case of data relaying. Eq. (7) and eq. (8) con-
strains precedence relations between data communication and
operation and between operation and operation, respectively.
Eq. (9) and eq. (10) decide whether data output time satisfies
precedence relations with the current guess latency.

C. The upper bound of latency

A schedule where all the operations are executed sequen-
tially on the PE specified to input data and then the results are
sent to the PE specified to output data is a valid schedule since
any resource conflict occurs. In this schedule, the latency is not
longer than the sum of the total operation time and the distance
between PEs which respectively inputs and outputs data. Let

yes

no

no

yes

m=0

yes

no

m=m+1

no

yes

Processing algorithm
Array topology
Data I/O specification

Compute the lower bound
of iteration period Ti

Compute the lower bound
of latency Lt

Is Reduced Model
solved?

Is Constrained Model
solved?

m

Is Constrained Model
identical to

m

Complete Model?

Does Lt exceed
the upper bound?

Increment Ti

Increment Lt

Optimal
solution

Fig. 3. Refined scheduling method.

the sum of these time be denoted as Lt M . Any schedule with a
latency longer than Lt M can be achieved by inserting idle time
into the above mentioned schedule. Therefore it is not neces-
sary to check the existence of a schedule for a latency longer
than Lt M . Consequently the upper bound of the latency Lt in
the scheduling method shown in Fig. 2 is Lt M .

IV. REFINED SCHEDULING METHOD

The basic scheduling method described in the previous sec-
tion requires execution of the complete ILP models. To strictly
constrain precedence relations and check resource conflict, the
complete model requires many binary variables for a large pro-
cessing algorithm and therefore its solution time is very long
and sometimes it cannot be solved. In this section, a refined
scheduling method and ILP models are proposed to handle
scheduling of large processing algorithms and achieve shorter
CPU time for scheduling.

The proposed refined scheduling method is illustrated in
Fig. 3. While the basic scheduling method employs only the
complete model, the refined scheduling method employs two
ILP models: reduced model and constrained model. The re-
duced model is the complete model except that the existence of
resource conflict on data communication links is not checked.
The purpose of the reduced model is to determine a start time
of each operation so that precedence relations are satisfied. The
constrained model is the complete model except that the time
intervals in which operations could start are limited based on
the start time determined by the reduced model. Both ILP mod-
els can be solved much faster than the complete model. By
using these two ILP models, the CPU time to derive the opti-

X
j2Rxi

X
k2P

Xi;j;k = 1 8i 2 N (1)

X
i2N

�Li�1X
q=0

f

b(ALAP i�j�q)=T icX
p=0

Xi;j+p�Ti�q;kg
	
� 1 1 � j � Ti ;8k 2 P (2)

X
j2Ryi

Yi;j; l � 1 8i 2 IN + N; 8l 2 W (3)

X
i2IN+N

b(ALAP yi�j)=T icX
p=0

Yi;j+p�Ti; l� 1 1 � j � T i ;8l 2W (4)

Yi;j; l � f
X
jp<j

X
lp

tolp=frl

Yi;jp; lp +
X

jp�j�Ci

Xi;jp;frlg 8i 2 N; 8j 2 Ryi; 8l 2W (5)

Yi;j; l � f
X
jp<j

X
lp

tolp=frl

Yi;jp; lp + �g 8i 2 IN;8j 2 Ryi; 8l 2W

� =

�
1 if j > FIXji and k = FIXki
0 otherwise

(6)

Xip;j;k �
X

jp<j +Di;ip�Ti

X
l

tol=k

Yi;jp; l +
X

jp�j+Di;ip�Ti�Ci

Xi;jp;k i ;i p2 N; 8i) i p ;8j 2 Rxi;8k 2 P (7)

Xi;j;k �
X

jp<j +Di;ip�Ti

X
l

tol=k

Yi;jp; l + � i 2 IN; i p2 N; 8i) i p ;8j 2 Rxi; 8k 2 P (8)

1 �
X

k=FIXkip

f
X

j<F IXjjp+Di;ip�Ti

X
l

tol=k

Yi;j; l +
X

jp�FIXjip+D(i;ip)�Ti�Ci

Xi;j;kg i 2 IN; i p2 OUT;8i) i p (9)

1 �
X

k=FIXkip

X
j<F IXjip+Di;ip�Ti

X
l

tol=k

Yi;j; l + � i 2 IN; i p2 OUT; 8i) i p (10)

� =

�
1 if FIXji < FIXjip + Di; ip� Ti and FIXki = FIXkip
0 otherwise

mal schedule is greatly reduced without degrading the schedule
optimality.

A. Schedule existence decision by reduced model

The reduced model is such an ILP model that the existence of
a schedule is decided where all the precedence relations are sat-
isfied and no resource conflict occur on PEs but resource con-
flict on data communication links is ignored. In other words,
the reduced model is a complete model for an array with in-
finite number of data communication links between adjacent
PEs. Binary variables Yi;j; l are not necessary in the reduced
model and hence the number of binary variables is greatly re-
dudecd. The reduced model can be solved more easily than the
complete model.

Let a cutset of an array be defined as the set of data com-
munication links such that removal of those divides the array
into two connected components as illustrated in Fig. 4. Each
cutset has its maximum data flow capacity. It is calculated as
the number of data communication links in the cutset multi-
plied by the iteration period Ti. For example in the case of
the cutset shown in Fig. 4, the cutset consists of 5 data com-

cutset

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

data
communication
link

Fig. 4. Cutset of array.

munication links. If the iteration period is 6 units of time, the
capacity of the cutset is 30. In each iteration period, at most 30
data can be sent from PEs of the upper component to PEs of
the lower component and vice versa. For any schedule found
by the reduced model, if the total number of data communica-
tions between PEs belonging to different components of a cut-
set is greater than the data flow capacity of the cutset, then the
schedule must contain resource conflict on at least one of the
data communication links. If such a schedule is allowed, all the
constrained ILP models (defined in the next section) following
the reduced model report that there exists no schedule with-
out resource conflict after a long CPU time. To overcome this
problem, the reduced model counts the number of data com-
munications for all the cutsets which divide PEs into one PE

and any other PEs and checks if it is no more than the data flow
capacity of the cutset. Although new binary variables are in-
troduced to count the number of data communications which
cross a cutset, this augment of binary variables is much smaller
than the reduction of binary variables Yi;j;l.

In addition to the terminology defined in section B, the fol-
lowing terminology is defined.

PCONk;kp data communication time between PE k and
PE kp.

flowfk;i the binary variable to imply data flow-out.
flowfk;i = 1 implies that a data produced by
operation i is output from PE k.

flowtk;i the binary variable to imply data flow-in.
flowtk;i = 1 implies that a data produced by
operation i is input to PE k.

Eq. (11) ensures that an operation of each node is executed
only once. Eq. (12) ensures that at most one operation is exe-
cuted at the same time on each PE and hence resolves resource
conflict Eq. (13)–(16) constrain precedence relations between
operation and operation, between input and operation, between
operation and output, and between input and output, respec-
tively. Eq. (17)–(20) decide if the data produced by operation
i is flown out from PE k. If operation i is executed on PE k,
i) i p, and operation i p is executed on a PE other than PE k,
then the data must be flown out from PE k. Eq. (21) restricts the
number of data communications on a cutset which divides PEs
into PE k and any other PEs to be within the data flow capacity
of the cutset. The right hand side is the data flow capacity of
the cutset. The left hand side is the number of data flown out
from PE k. Similarly, Eq. (22)–(26) restrict the number of data
flown into PE k.

It must be noted that the cost function (27) is maximized in
the reduced model. In the constrained ILP model (defined in the
next section) which follows the reduced model, the complete
schedule is found where any resource conflict on data commu-
nication links as well as PEs does not occur. For a pair of op-
erations i and i psuch that i) i p, if the time difference from
the execution of operation i to the execution of operation i p is
large, then it becomes easy to resolve resource conflict by mod-
ifying the execution time of these operations without violating
the precedence relation between operations i and i p. Hence

Z =
X
i)ip

�
start time of operation i p�

end time of operation i

�
;

which is the sum of time difference for all the pair of operations
with a data dependency between the operations, is maximized
by Eq. (27).

B. Schedule existence decision by constrained model

The reduced model determines the start time for each opera-
tion so that precedence relations between operations are satis-
fied including data communication time and no resource con-
flict on PEs exists. Based on the start time determined by the
reduced model, the constrained models find a schedule where

all the precedence relations are satisfied and no resource con-
flict on data communication links as well as PEs exists.

The constrained model is parameterized by a nonnegative in-
teger m. Let ti denote the start time of operation i determined
by the reduced model. In the complete model, the time interval
in which operation i could start is Rxi = ft jASAP i � t �

ALAP ig. The constrained model m employs the same equa-
tions (constraints) as the complete model but the time interval
in which operation i could start isRxi = ft j max(AS AP i; ti�

m) � t � min(ALAP i; ti + m)g. Namely, the constrained
model m checks whether a schedule without any resource con-
flict exists or not by assuming that the start time of operation i
can be shifted �m units of time from ti.

The constrained model m = 0 checks the existence of a
schedule by fixing the start time of all the operations as deter-
mined by the reduced model. If the constrained model m ter-
minates without a solution, i.e., any schedule without resource
conflict does not exist, then m is incremented by one and the
constrained model is run again. By repeating the procedure,
finally ti�m � AS AP i and ti +m � ALAP i hold for all the
operation i. At this point the constrained model m is identical
to the complete model. If all the constrained models terminate
without a solution, it implies that a schedule without resource
conflict does not exist at current guess iteration period Ti and
guess latency Lt . In this case, increase the guess latency or the
guess iteration period and repeat from the reduced model.

Through the preliminary experiments, a prospect has been
obtained that the start times of operations in the final sched-
ule without any resource conflict are just the same or very
close to those derived by the reduced model. This implies
that the schedule without any resource conflict is likely to be
found even when the time interval is small. Hence if an op-
timal schedule exists, it is expected to be found by the con-
strained model with a small m. This is the reason that the re-
fined scheduling method would find an optimal solution within
a short CPU time.

As m increases, the time interval, i.e., the search space gets
larger and finally the constrained model becomes identical to
the complete model. Therefore, the schedule obtained by the
refined scheduling method is as optimal as the schedule ob-
tained by the basic scheduling method.

V. EXPERIMENTAL RESULTS

A. 8 point DCT

Fig. 5 shows a data-flow graph of 8 point discrete cosine
transform (DCT) [8]. This processing algorithm is imple-
mented onto an array shown in Fig. 1. As a specification, 8
input data IN [0 : 7] are input to PE P2 at time steps 0 to 7
respectively and 8 output data OUT [0 : 7] are output from PE
P5 at time steps Lt to Lt + 7 respectively where Lt is the spec-
ified latency. The operation execution time is assumed to be 2
units of time (u.t.) for a multiplication and 1 u.t. for an addi-
tion. In addition, operations are assumed to be not pipelined.
There are 11 multiplications and 29 additions and hence the to-
tal operation execution time is 51 u.t. Since 6 PEs exist in the

X
j2Rxi

X
k2P

Xi;j;k = 1 8i 2 N (11)

X
i2N

�Li�1X
q=0

f

b(ALAP i�j�q)=T icX
p=0

Xi;j+p�T i�q;kg
	
� 1 1 � j � Ti ;8k 2 P (12)

Xip;j ;k �
X
kp2P

X
jp<j�Ci�PCONk;kp+Di;ip�Ti

Xi;jp;k p i ;i p2 N;8i) i p ;8j 2 Rxi; 8k 2 P (13)

Xip;j ;k �

�
1 (j > FIXji + PCONk;FIXki �Di;ip � Ti)
0 (otherwise)

i 2 IN; i p2 N;8i) i p ;8j 2 Rxip; 8k 2 P (14)

Xi;j;k �

�
1 (j � FIXjip � Ci � PCONk;FIXkip + Di;ip � Ti)
0 (otherwise)

i 2 N; i p2 OUT; 8i) i p ;8j 2 Rxi; 8k 2 P (15)

FIXjip � FIXji + Di;ip � T i� 1 � PCONFIXki;FIXkip i 2 IN; i p2 OUT; 8i) i p (16)

flowfk;i �
X
j2Rxi

Xi;j;k �
X

j2Rxip

Xip;j ;k i ;i p2 N; 8i) i p ;8k 2 P (17)

flo wfk;i � 1�
X

j2Rxip

Xip;j ;k i 2 IN; i p2 N; 8i) i p ;k = FIXki (18)

flo wfk;i �
X
j2Rxi

Xi;j;k i 2 N; i p2 OUT; 8i) i p ;8k 6= FIXkip (19)

flo wfk;i � 1 i 2 IN; i p2 OUT; 8i) i p ;k = FIXki; k 6= FIXkip (20)X
i2IN+N

flo wfk;i �
X
kp

PCONk;kp=1

Ti 8k 2 P (21)

flo wtk;i � �
X
j2Rxi

Xi;j;k +
X

j2Rxip

Xip;j ;k i ;i p2 N; 8i) i p ;8k 2 P (22)

flo wtk;i �
X

j2Rxip

Xip;j ;k i 2 IN; i p2 N; 8i) i p ;8k 6= FIXki (23)

flo wtk;i � �
X
j2Rxi

Xi;j;k + 1 i 2 N; i p2 OUT; 8i) i p ;k = FIXkip (24)

flo wtk;i � 1 i 2 IN; i p2 OUT; 8i) i p ;k = FIXkip; k 6= FIXki) (25)X
i2IN+N

flo wtk;i �
X
kp

PCONk;kp=1

Ti 8k 2 P (26)

Maximize Z =
X

i2IN+N

X
ip2N
i)ip

f
X
j2Rxi

X
k2P

j �Xi;j;kg +
X

i2IN+N

X
ip2OUT
i)ip

FIXjip

� f
X
i2N

X
ip2N+OUT

i)ip

f
X
j2Rxi

X
k2P

j �Xi;j;kg + Ci �Di;ip � Tig (27)

�
X
i2IN

X
ip2N+OUT

i)ip

fFIXji + 1�Di;ip � Tig

13

14

15

16

17

18

19

20

21

22

23

24

27

28

29

30

31

32

1

2

3

4

5

6

7

8

9

10

11

12

25

26

33

34

35

36

37

38

39
40

42

41

43

44

45

46

47

48

49

50

51

52

53

54

55

56

IN2

IN3

IN4

IN5

IN6

IN7 OUT1

OUT2

OUT4

OUT3

OUT5

OUT6

OUT7

OUT0

IN1

IN0

Fig. 5. Data-flow graph of 8 pint DCT.

O45

O4

O5

O6

O16 O16

O7

O3

O1

O2

O20

O12

O8

O23 O23

O11

O14

O19

O17 O17

O24 O24

O13

O21

O18 O18 O9

O15 O34

O30 O30 O32 O32

O33 O25

O10 O36 O38 O38

O40

O26

O27 O35 O39 O39 O29 O37

O5

O6

O6 O7

O5

O3

O3

O1

O2

O7

O16

O4

O8

O1

O11

O28 O31 O31

O22 O22

O22

O2

O16

O12

O23

O19

O19

O19

O13

O21

O11

O4

O18

O9 O13 O10 O36

O19

O30

O34O15

O31

O32

O38 O26

O41 O42

O44

O43 O46 O47 O48

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

W13

W14

P1

P2

P3

P4

P5

P6

X

Y

O12

Fig. 6. An optimal schedule of 8 point DCT.

array, the lower bound of the iteration period is d51=6e = 9
u.t. This implies that there exists no schedule with an iteration
period less than 9 u.t.

The first row of Table I shows the CPU times (the unit is sec-
ond) of the scheduling done by the basic scheduling method and
the refined scheduling method. All the ILP models are solved
by the ILP solver GAMS/OSL[9] running on a 75MHz Sparc
workstation. When the iteration period is 9 u.t. and the latency
is 18 u.t., the complete model is solved, which implies the ex-
istence of a solution, and the CPU time is 15 hours 33 minutes
and 22 seconds (56002 seconds). The iteration period achieves
its lower bound and there exists no schedule with a latency less
than 18 u.t. Hence the schedule derived is the optimal one. In
the refined scheduling method, however, the CPU time for the
reduced model is 10 minutes and 50 seconds (650 seconds) and
the constrained model m = 0 terminates with a solution after

44 seconds. Thus a schedule without any resource conflict is
obtained in 11 minutes and 34 seconds. Fig. 6 shows the time
chart of the optimal schedule obtained by the refined schedul-
ing method. In Fig. 6, the upper chart shows the schedule for
operations. For example, operation 5, which is an addition, is
executed on PE P1 at time S6. The lower chart in Fig. 6 shows
the schedule for data communications. For example, the re-
sult of operation 1 is communicated on link W5 at time S9 and
on link W12 at time S10, i.e., it is sent from P2 (the source of
W5) to P6 (the sink of W12) through P5 (the sink of W5 and
the source of W12). Dense hatching represents the operations
and data communications of the 2nd previous iteration, sparse
hatching the previous iteration, light gray the next iteration, and
the dark gray the 2nd next iteration. Space imply that PEs and
data communication links are idle.

In the schedule derived by the refined scheduling method, the

IN OUT

IN OUT

(a)

(b)

Fig. 7. Array topology and data input/output specification. (a) For 4th order
Jaumann wave digital filter. (b) For 16 point FIR filter and 5th order wave
elliptic digital filter.

iteration period is 9 u.t. and the latency is 18 u.t. Consequently,
by using the refined scheduling method, 80 times speed up is
achieved in deriving an optimal schedule.

B. Benchmarks

The proposed scheduling methods are applied to processing
algorithms, such as 4th order Jaumann wave digital filter (JAU)
[10], 16 point FIR filter (FIR) [11], and 5th order wave ellip-
tic digital filter (WEF) [12]. The topology of the array used is
shown in Fig. 7. The CPU times in second are summarized in
Table I. Table I shows: the name of a processing algorithm;
the specified iteration period Ti; CPU time for the complete
model; CPU time for the reduced model (RM); CPU time for
the constrained model (CM) m = 0; CPU time for the con-
strained model m = 1; and the CPU time ratio between the ba-
sic and refined scheduling methods. In the case of JAU an opti-
mal schedule without resource conflict is obtained by the con-
strained model m = 1. In any other case, an optimal schedule
without resource conflict is obtained by the constrained model
m = 0. Although the lower bound of the iteration period of
WEF is 16 u.t., there exists no schedule when the iteration pe-
riod is less than 18 u.t. In any other case, the iteration period is
the same as the lower bound and hence the schedule achieves
the minimum iteration period.

Since two or more ILP models, i.e., the reduced model and
the constrained models m are used in the refined scheduling
method, there can be a case where the total CPU time becomes
longer than the basic scheduling method, especially for a small
size processing algorithm such as 4th order Jaumann wave dig-
ital filter. As shown in Table I, however, the absolute increase
of the CPU time is acceptable. On the other hand for relatively
larger processing algorithm such as 8 point DCT, the CPU time
is greatly improved. Consequently it can be concluded that the
proposed refined scheduling method is effective.

VI. CONCLUSIONS

In this paper a scheduling method was proposed to obtain
an optimal scheduling method for a multiprocessor system of
array architecture. The proposed scheduling method employs
the reduced ILP model and the constrained ILP model to derive
a schedule which achieves the minimum iteration period and
the minimum latency without any resource conflict. By exper-

TABLE I
COMPARISON OF SCHEDULING METHODS

Refined
DFG Ti Basic RM CM m CPU ratio

0 1

DCT 9 56002 650 44 — 80.69
JAU 10 7 26 3 10 0.18
FIR 8 248 24 6 — 8.23

WEF 16 52959 4789 — — 11.06
17 57305 7504 — — 7.64
18 305 734 42 — 0.39

total 110569 13027 42 — 8.46

imental results, the effectiveness of the proposed scheduling
method was verified.

Acknowledgment

This work has been engaged as a project in CAD21 Research
Body of Tokyo Institute of Technology. We wish to thank all
the members of CAD21 for their suggestions and cooperations.

REFERENCES

[1] M. Yamashina, “Prospect of Sub-Quarter Micron LSI Design,”
in IEICE Tech. Report, vol. VLD95-136, pp. 53–60, 1996.

[2] S. Y. Kung, VLSI Array Processing. Englewood Cliffs, N.J.:
Prentice Hall, 1988.

[3] K. Ito, K. Hagiwara, and H. Kunieda, “Neo-Systolic Array: A
Hardware Model for VLSI System Compiler VEGA,” in The
Proceeding of 1992 IEEE Asia-Pacific Conference on Circuits
and Systems, Sydney, pp. 313–318, Dec. 1992.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability:
a Guide to the Theory of NP-completeness. San Francisco: W.
H. Freeman, 1979.

[5] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A Formal Approach to
the Scheduling Problem in High Level Synthesis,” IEEE Trans.
Computer-Aided Design, vol. CAD-10, pp. 464–475, Apr. 1991.

[6] C. H. Gebotys and M. I. Elmasry, “Global Optimization Ap-
proach for Architecture Synthesis,” IEEE Trans. Computer-
Aided Design, vol. CAD-12, pp. 1266–1278, Sept. 1993.

[7] K. Ito, L. E. Lucke, and K. K. Parhi, “Module Selection and
Data Format Conversion for Cost-Optimal DSP Synthesis,” in
Proc. ACM/IEEE Int. Conf. on Computer-Aided Design, San
Jose, pp. 322–329, Nov. 1994.

[8] C. Loeffler, A. Ligtenberg, and G. S. Moschytz, “Practical Fast
1-D DCT Algorithms with 11 Multiplications,” in Proc. IEEE
ICASSP, pp. 988–991, 1989.

[9] A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A User’s
Guide, Release 2.25. South San Francisco, CA: The Scientific
Press, 1992.

[10] M. Renfors and Y. Neuvo, “The Maximum Sampling Rate of
Digital Filters under Hardware Speed Constraints,” IEEE Trans.
Circuits Syst., vol. CAS-28, pp. 196–202, Mar. 1981.

[11] N. Park and A. C. Parker, “Sehwa: A Software Package for Syn-
thesis of Pipelines from Behavioral Specifications,” IEEE Trans.
Computer-Aided Design, vol. 7, Mar. 1988.

[12] S. Y. Kung, H. J. Whitehouse, and T. Kailath, VLSI and Modern
Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1985.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

